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Abstract

In many areas numerical models are getting more and more important for

analysing and predicting the behaviour of real world systems. Calibrating a

new model is one essential part during model development to guarantee a cer-

tain accuracy of model simulation output. The aim is to minimize the deviation

between model prediction and measured data of the real world system by adapt-

ing model parameters. The deviation is represented by one or several objective

functions. In mathematical sense this represents an optimisation problem.

This thesis describes the general concepts of numerical model calibration with

focus on developing and implementing a model independent and generalized

framework for parallel calibration, called CALIMERO. Model calibration is a

computational intensive task. With CALIMERO the runtime of the model cali-

bration process can be decreased by using all available cores on state-of-the-art

multi core systems. The framework is benchmarked on calibrating urban water

management models by using different objective functions, optimisation algo-

rithms and programming languages (C++ and Python).

The benchmark results show that a speedup of the calibration process can be

reached in all test cases. Depending on the runtime and implementation (sequen-

tial or parallel) of used models the speedup varies. By increasing the runtime

of the numerical model simulation the speedup of parallel calibration increases

and vice versa. Moreover it showed that even with nested parallelism (parallel

optimisation algorithm and parallel model simulation) an increased speedup is

recognized.



Kurzfassung

In vielen Bereichen werden numerische Modelle immer wichtiger. Sie

ermöglichen es das Verhalten realer Systeme zu analysieren und in weit-

erer Folge vorherzusagen. Die Kalibrierung eines Modells ist ein wesentlicher

Bestandteil während der Entwicklung. Diese garantiert eine bestimmte Qualität

der Ergebnisse einer Modellsimulation. Das Ziel ist durch Veränderung von

Modellparametern die Differenz zwischen Ergebnisse von Modellsimulationen

und realen Messdaten zu minimieren. Die Differenz wird in einer oder mehreren

Zielfunktionen abgebildet. Aus mathematischer Sicht stellt diese Aufgabe ein

Optimierungsproblem dar.

In dieser Arbeit werden die generellen Konzepte einer Kalibrierung von nu-

merischen Modellen erläutert und in weiterer Folge ein modellunabhängiges und

generalisiertes Framework für parallele Modellkalibrierung namens CALIMERO

entwickelt und implementiert. Modellkalibrierung ist eine rechenintensive Auf-

gabe. CALIMERO ermöglicht es die Laufzeit eines Modellkalibrierungsprozesses

zu verringern indem alle vorhandenen Rechenkerne auf einem Rechensystem

mit vielen Rechenkernen verwendet werden. Das Framework wird mit Hilfe

von verschieden Modellkalibrierungen aus dem Bereich der Siedlungswasser-

wirtschaft mit verschiedenen Zielfunktionen, Optimierungsalgorithmen und

Programmiersprachen (C++ und Python) getestet.

Die Testergebnisse zeigen dass in jedem Testfall eine Beschleunigung des

Kalibrierungsprozesses erreicht werden kann. Die Beschleunigung variiert in

Abhängigkeit von der Laufzeit und Implementierung (sequentiell oder parallel)

des Modellsimulationsprogrammes. Erhöht sich die Laufzeit des Modellsimu-

lationsprogrammes so erhöht sich auch die Beschleunigung mittels paralleler

Kalibrierung und vice versa. Des Weiteren zeigen die Resultate, dass auch

mit verschachtelter Parallelisierung (paralleler Optimierungsalgorithmus und

paralleles Modellsimulationsprogramm) eine Beschleunigung möglich ist.
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Chapter 1.

Introduction

In many areas simulation models, which try to simulate real-world processes, are

very important. One example can be found in the field of urban drainage and

water supply management. In this field simulation models offer an increased

confidence in the design process of a new system and in the evaluation of an

existing system. They are able to simulate more complex real-world processes

than it would be possible manually. The use of such models and the need of

more accurate models grew steadily. The accuracy of a simulation model de-

pends on many factors, which should be kept in mind during the design process

of a simulation model. One main part of this process is to adjust model param-

eters such that the deviation between model output and measured data of the

real-world system is as small as possible. This process is also known as model-

calibration. It is a time consuming process because the simulation model has

to be executed many times and after each execution the produced data has to

be compared with the measured data of the real-world behaviors. Additionally,

also increased complexity of many simulation models often leads to the need

of more computational power. Since now this was not a big problem, because

with increasing the clock frequency of CPUs the needed computational power

was covered. Now we are at a point where it does not make much sense for

chip inventors to increase the clock frequency because of e.g. physical bound-

aries,. . . They started to put more cores on one single chip instead and leaving

the clock frequency unchanged.

Many simulation models and calibration tools are optimized for sequential cal-

culation. This means they are not able to use all these cores for a parallel

calculation. This thesis presents a model independent framework and tool for

parallel calibration named CALIMERO. With this framework it is possible to

calibrate any numerical model in parallel, but in this thesis the focus is on cali-

brating numerical models of the urban water management field.

In the first chapter the basic concepts of urban water management are discussed,

with the focus on model-calibration and the basics of parallel computing are also

shown.
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Chapter 3 describes the design concept and parallelization strategies of CAL-

IMERO.

The performance of the developed Calibration tool is tested and analyzed with

two different benchmark environments using one synthetic simulation model and

three real-world applications as test cases (Chapter 4).
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Chapter 2.

Background

2.1. Urban water management modeling

The aim of urban water management is to ensure the supply of drinking and

industrial water, and to ensure a hygienic and effective disposal of waste and

storm water, in the urban area. In general two network systems are needed to

meet all tasks in this field:

Water supply network This network ensures that all consumers get enough wa-

ter with the needed quality. Many different consumer types can be found

in urban areas and for each of them special water quality has to be guar-

anteed. For example drinking water has to fulfill the requirements which

are defined by laws and provisions. Therefore mechanisms have to be in-

stalled in a water supply network to ensure the specified water quality in

the whole system at any time.

Sewer network Sewer networks guarantee the legal disposal of waste and storm

water over the whole urban area. Two different approaches are possible to

achieve this. Separate sewer system disposes waste and storm water with

two independent networks and a combined sewer system simultaneously

disposes waste and storm water within one system.

The main difference between these two systems is the hydraulic pressure.

In water supply systems the water is under pressure and fills out the whole

system. This pressure is a protection against pollution, but also increases the

risk to loose water during the transport because of e.g. faulty pipes.

In sewer networks, waste water does not fill out the system all the time and

therefore should not be under pressure. In the case of a combined sewer system

a heavy load of the system could appear, if much storm water has to be disposed

in a short period of time.

Most of these systems have grown over time and it is usually rarely the case that

a complete new system has to be build at once. Mostly only small networks are
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planed. At completion time they are often part of an already existing system.

Therefore engineers have the focus on adapting and building systems to cover

the increasing demand of consumers over a long time period (50 years).

To meet this complex task numerical models are used. They simulate the

behavior of real-world urban drainage and water supply systems. With these

models it is possible to analyze an existing system and in the case of an adaption

or extension the changes can be tested virtually before they are implemented in

the real system. The results of such a process are depending on the accuracy of

the used numerical model. Therefore the modeling process of real-systems has

to be done carefully with keeping in mind which real-world processes should be

covered by the model.

Model

A model is a representation of a system. It enables the facility to investigate

properties of the represented system.

Real-world
system

Analyses on
real-world

system

Analyses
with Models

Physical
models

Numerical
models

Model
simulation

Analytical
solution

Figure 2.1.: System analyses

As shown in figure 2.1 a model can for example be a physical model which is

a true to scale mapping of the real-world system e.g. in a laboratory. Another

example for a model is a numerical model. In contrast to physical models,

numerical models assume a deep understanding of the underlying principles of

the system.
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In the field of urban water management this means that it is assumed to have

a deep understanding of transport processes and physical/chemical reactions

occurring within the systems. Now the original system can be analyzed with an

analytical solution or with a simulation of a numerical model. The simulation

is realized by an executable implementation of the model on a computer.

Each model can in general be abstracted as a simple State Space Model, where

the model produces in correlation of a specific input (~I) and an internal model

state, (~S) an output ( ~O). Figure 2.2 shows such a system where the input and

output can be seen as single value or a vector of many values.

~State ~Output data~Input data

Figure 2.2.: State Space Model

In respect to the usage and simulated time two different model types are

defined:

Static models Static models represent systems where the system state before

and after a change is known, but not in between. The factor of time does

not change the model output. In general such systems do not exist in

real world, but these models often represent real world systems accurately

enough. It is possible to make reasonable statements of the real world

system behavior. An example could be found at water supply networks

where an engineer wants to know the minimal and maximal pressure at

a specific point in a system. Therefore the state is calculated with a

numerical equation solver. This point is called steady state.

Consider a small water supply model with one reservoir (constant water-

level), one pipe and one demand. We want to know the pressure in the pipe

next to the demand. A simulation of an equivalent numerical model solved

with a numerical equation solver calculates the steady state of this system.

Now we know the pressure next to the demand under the assumption that

the input does not change during the simulation time. This means the

demand always consumes the same amount of water and the water-level

in the reservoir is constant.

For example, if the amount of water at the demand doubles, the same

procedure is repeated. Now we know the pressure next to the demand of

two system states, but it is not possible to get information about what

happens between these states. Therefor another model type is defined.
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Dynamic models Dynamic models represent systems where the factor of time

is important. Figure 2.3 shows a simple rainfall runoff model simulation

Q
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Figure 2.3.: Rain runoff model (Kleidorfer, 2010)

of rainwater in a sewer system. As input we have a rainfall measured over

a specific time period and we want to know the runoff (Q) for any time at

a specific point in the system.

In contrast to static models, dynamic models can simulate real system

behaviors at any time. Other examples for dynamic models in the field of

water management modeling are:

• Sewer models

• Wastewater treatment plant models

Independent of static and dynamic models another categorization of model

types is depending on the behavior of the correlation between input data, model

state and output data:

Deterministic models Model output is always the same, if the input is not

altered.

Stochastic models Model output is randomly although the input is not altered.

In the field of urban water management most models are deterministic models.

There exist much more categorizations in literature concerning model types, but

for simplicity and the scope of this thesis the previous defined categories are

adequate enough.

Modeling process

The process of developing a numerical model for real world system is a complex

and time consuming task. A model is a conceptual representation of behaviors

of real world system. The main question which is always present during a

modeling process is: Which phenomenon of the system should be mapped by
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the model?

As first step of this process the boundaries of real-world behaviors, we want to

analyze, have to be defined.

We speak of a system, if some objects and their interactions are separated

by a plausible demarcation from their environment (i.e., from the complex

reality). The objects and interactions that are of importance relative to the

question posed must be part of the system. All other objects and interactions

are to lie outside of the system boundaries (Gujer, 2008).

Defining the boundaries of a system to model unknown real-world behav-

iors is the starting point of each modeling process. A schematic and general

concept of a modeling process is shown in figure 2.4 and described following in

detail.

System analyses Gujer (2008) defined six tasks of system analyses which are

• to identify a suitable structure of a mathematical model for the de-

scription of the behavior of a system of interest,

• to identify the associated parameters of the model, including their

uncertainty,

• to analyze the mathematical behavior of the models,

• to evaluate the quality of the model,

• to analyze and estimate the uncertainties of the model predictions,

and

• to plan and design experiments with the best yield of information.

Choose an existing model or develop a new model Depending on the previ-

ous system analyses an already existing model can be used or if the needed

system behavior cannot be mapped by an existing model and new model

must be developed. In the field of urban water management many models

already exist. For example to simulate a water supply or sewer network

often used modeling softwares are EPANET 2 (Rossman et al. , 2000) or

SWMM 5(Rossman et al. , 2005) respectively.

Sensitivity analyses One main part during a system analyses is to identify the

associated parameters of a model. With these parameters it should be

possible to control the output of the model such that it fits the real system

behavior accurately enough. Now the question is how to adapt these

parameters or which set of parameter values results in an accurate model

7
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analyses
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Sensitivity
analysis

Calibration
Validation
Verification

Figure 2.4.: General Modeling process
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behavior? To make this process easier a sensitivity analyses of the model

is performed. It analyses the behavior of the model output depending on

altering the model parameters.

For example if a change of one model parameter results in completely

different model results, this parameter is said to be more sensitive than

a change of another model parameter which does not change the model

results that high. This testing method is called OAT sensitivity analyses,

where one parameter at a time is altered and analyzed.

In literature (Kleidorfer, 2010, Saltelli, 2004) many different sensitivity

analyses are introduced. All of them are part of a local or global sensitivity

analyses strategy. The sensitivity of a parameter also demonstrates the

importance of correct parameter observation of the real system. If for

example the length of a pipe in a water supply network is defined as a

model parameter which occurred after a sensitivity analyze to be highly

sensitive, it is important to measure the real length accurately to get good

model results.

Calibration With the help of a model calibration and an ongoing validation it

is possible to develop an accurate mapping of the reality. This enables us

to make meaningful propositions in the context of the specified system.

Sometimes it is not possible to measure an identified model parameter in

reality. An example is the pipe roughness of a sewer system. It influences

the flow behaviors of the waste water in the system. Because of deposit

corrosion the roughness of the pipes varies over time. It is not possible

to measure this parameter for each pipe in a sewer system. Depending

on the roughness of each pipe the model output changes. This is an

indication of a highly sensitive model parameter for roughness. The task

now is to find the roughness value for each pipe in the system, such that

the model output is equal to measured real system behaviors.

Finding the correct value set for all model parameters, such that the

model output fits measured real system data, is known as ”calibration”.

Calibration uses the results of a previous performed sensitivity analysis

as prior knowledge. The more measured real system data exist on which

the model is calibrated, the more accurate the model will be after the

calibration process.

A model is build with the assumption that the data of the reality is

exactly measured, which is not true. For example a faulty rainfall sensor

results in wrong model input parameter value estimation and therefore

wrong model results. During the modeling process it is important to know

that all measured model input parameter values contain uncertainties.
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With the help of sensitivity analyses it is possible to make propositions

about the consequence of measurement uncertainties. If a model input

parameter is identified not to be sensitive, it does not matter if the value

of this parameter is wrongly measured. Altering this value does not

change the model output. But altering strongly sensitive parameters may

result in a completely different model result and therefore it is important

to know that the measured value is accurate.

In a nutshell, the modeling process of real world system behaviors is a complex

and time consuming task. During the whole process the defined real system

behaviors should be kept in mind to guarantee a accurate mapping of all these

behaviors. With the help of a sensitivity analyses it is possible to analyze model

parameters and model input parameter uncertainties. A following calibration

and validation gives us the confidence of an accurate model building process in

the context of the defined system boundaries.

More detailed descriptions of the modeling process in the field of urban water

management could be found at Butler & Davies (2004), Gujer (2008), Möderl

(2010), Kleidorfer (2010),. . . The main focus of this thesis is on the calibration

process, moreover on the auto-calibration process.
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2.2. Calibration and Autocalibration

Calibrating the model is one of the most important tasks during a modeling

process. This task gives us the confidence to develop an accurate model.

Calibration is the process of comparing the model results to field observations

and, if necessary, adjusting the data describing the system until model-predicted

performance reasonably agrees with measured system performance over a wide

range of operating conditions. (Walski et al. , 2003)

Model calibration is necessary because of several reasons. A numerical model

simulation is often used to make predictions about specific system behaviors.

Model calibration and validation shows the capability of the created model and

gives the confidence of correct model results to make meaningful propositions

of the behavior of the system. On the other hand, calibrating a model gives us

a deeper understanding of the system, especially the sensitivity of model input

parameters and model parameters are analyzed. Independent of the created

model, calibration can find missing or incorrect data descriptions up to errors

during the modeling process. For example wrongly measured pipe diameters or

pipe lengths can be identified.

Figure 2.5.: Calibration of a model Gujer (2008)

Figure 2.5 shows the usage of a numerical model in detail. As already men-

tioned, observing behaviors of the real system may contain measurement errors.

This is the case for system input and output data. The model uses the measured

values and several assumptions which are not measured as input. The devel-

11



oped model is adapted to produce the same results as the observed behaviors

of the real system, by altering the model parameter values. This process could

be seen as trial and error approach. This means running the model with a new

model parameter value set and afterwards comparing the model results with the

real observed data and repeating this until the difference reaches a predefined

threshold. Finding the correct model parameter values is the challenge of the

calibration process. This could be done manually with an informal procedure or

automated with the help of a calibration algorithm. The results of a previous

sensitivity analysis of the model parameters can be used as prior knowledge for

the calibration process. They help to choose a new model parameter value set

after each comparison of model output with real measured data.

Lingireddy et al. (1997) have developed a Seven-step approach as guide to

model calibration, which are:

1. Identify the intended use of the model.

2. Determine estimates of model parameters.

3. Collect calibration data.

4. Evaluate model results based on initial estimates of model parameters.

5. Perform a rough-tuning or macrocalibration analysis.

6. Perform a sensitivity analysis.

7. Perform a fine-tuning or microcalibration analysis.

If calibration is done manually it will be a time consuming task, so it would

be nice to have a semi automatic or better a completely automated approach.

Latter is also known as ”Autocalibration”.

Autocalibration uses optimization-based models, where the calibration problem

is represented as an optimization by introducing an objective function. The

problem is solved by minimizing or maximizing this objective function. The

objective function represents the deviation between the model output and the

real measured data. The optimization problem for model calibration is described

in the following section.

2.3. Optimization

As described in the previous sections calibrating a numerical model means to

minimize the error between model output and observed data of real world system

12



behaviors. From the viewpoint of mathematics, this represents a global opti-

mization problem, where the aim is to find the best possible elements x from

a set X according to a predefined set of criteria F = {f1, f2, f3, ..., fn}. The

set X represents the problem space (search space) which contains all possible

combinations of all model parameter values. The elements of this space can be

anything e.g. numbers, lists,. . . The set of criteria is defined with mathematical

functions, which are called objective functions.

f : X→ Y Y ⊆ R (2.1)

Formula 2.1 shows the general concept of an objective function, where the

function f maps each element of the set X to an element of the set of real numbers

R. An objective function represents the health of one model according to the

chosen model parameter set. Depending on the problem this function should

be maximized or minimized. For example in the field of water management

modeling we often want to minimize the difference between model output and

real measured data. Therefore the objective function has to be minimized.

Depending on the problem space of the optimization problem, the task to find

the best set of model parameters could be a simple or mostly a complex task.

Many algorithms exist and all of them have its pros and cons. It is not possible to

say ”this” algorithm is the best one. Depending on several factors optimization

algorithms can be classified according to the search strategy and according to

the usage of the algorithm.

2.3.1. Single objective function

In this section popular objective function benchmarks are presented, which are

often used in the field of urban water management modeling.

As shown in formula 2.2, the first important objective function in this field is

the ”Sum of squared error”, in short ”SSE” (Björck, 1996). Values of SSE are

between 0 and ∞, where SSE = 0 is the best case representing no error.

SSE =

n∑
i=1

r2i (2.2)

As an example we look at a simple rain runoff model similar to figure 2.3.

There already exist real measured data of the runoff of the water Q at an

endpoint of the system. It is observed every five minutes. The corresponding

model should be calibrated using sum of squared error as its single objective

function. In this case the optimum is equivalent to the global minimum of the

objective function landscape (fitness landscape). The output of the model is

13



the runoff for each five minutes step for the same timespan as the real measured

runoff of the real system. Now for each model simulation one objective function

value is evaluated by using formula 2.2 with ri = Qi
o −Qi

m where Qi
o is the real

runnoff at time i and Qi
m is the calculated runoff of the model simulation at

time i.

E = 1−
∑T

t=1 (Qt
o −Qt

m)2∑T
t=1 (Qt

o −Qo)2
(2.3)

Another import objective function is ”Nash Sutcliffe” demonstrated in formula

2.3 (Nash & Sutcliffe, 1970). Here, Qi
o is the observed data at time i, Qi

m is the

modeled data at time i and Qo is the mean of the observed data set. The values

of E are between −∞ and 1. E = 1 represents no error. E = 0 is a sign for

that the mean of the observed data is a better statement about the real system

than it would be predicted by the numerical model.

2.3.2. Multiple objective functions

Optimization algorithms are often not only used with one single criteria. As we

have seen at the beginning of section 2.3 on page 12 the definition of criteria is

a set (F = {f1, f2, f3, ..., fn}). Each of the criteria is realized with an objective

function independent of each other.

Now there is the question of how should an optimization algorithm handle many

objective functions at the same time. Algorithms which are able to handle this

kind of problem are called ”multi objective optimization algorithms”.

g(x) =
n∑

i=1

wifi(x) (2.4)

A simple solution to handle multi objective functions is shown in formula 2.4.

It reduces the results of all objective functions by summing up all values and

multiplying them by a weighting value, also known as Linear Aggregation. The

weighting value is predefined for each objective function. This is an approach

where many objective functions are reduced to one single objective function.

With the help of the weighting values the importance of each criteria can be

controlled. Moreover with the sign of each weighting value it could be controlled

either an objective function should be maximized or minimized.
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Pareto Optimization is another important solution for handling multi objec-

tive functions. Here, the definition of ”optimum” is different in contrast to an

optimization with a single objective function. To find the optimal solution for

multi-objective functions with linear aggregation a total order of the resulting

single objective is used. Pareto optimization uses a partial order on solution

candidates defined by ”Domination”. A solution candidate x is dominating an-

other solution candidate y iff at least one objective function of x is better than

the same objective function of y and all other objective functions of x must

not be worse than the objective function of y. Formula 2.5 shows the formal

definition of ”Domination”, where wi and wj are the signs for each objective

function to specify if an objective function should be maximized or minimized.

x � y ⇔∀i : 0 < i ≤ n⇒ wifi(x) ≤ wifi(y)∧
∃j : 0 < j ≤ n : wjfj(x) < wjfj(y)

(2.5)

Now as we have introduced a new ordering of solution candidates we can

define the term ”Optimum” in the sense of Pareto optimization. Formula 2.6

shows that a solution candidate x∗ is part of the optimal set X∗ iff there exist

no other element x of the set of all solution candidates X which is dominating

x∗.

x∗ ∈ X∗ ⇔ @x ∈ X : x � x∗ (2.6)

X∗ is the set of all dominating solution candidates and is also called ”Pareto

set” or ”Pareto Frontier”. Now its up to a decision maker (by human or auto-

mated) which element of the set X∗ is the optimal solution for the optimization

problem.

2.3.3. Search strategy

An optimization algorithm defines the strategy of how to find the best set of

model input parameter values. In general there exist deterministic and proba-

bilistic approaches of finding the best parameter set. If the structure of model

parameter samples in combination with its objective function result is not too

complicated and the problem space is not too big, possible search strategies are

captured with deterministic algorithms. Here, the search space can easily be

explored with a divide and conquer strategy. This sort of algorithm guarantee

that the found solution is the best one for the current optimization problem.

If the search space has many dimensions and the correlation between solution

samples and objective function gets more complicated, it’s not easy to explore

and find an optimal solution in a reasonable time span. Probabilistic algorithms
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can handle successfully this sort of problem. Since 55 years, the research on

finding good probabilistic algorithms is a relatively new topic in the field of

optimization problems, but has become very important. An important category

of such algorithms are ”Monte Carlo Algorithms” which are also used as an

example for this thesis in upcoming sections. Probabilistic algorithms are using

heuristics to find the best solution candidate. It means the algorithm uses all

available information for deciding which solution candidate should be tested

next. The underlying problem is seen as a black-box were the algorithm tries

to make correct decisions only with the objective function result of previous

tested solution candidates. Probabilistic and deterministic (except of testing

all possible solution candidates) algorithms cannot guarantee that the found

solution is the best solution, but finding a good solution which is near to the op-

timum with a certain probability in a suitable timespan is often accurate enough.

Figure 2.6.: Objective function landscapes in a two dimensional problem space
(Weise, 2009)

An objective function is a mapping from the model parameter set to the

set of real numbers resulting in a curve. This curve is also known as ”fitness

landscape”. The main challenge for the optimization algorithm is to find a
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structure in this landscape to find the best solution in a fast way. Figure 2.6

shows a fitness landscape of one objective function in a two dimensional problem

space. It could be an example for a calibration with one objective function and

two model input parameters. Following definitions help to analyze a fitness

landscape.

Local Maximum Definition 2.7 defines the meaning of a local maximum in an

one dimensional function (single objective function).

∀xmaxl∃y > 0 : f(xmaxl) ≥ f(x) ∀x ∈ X, |x− xmaxl| < y (2.7)

A local maximum is a solution candidate xmaxl where the result of its

objective function f(xmaxl) is greater than the objective function results

of all neighboring solution candidates X.

Local Minimum Definition 2.8 defines the meaning of a local minimum in an

one dimensional function (single objective function), which is similar to the

definition of a local maximum. Here, the result of the objective function

of all neighboring solution candidates have to be greater or equal to the

objective function result of the local minimum solution candidate.

∀xminl∃y > 0 : f(xminl) ≤ f(x) ∀x ∈ X, |x− xminl| < y (2.8)

Local Optimum Depending on the problem definition a local optimum for an

one dimensional function (single objective function) is either a local max-

imum or a local minimum.

Global Maximum A global maximum (Definition 2.9) is the solution candidate

where the objective function value is greater or equal than all objective

function results of the whole problem space X.

f(xmaxg) ≥ f(x) ∀x ∈ X (2.9)

Global Minimum The definition of a global minimum (Definition 2.10) is similar

to the definition of a global maximum.

A global maximum is the solution candidate, where its objective function

result is smaller or equal than all other objective function results of all

solution candidates in the problem space X.

f(xmaxg) ≤ f(x) ∀x ∈ X (2.10)
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Global Optimum Depending on the problem definition a global optimum of

an single objective function is either the global maximum or the global

minimum. If there exist more than one global maximum or minimum all

of them are global optima. In such a case the global optimization problem

is also called a multi-modal optimization problem.

The task is to minimize or maximize the objective function by finding a global

minimum or maximum of this function, respectively. It is easy to find the global

optimum, if the whole fitness landscape is known, but often only small parts are

known. As probabilistic algorithms use all currently known objective function

results to decide which solution candidate should be tested next, a correct deci-

sion strongly depends on the complexity of the fitness landscape of the under-

lying objective function.

An optimization problem is difficult, if the objective function is not continu-

ous, not differentiable, or it contains multiple local maxima and minima. Most

of the optimization problems are part of the NP complexity class. This class

of decision problems complexity class can be solved in polynomial time on a

non-deterministic Turing machine (Bachmann, 1968). At this stage there does

not exist any algorithm solving this class of complexity in polynomial time on

a deterministic computer. To overcome this problem methaheuristics in opti-

mization algorithms are used leading to a near optimal solution in a reasonable

time span by randomized optimization procedures.

2.3.4. Termination of optimization algorithms

Algorithm 1 General structure of iterative optimization algorithms

1: procedure optimize(mpar) . Optimize all model parameters (mpar)
2: i← 0 . initialize iteration counter with 0
3: while terminC() 6= True do . Check termination criteria
4: health← performStep() . Test one solution candidate
5: i← i + 1
6: end while
7: return True

8: end procedure

As already mentioned many optimization algorithms are using a randomized

approach to find the optimal solution candidate because the problem space is

often too huge for scanning the whole space. Therefore it is important to guar-

antee that a optimization algorithm terminates. Algorithm 1 shows the general

structure of an iterative optimization algorithm. The top loop has a function
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(terminC()) as condition responsible for the termination of the optimization

algorithm. This function contains several termination criteria which are for

example:

• Terminate optimization algorithm if a predefined number of iteration is

reached.

• Terminate optimization algorithm if a predefined calculation time span is

exceeded.

• Terminate optimization algorithm if a predefined threshold for each ob-

jective function is undercut.

• Terminate optimization algorithm if there are no changes in the objective

function results.

2.4. Parallel processing

As parallel computing is a huge research field this section shows only the basics

of this topic. For more information and detailed description please read Akhter

& Roberts (2006), Hennessy et al. (2003), Patterson & Hennessy (2008),

Körbler (2008).

The performance of modern computer systems grew steadily over years, which

admits us to develop more complex programs. As predicted by Moore’s law the

number of transistors doubles approximately every two years by using the same

space on a single chip (Tuomi, 2002). But not only the number of transistors

grew, also the clock frequency of the CPUs increased as well. Chip inventors

are now at a point where increasing the clock frequency is getting more and

more complicated because of physical boundaries,. . . To overcome this problem

they started to put more cores on one single chip instead. This induces a new

era in the field of computing hardware and software development (Geer, 2005).

Since most of the programs implemented up to now are sequentially executed,

software developers have to learn new programming techniques to develop

parallel programs which can use all cores on a system.

The aim of parallel programming is to make a sequential program parallel

and faster with the condition that the results produced by the parallel program

are equivalent to the results of the sequential program.
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Single Data Multiple Data

Multiple Instruction MISD MIMD

Single Instruction SISD SIMD

Table 2.1.: Flynnsche Classification

2.4.1. Architectures

The basis for parallel computing is a hardware which allows to execute code in

parallel. In general there exist two different classes of hardware architectures for

parallel computing. The first class executes several instructions simultaneously.

Here is important that the simultaneous executed instructions are independent.

Enough hardware units have to be available for each instruction. For example to

execute two independent floating point operations simultaneously the floating

point unit (FPU) has to be replicated.

The second class of a parallel hardware architecture allows operations on

multiple data with one instruction. Table 2.1 was first introduced by Flynn

(1972) and shows all possible combinations depending on the time span an

instruction is executed.

Nowadays MIMD-Platforms are the most popular hardware architectures.

They often realized on a single chip with multi-cores up to connecting more

multi-core processors with a network. Another important topic for enabling

parallel programming is the memory management. To basic categories of mem-

ory management systems are shown in the following list.

Shared memory system Figure 2.7 As shown in figure 2.7 a shared memory

system has a central physical memory.

CPU CPU CPU

Memory

CPUCPU CPU

Figure 2.7.: Shared memory system
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All CPUs of the system share the whole global memory space via a BUS.

This means if a CPU alters data, all other CPUs see the changed data

at the same time. Each CPU can act independently by having read and

write access to the global memory.

Shared memory system are relatively easy to program, but it has to be

guaranteed that two CPUs do not alter same data at the same time, be-

cause of an resulting write conflict. The usage of one global memory space

does not scale well. Therefore most shared memory systems have only

a view up to maximal 64 CPUs because of the resulting communication

bottleneck.

Distributed memory system Figure 2.8 shows the general concept of a dis-

tributed memory system. Each CPU has its own memory space and is

fully encapsulated. The communication is realized via a network. This

kind of system is harder to program in contrast to shared memory sys-

tems. It is up to the programmer how all CPUs communicate with each

other. Communication must be done explicitly by specifying which data

should be transfered from one CPU to the other. This mechanism is re-

alized by the ”message-passing model” It allows to access data from a

different CPU over a network.

Distributed memory systems scale better than shared memory systems,

CPU+Mem CPU+Mem CPU+Mem

CPU+Mem CPU+Mem CPU+Mem

Figure 2.8.: Distributed memory system

but also here the communication may be the limiting factor. For small

systems it is not a problem to connect each CPU with each other, but for

bigger systems connecting each component with each other directly may

not be reasonable. If there are x components which should be directly

connected each with each other x ∗ (x − 1)/2 connections are necessary.

Because of this fact, the focus is to build a network where each component

can communicate with each other in a manner that it is economically rea-

sonable by having short communication paths in the system. Important

network systems used therefore are Mesh- and Hypercube networks.
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2.4.2. Performance metric

To measure the performance of a parallel implementation of a program the best

sequential implementation is compared to the parallel implementation. The

resulting performance metric is the ”Speedup” factor. It shows how many times

faster is a parallel implementation of a program compared to the best sequential

implementation. As shown in formula 2.11 the speedup of a parallel program is

the result of dividing the runtime of the sequential program Tsequential by the

runtime of the parallel program Tparallel.

Speedup =
Tsequential

Tparallel
(2.11)

Gene Amdahl introduces a formula, which can calculate the maximal theoret-

ical speedup of a program (Amdahl, 1967). As demonstrated in formula 2.12 the

speedup depends on the perceptual amount of parallel code P and the reached

speedup of this code S. The term (1 − P ) could be seen as the perceptual se-

quential part.

For example if there is a program which has forty percent of parallel code with

a speedup of four the maximal theoretical speedup is 1.43. It shows that the

speedup is limited by the sequential part of the program.

Speedup =
1

(1− P ) + (PS )
(2.12)

Another important performance factor in parallel programming is the parallel

efficiency as shown in formula 2.13. N is the number of CPUs which are used

by the parallel program, Ti is the time of usage of i-th CPU and Ttotal is the

total execution time of the whole parallel program. The result E is between 0

and 1, where 1 is the best case. This means 100 percent usage of all CPUs all

the time during execution.

E =
Ttotal∑N
i=0 Ti

(2.13)
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Chapter 3.

CALIMERO - A framework for

autocalibration

Figure 3.1.: Calimero logo

Calimero is a freely available framework and software tool for parallel numer-

ical model calibration (Figure 3.1). The development was funded by transIT

GmbH and CAST GmbH in the funding framework proIT. It can cover two

types of applications. First and probably the most often used application is as

standalone program, where any numerical model can be calibrated by using the

graphical user interface as configuration tool. Calimero can calibrate any model

with the restriction that the modeling software is controllable over input and

output files. These files must not be in a binary format.

The second application is as framework for embedding Calimero directly in any

model simulation program written in C++ or Python.

The novelty of this program compared to other similar software products is that

it includes mechanisms for parallel calibration algorithms integration. Calimero

already comes with several calibration algorithms, but it is easy to integrate

a new algorithm either with C++ or Python. Moreover it is also possible to

implement own objective functions, model simulation programs and tools for

analyzing the results. The Python integration allows a rapid prototyping with-

out the need of any compiler.

The following sections show the overall structure of Calimero and the integration

of parallel mechanisms in Python and C++. In the last section several calibra-
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tion algorithm examples will be shown by pseudocode and real implementations

in C++ or Python.

3.1. Overview

Figure 3.2 shows the general workflow of Calimero in the case of calibrating

a external model. This means the model simulation is an independent and

standalone application which is executed by Calimero in a new system process.

As described in chapter 2 the goal of a numerical model calibration is to find

optima according to all objective functions. Calimero has therefore three input

ports which exactly match the needed inputs of an optimization algorithm.

The first input is the model description containing all model parameters. It

is a human readable file (e.g. XML) where the user has to define the location

of each model parameter he want to calibrate. This is done with the help of

a template, which can be created in the graphical user interface or externally

by any editor. For a more detailed description of specifying model parameters

with a template please read Appendix B.

The second input is an example result file of the external model simulation. Also

here an template is created by defining the location of all model results. The

results will be compared with observed data of the real system. The observed

data is the third input, which is done with the same approach. Calimero has

three types of parameters which are parameters from the model description

file, parameters from the result file of one simulation run and parameters from

the observed data file of the real system. These parameters are following called

”Calibration parameters”, ”Iteration Parameters” and ”Observed Parameters”

respectively. To specify the goal of the the optimization algorithm the optimiza-

tion criteria have to be specified. In Calimero this is realized with ”Objective

function Parameters”. They have as input several ”Iteration Parameters” and

”Observed Parameters”. This parameter type compares the results of a solution

candidate with the observed data of the real system. To define which criteria

should be fulfilled the user can choose between several objective function (e.g.

SSE, Nash Sutcliffe,. . . ). After specifying which algorithm should be used the

calibration can be started. For each solution candidate a new model specifi-

cation file will be written and executed by the external simulation program.

The results are extracted afterwards and as last step, for testing this solution

candidate, the objective function is evaluated. Testing one solution candidate

is following called ”Calibration Iteration”.
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In the case of using Calimero as framework for embedding in an already ex-

isting model simulation program, all the template specifications are not needed.

Here all parameters can be defined directly in the code.

3.2. Architecture

To map the structure of an autocalibration and optimization algorithm an ob-

ject oriented design is chosen. As shown in figure 3.3 the whole software is split

in several packages. The central and most important package of Calimero is

the ”core” package. It covers the whole modeling design for an autocalibration

algorithm and also contains a runtime environment to control the execution

of an optimization algorithm and its parallel tasks. Moreover it represents an

interface for extending Calimero with new functions (e.g. objective functions,

optimization algorithms,. . . ). For enabling Python support in Calimero the

package called ”Python integration” is responsible. New Calimero extensions

are contained in the ”native extensions” and ”Python extensions” packages.

These new extensions are loaded dynamically by the ”Core” package during the

runtime of Calimero. It does not differ between an extension written in Python

and an extension written in C++.

The ”GUI” package defines the interface to a user for using the Calimero frame-

work as standalone application (see Appendix B). Figure 3.4 shows the class

diagram of the ”Core” package. It shows only the most important classes of the

framework. For a more detailed description of the whole package please read

the html documentation of Calimero. Each class of the diagram is described in

detail in the following list.

Calibration This class defines the structure of a calibration containing all model

calibration parameters, iteration parameters, observed parameters and ob-

jective functions parameters. The methods addParameter() and re-

moveParameter() have an object of the ”Variable” class as attribute.

Also the type of optimization algorithm and type of model simulator must

be set with the methods setCalibrationAlg() and setModelSimula-

tor() respectively.

Variable Super class of all parameters occurring in a calibration. This class

contains an vector representing the current value of a iteration parameter

or observed parameter.

CalibrationVariable This class is a sub class of ”Variable”. It contains ad-

ditional methods for setting the boundaries (setMin() and setMax())

and step size (setStep()) of a calibration parameter.
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Figure 3.2.: Calimero system overview
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Figure 3.3.: Calimero packages diagram

Figure 3.4.: Summarized class diagram of the Core package
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ObjectiveFunctionVariable One main part in a calibration algorithm is to de-

fine the optimization criteria for an optimization algorithm. This class is

a subclass of ”Variable” and represents one optimization criteria. It de-

pends on iteration parameters and observed parameters in general. This is

realized by addParameter() and removeParameter(). The input of

these methods is an object of the ”Variable” class. It is also possible that

one objective function depends on another objective function. Important

here is to check an objective function against cyclic dependencies. If there

would exist a cyclic dependency between several objective functions an

infinite loop would occur during the evaluation of the function value.

The getValue() method has its own implementation, which calculates

the new health value each time when a dependent iteration, observed or

objective function parameter has changed its current value. This cal-

culation is done according to the defined objective function, set by the

setObjectiveFunction() method. An example for such an objective

function could be found at section 2.3.1 on page 13. The realization of an

objective function is part of the ”IObjectiveFunction” interface.

IFunction ”IFunction” is the top level class of all interface classes to extend

Calimero. Such an extension could be an objective function, a calibration

algorithm, a model simulator or a result handler. All these extension are

realized by the abstract classes ”IObjectiveFunction”, ”ICalibrationAlgo-

rithm”, ”IModelSimulator” and ”IResultHandler” respectively.

The methods setDataType(), setValueOfParameter() and set-

GetValueOfParameter() have nothing to do with the calibration.

They represent extension specific variables which can be loaded and

stored in a Calimero project. Moreover the ”GUI” package automatically

generates type specific graphical user interfaces for editing these variables.

IObjectiveFunction It is a subclass of ”IFunction” and also the interface class

for extending Calimero with a new objective function. Each new objective

function class has to inherit from this class. Also the eval() method

has to be implemented. This method is called whenever the getValue()

method of the corresponding ”ObjectiveFunctionVariable” object is called.

It returns the new value of the objective function parameter according to

the implemented objective function.

IModelSimulator This class is also a subclass of ”IFunction” and defines the

interface class for extending Calimero with a new model simulator. Each

new model simulator class has to inherit from this class and also has to

implement the exec() method.
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ICalibrationAlgorithm It is a subclass of ”IFunction” and defines the interface

for extending Calimero with a new optimization algorithm. Each new

optimization algorithm class has to inherit from this class and also has to

implement the start() method.

CalibrationEnv The ”CalibrationEnv” class contains the whole environment of

Calimero to control and manage the execution of a ”Calibration” object.

The execution of an optimization algorithm has its own Thread controlled

by the methods startCalibration() and stopCalibration() for start-

ing and stopping the calibration, respectively. If an calibration is started

the corresponding start() method of the ”ICalibrationAlgorithm” class is

called. Now each solution candidate could be tested with the execItera-

tion() method by calling this method with the new calibration parameter

set as input. This method is a non-blocking method by default. It means

that after calling this method it returns immediately. The testing status

of the new solution candidate is not known at return time of this method.

If the optimization algorithm comes to a point where he needs all objective

function values of all solution candidates, tested by the execIteration()

method, the barrier() method guarantees the termination of all model

simulation runs started by the execIteration() method.
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3.3. Parallel optimization technique

This section shows a general concept of parallel optimization algorithms in Cal-

imero. As shown in algorithm 1 (chapter 2) the main step of an optimization

algorithm is to test potential solution candidates within a while loop. Since

now the bottleneck in many calibration techniques in the field of urban water

management was the simulation software, because they are often implemented

sequentially and therefore cannot use all available cores on a multi-core system.

One execution of this simulation software represents the testing of one solution

candidate during the execution of an optimization algorithm. Depending on

the algorithm and the stochastic mechanisms this could lead to a huge number

of potential solution candidates. An optimal solution to get a reasonable per-

formance improvement for a parallel calibration algorithm may be the parallel

execution of this loop. This assumes that testing a new solution candidate is

independent of the previous tested solution candidate. Many algorithms exist

where exactly this loop has a huge potential to be executed in parallel. For

this thesis three algorithms are chosen (brute-force search algorithm, genetic al-

gorithm and particle swarm algorithm), which should demonstrate the parallel

execution with the Calimero framework.

3.3.1. Brute-force Search Algorithm

Algorithm 2 Brute-force Search Algorithm - Part 1
1: status← False

2:

3: procedure start(calibrationpars)

4: status← testParameter(calibrationpars, 0)

5: barrier()

6: return status

7: end procedure

The brute-force search algorithm evaluates all possible solution candidates of the

whole search space. It is guaranteed that the found solution candidate is the

optimal one. This algorithm is only feasible, if the problem space is not to big.

For example if a given model has N degrees of freedom and Ni possible assign-

ments for each degree of freedom in N , the total number of solution candidates

C is
∏N

i=1Ni. If one degree of freedom has infinitely many possible assignments,

also infinitely many possible solution candidates exist. As consequence this al-

gorithm would never terminate. Beside this fact, this algorithm demonstrates

the general parallelization technique of Calimero in the case of testing finitely
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many solution candidates in a simple calibration approach. Algorithms 2 and 3

show the main steps of this algorithm in Calimero. All possible solution candi-

dates are tested recursively using the non-blocking testing method of Calimero

(execIteration). After that the the algorithm waits for all results by calling

the barrier method.

Algorithm 3 Brute-force Search Algorithm - Part 2
1: status← False

2:

3: procedure testParameter(parameters,currentparameter)

4:

5: lowerbound← parameters[currentparameterindex].getMin()

6: upperbound← parameters[currentparameterindex].getMax()

7: step← parameters[currentparameterindex].getStep()

8: value← lowerbound

9:

10: while value < upperbound do

11: parameters[currentparamter].setValue(value)

12: if currentparameter == (parameters.size()− 1) then

13: if ¬execIteration(parameters) then

14: return False

15: end if

16: else

17: if ¬testParameter(parameters, currentparameter + 1) then

18: return False

19: end if

20: end if

21: value← value + step

22: end while

23:

24: return True

25: end procedure

3.3.2. Genetic Algorithm

Genetic algorithms are a subclass of evolutionary algorithms. They try to find

a optimum using the natural evolution process as pattern. The basis is a pop-

ulation containing several individuals. Each individual represents one solution

candidate of the optimization problem. In the field of evolutionary algorithms

each individual is defined by its genes. They are often binary encoded by 0s and
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1s. It is also possible to encode them by other elementary types. For example

if one calibration parameter has N possible assignments, each of them could be

seen as an elementary type. The algorithms 4 and 5 show the basic methods

Algorithm 4 Genetic Algorithm - Part 1

1: procedure main(calibrationpars,populationsize)
2: psize← populationsize
3: terminate← false
4: currentpopulation← initialPopulation(calibrationpars,psize)
5: currentfitness← evaluation(currentpopulation)
6: while ¬checkTermination(currentfitness) do
7: parents← selection(currentpopulation, currentfitness, psize)
8: currentpopulation← reproduction(parents, psize)
9: currentfitness← evaluation(currentpopulation)

10: end while
11: end procedure
12:

13: procedure checkTermination(fitness)
14: return status . Check fitness vector against termination criteria
15: end procedure
16:

17: procedure selection(population,fitness,psize)
18: return newparents . Select psize-th best solution candidates
19: end procedure
20:

21: procedure reproduction(parents, psize)
22: return population . Create new population depending on given parents
23: end procedure

of the genetic algorithm as pseude-code. The first population contains normal

distributed individuals (initialPopulation). For each individual the corre-

sponding objective function is evaluated. This is done with the evaluation

method. Now, individuals are randomly chosen depending on the fitness of each

individual of the population. They define the mating pool of the next popula-

tion (selection). A new population is created by crossover and mutation of

the genes contained in the mating pool (reproduction). The crossover can

be done in several approaches. The implementation of the genetic algorithm

in Calimero contains a one-point crossover, which means half of the genes of a

new individual are from the first parent and the other half of the genes are from

the second parent. The mutation is realized by a user defined probability for

each gene. If one gene should mutate, one assignment is randomly chosen from

the set of elementary types of this gene. The algorithm terminates if a certain
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threshold of the objective function is reached or the maximal number of new

populations is exceeded. Each population is evaluated in parallel by using the

execIteration and barrier methods.

Algorithm 5 Genetic Algorithm - Part 2

24: procedure initialPopulation(calibrationpars,populationsize)

25: newPopulation . New vector of solution candidates

26: index← 0

27: for index← 0, populationsize do

28: newsolutioncandidate← 0

29: . Fill newsolutioncandidate vector with new calibrationparameters

30: newPopulation.add(newcalibrationpars)

31: end for

32: return newPopulation

33: end procedure

34:

35: procedure evaluation(population)

36: for all c ∈ population do

37: execIteration(c)

38: end for

39: barrier()

40: return fitness

41: end procedure

3.3.3. Particle Swarm Algorithm

Particle swarm algorithms are using particles to find the optimum of an opti-

mization problem, where each new position of a particle represents one solution

candidate. As general strategy to find the optimum is, that each particle follows

the particle with the best fitness and its own best fitness. The velocity of each

particle defines the speed of how fast a particle follows the global best particle

and its own best position. As initial state of the algorithm for each particle the

position is chosen randomly. If one particle position is tested, the new position

and velocity is calculated with the help of two out of three update functions

shown in formulas 3.1, 3.2 and 3.3.

q.vi = p.vi + (randu(0, ci) ∗ (best(p).gi − p.gi))+

(randu(0, di) ∗ (best(pop).gi − p.gi))
(3.1)
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q.vi = p.vi + (randu(0, ci) ∗ (best(p).gi − p.gi))+

(randu(0, di) ∗ (best(N(p)).gi − p.gi))
(3.2)

q.gi = p.gi + p.vi (3.3)

For updating the velocity of each particle it is possible to chose either formula

3.1 or 3.2. The first formula updates the velocity taking into account the

current swarm state in contrast to the second formula, where the velocity is

influenced by all swarm states over the whole execution time. Each update

of the whole swarm defines a new set of particle positions which is also called

population.

The set q defines the new set of particles containing the velocity (v) and

the position (g) as attributes for each particle i in the new population pop.

The set p represents the current population description containing the same

attributes. The function best(X) returns the best particle of a set X. N(p)

returns the set of all particles descriptions of each evaluated population. The

variables ci and di are very important for the convergence speed of the algo-

rithm. Both of them have a strong influence on the learning rate of each particle.

Algorithm 6 Particle Swarm Algorithm - Part 1

1: bestfitness←∞
2: bestpars

3: bestparticlefitness←∞
4: bestparticlepars

5:

6: procedure main(calibrationpars, swarmsize)

7: ssize← swarmsiize

8: currentswarm← initialSwarm(calibrationpars,ssize)

9: evaluation(currentswarm)

10: while ¬checkTermination(bestfitness) do

11: currentswarm← updateSwarm(currentswarm))

12: evaluation(currentswarm)

13: end while

14: end procedure
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Algorithm 7 Particle Swarm Algorithm - Part 2

15: procedure checkTermination(fitness)

16: return status . Check fitness vector against termination criteria

17: end procedure

18:

19: procedure initialSwarm(calibrationpars, swarmsize)

20: newswarm . New vector of solution candidates

21: index← 0

22: for index← 0, swarmsize do

23: newsolutioncandidate← 0

24: . Fill newsolutioncandidate vector with new calibrationparameters

25: newswarm.add(newcalibrationpars)

26: end for

27: return newswarm

28: end procedure

29:

30: procedure evaluation(swarm)

31: for all c ∈ swarm do

32: execIteration(c)

33: end for

34: barrier()

35: for all c ∈ swarm do

36: if bestfitness > c.fitness() then

37: bestfitness← c.fitness()

38: bestpars← c.pars()

39: end if

40: if bestparticlefitness[c] > c.fitness() then

41: bestparticlefitness[c]← c.fitness()

42: bestparticlepars[c]← c.fitness()

43: end if

44: end for

45: end procedure

46:

47: procedure updateSwarm(swarm)

48: return swarm . Set new solution candidate for each swarm particle

49: end procedure

Algorithms 6 and 7 show the general implementation of this algorithm in

Calimero as pseudo-code. After the algorithm reaches its initial state, which
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means an initial swarm has been chosen and for each particle the fitness (ob-

jective function) has been evaluated, the whole optimization process is done in

one while loop. This loop terminates if a certain termination criteria arises.

The body of this loop contains two methods. The first method updates the

position and velocity for each particle in the swarm and the second method

evaluates the fitness for each particle at the current position. At this step each

particle in combination with its position represents one possible solution for the

optimization, which is done in parallel. Similar do the the evaluation method

of the genetic algorithm in Calimero, this method also uses the non-blocking

execIteration method for each solution candidate and barrier method to

synchronize the whole swarm.
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3.4. Implementation

Most components of the object oriented design are implemented in C++.

Qt 4.6.3 is chosen to guarantee the development of a platform independent

application on Windows and Linux. Qt is a cross-platform application and user

interface framework (Blanchette & Summerfield, 2007) containing a graphical

user interface designer (Qt4 Designer), a translation tool (Qt4 Linguist) and

an integrated development environment (Qt4 Creator). Since version 4.5, Qt

is also distributed under the terms of the GNU Lesser General Public License

(LGPL) beside others.

Calimero is compiled with the help of a cross-platform and open-source build

system called CMake (Martin & Hoffman, 2003). CMake controls the software

compilation process by generating compiler specific Make-files with the help of

platform and compiler independent configuration files.

The following sections are describing the implementation of parallel testing of

possible solution candidates and embedding a Python interpreter in Calimero.

3.4.1. Concurrency

Calimero overs parallel testing of possible solution candidates of a optimization

problem with the help of the methods execIteration and barrier. The ex-

ecIteration method calculates the fitness value for one solution candidate,

which is defined by its current assignment of all calibration parameters. This

method is by default a non-blocking method, where the parallel evaluation of so-

lution candidates is done with the help of a Threadpool. The barrier method

guarantees the correct termination of all evaluations of solution candidates.

By an internal system flag of Calimero it is possible to disable the parallelization

within a thread pool. In such a case it is up to the developer to implement an

alternative parallelization concept. If the thread pool is enabled the execIter-

ation method gets a blocking and thread safe method. For this thesis OpenMP

was chosen as a representative for an alternative parallelization concept.

One major problem during the development of Calimero was the integration of

Python by guarantying that the same functionality of the framework is available

as it is in the C++ implementation.

Threadpool

A threadpool is a pool with a fixed number of running threads in it. All threads

continuously execute small tasks of a FIFO-queue (First In First Out - queue).
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In the sense of Calimero these tasks are the evaluation of possible solution

candidates.

The implementation of this concept is realized with Qt within the QThreadPool

and QRunnable classes. If the execIteration method of Calimero is called a

new QRunnable object is created and added to the threadpool. The method

returns after adding the new QRunnable object immediately. A predefined

number of worker threads execute all QRunnable object. The barrier method

waits until the queue is empty.

OpenMP

OpenMP is one alternative technique to enable parallel evaluation of solution

candidates. It is an API supporting multiprocessing programming in several

programming languages containing C and C++ (Chandra, 2001) and supports

most processor architectures and operating systems. If the threadpool imple-

mentation of Calimero is disabled the execIteration method could be seen as

a thread-save blocking method, which waits until the evaluation of a possible

solution candidate has finished. Now it is possible to parallelize the evaluation

of possible solution candidates with the help of OpenMP compiler directives.

3.4.2. Embedding Python

Python is a interpreted high level and a multi programming paradigm language

with the design philosophy to guarantee code readability. It supports object-

oriented, imperative and functional programming styles. Many features are

included, but the most important are a fully dynamic type system and a au-

tomatic memory management system similar to Java’s garbage collector. The

most popular Python interpreter is a byte-code interpreter implemented in C

called ”CPython” (Lutz, 2011). Because of its popularity this interpreter is

often called just ”Python” and could be seen as reference implementation for

all other interpreters. Other available interpreters are Jython (Juneau et al. ,

2010), Stackless Python (Laird, 2000), IronPython (Foord & Muirhead, 2009)

and PyPy.

The Calimero framework uses CPython for embedding Python, because of its

popularity and completeness. All other previous mentioned implementations

of interpreters have its advantages and disadvantages, but ”CPython” is the

only implementation , which guarantees that all defined features are imple-

mented. For embedding ”CPython” in Calimero a open source software tool

called ”SWIG” (Beazley, 2011, 1996) was used. It is an Simplified Wrapper and

Interface Generator for connecting computer programs written in C or C++

with scripting languages. Many languages are supported by ”SWIG”, but for
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this thesis only Python is relevant.

Because of its history, ”CPython” is optimized for executing sequential code.

It was assumed that there exist only one stream of a byte code, which can be

executed on one single core. In the current implementation it is possible imple-

ment parallel programs using Python threads, but this does not mean that the

program uses all available cores on a system. This is because of the Global Inter-

preter Lock called GIL (Tabba, 2010). Each time when some part of a byte-code

stream is executed this lock has to be locked by the current interpreter thread.

During this lock all other threads have to wait until this lock has been released.

In fact even a parallel implementation of some code using Python threads is

executed sequential on one single core. There already exist parallel implemen-

tations of interpreters like PyPy, which do not use such a global lock, but these

implementation could be seen as tests and therefore they are not feasible for all

day usage.

As already described Calimero can be extended with Python. For example if a

new objective function is implemented in Python, which is executed in parallel

because of the parallel evaluation of possible solution candidates, the objective

function cannot be executed in parallel because of the implicit locking of the

GIL in the ”CPython” implementation of the Python interpreter.
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Chapter 4.

Performance analysis and Results

In this chapter the performance of Calimero using several Calimero extentions

in C++ and Python is measured on two different hardware platforms.

4.1. Test Environment

The performance tests of Calimero are measured on two different hardware

architectures which are described in the following list:

Intel R©Core
TM

i7 Processor 860 The system has one Intel R©Core
TM

i7 Processor

860 @ 2.80 GHz, 8M L2 cache and eight GB DDR3 main memory. The

processor is in general a multi-core chip with four cores running eight

simultaneous hardware threads. This technology is also known as simul-

taneous multithreading, but Intel R©has its own term for this technology

called Hyper-threading. The installed operating system is a Ubuntu Re-

lease 10.04 (lucid) with Linux kernel 2.6.32-28-generic.

Intel R©Xeon R©Processor X5650 The system has two Intel R©Xeon R©Processor

X5650 @ 2.67 GHz and 24 GB of DDR3 ram. Each processor has 12MB

L2 cache and six cores running 12 hardware threads in Hyper-threading

mode. The installed operating system is Arch Linux using the Linux

kernel version 2.6.39-ARCH.

4.2. Synthetic tests

As already described the main parallelization strategy of Calimero is the eval-

uation of several possible solution candidates of an optimization problem in

parallel. Each evaluation represents one execution of an external simulation

program and afterwards the evaluation of the fitness value. Therefore a small

synthetic simulation program was implemented which has two parameters as in-

put to simulate different execution times of a simulation program. The program

calculates the factorial of a number n within a for-loop m times. For example n
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could be seen as the calibration parameter of an auto-calibration problem where

the aim is to find an assignment for n minimizing the difference between the

factorial of n and a predefined value by using SSE as objective function.

The same approach was used to control the execution time of an objective func-

tion for analyzing the performance of an C++ implementation of an objective

function in contrast to an equivalent Python implementation.

4.2.1. OpenMP and QT4-Threadpool
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Figure 4.1.: Runtime OpenMP and Threadpool (Intel R©Core
TM

i7 Processor 860)
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In this benchmark two different implementation of the Brute-force algorithm

are tested. The first uses the default threadpool of Calimero and the second

implementation uses OpenMP for evaluating possible solution candidates in

parallel. To simulate various simulation programs with different execution times

the previous defined synthetic test is used by setting m = {500, 1000, 4000}.
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Figure 4.2.: Speedup OpenMP and Threadpool (Intel R©Core
TM

i7 Processor 860)

As shown in the figures 4.1, 4.2, 4.3 and 4.4 the runtime and speedup between

the Threadpool and OpenMP implementation of the calibration algorithm is in
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most cases equivalent, independent of the test environment. Some outliers are

occurring in the OpenMP implementation after the number of parallel threads

exceeds the number of physical cores. This is because of possible occurring

scheduling effects in the OpenMP implementation as already described by

Burger (2009).
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Figure 4.3.: Runtime OpenMP and Threadpool (Intel R©Xeon R©Processor X5650)

There is a linear speedup until the number of threads is less then the number

of physical cores. On Intel R©Core
TM

i7 Processor 860 system the boundary oc-
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curs at four threads (Figures 4.1 and 4.2) and on Intel R©Xeon R©Processor X5650

system at 12 threads.

Both systems of the test environment support simultaneous hardware threads.

This results in a little linear speedup by using parallel threads between the num-

ber of physical cores and the number of used hardware threads.

Using more threads than available hardware threads does not increase the

speedup. It is getting even worse because of switching threads during the exe-

cution.
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Figure 4.4.: Speedup OpenMP and Threadpool (Intel R©Xeon R©Processor X5650)
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4.2.2. C++ and Python

Python is an interpreted language and therefore in several cases slower than C

and C++. Figure 4.5 shows the speedup of a Python implementation of the

Brute-force search algorithm compared to an equivalent C++ implementation.

Both of them use the threadpool of Calimero and the synthetic simulation pro-

gram with setting m = {500, 1000, 4000}. Since there is rarely any logic in this

algorithm in presence of the systematical evaluation of all possible solution can-

didates in the search space, the runtime of the python implementation compared

to the C++ implementation is nearly equivalent.
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Figure 4.5.: Runtime C++ and Python (Intel R©Core
TM

i7 Processor 860)
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Figure 4.6.: Python in parallel C++ code (Intel R©Xeon R©Processor X5650)
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This shows that adding possible solution candidates to the threadpool queue

with Python is as fast as with the C++ implementation.

Figure 4.6 shows the impact of using Python during the evaluation of a possible

solution candidate. Here the previous described synthetic simulation software

is used by repeatedly replacing C++ code with equivalent Python code and

tested on the Intel R©Xeon R©Processor X5650 system. With increasing the size

of Python code in the synthetic simulation software the speedup decreases and

runtime increases. This is a result of the global interpreter lock of the CPython

implementation.

4.3. Real world applications

The Calimero framework can be used with any simulation software. For this

thesis three simulation softwares are chosen. All of them are used in the field

of urban water management modeling and demonstrate the usage of simulation

programs with short and long execution times. The third real word application

already comes with parallel support. In this benchmark parallelism is realised

in two levels (nested parallelism). The first is realised by Calimero in the opti-

misation algorithm and the second is realised in the model simulation software.

4.3.1. EPANET

EPANET (Rossman et al. , 2000) is a simulation software modeling water

distributing pipe systems. It is a public domain software developed and dis-

tributed by EPA’s Water Supply and Water Resources Division. More infor-

mation could be found at the project web-site at ’’http://www.epa.gov/nrmrl/

wswrd/dw/epanet.html’’.

Figure 4.7 shows the runtime and speedup of an auto-calibration using the parti-

cle swarm algorithm as optimization to minimize one objective function. In this

auto-calibration example the used water distributing pipe system has 26 degrees

of freedom. Each degree of freedom has infinitely many elementary elements.

All tests were performed on the Intel R©Core
TM

i7 Processor 860 system.

The test shows a good increase of the speedup up to four threads, which is

the number of physical cores on the system. Between four and eight threads

the speedup minor increases. Using over eight threads the speedup rate starts

to decrease, because of increasing overhead work including switching threads

between different hardware threads. Due to the fact that reading and writing

files during the evaluation of a possible solution candidate can only be done

sequentially, no linear speedup can be reached. In this example the runtime of

one EPANET execution is quite small and a big part of this runtime EPANET
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reads and writes files, which results in a bad speedup rate by increasing the

total number of threads.
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Figure 4.7.: Performance EPANET (Intel R©Core
TM

i7 Processor 860)

4.3.2. SWMM

SWMM (Rossman et al. , 2005) is a simulation software modeling rainfall-

runoff in an urban drainage system. This modeling software is also devel-

oped and distributed by EPA’s Water Supply and Water Resources Division

(’’http://www.epa.gov/athens/wwqtsc/html/swmm.html’’).
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Figure 4.8.: Performance SWMM (Intel R©Xeon R©Processor X5650)

The used SWMM model has three degrees of freedom with infinitely many

elementary elements each. The used optimization algorithm for the auto-
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calibration is the particle swarm algorithm minimizing one objective function.

As shown in figure 4.8 this benchmarks scales better than the previous one.

Using threads up to the number of physical cores of 12 results in a linear

speedup. At 12 threads the affinity of the speedup line decreases and remains

constant up to 24 threads, which is the number of used hardware threads. In

this benchmark the amount of execution for reading and writing files is very

small in contrast to the runtime of the simulation. This results in a near linear

speedup.

4.3.3. CityDrain3 - CD3

CityDrain3 (Burger, 2009) is a software for urban drainage simulation and is

an example for integrated modeling in the field of urban water management

modeling. The first version of this software was called CITY DRAIN developed

by Achleitner et al. (2007) and redesigned by Burger (2009) with the focus on

speeding up urban drainage simulations by exploiting multi-core architectures.

The performance test uses the particle swarm optimization algorithm with one

objective function tested on the Intel R©Xeon R©Processor X5650 system. Fig-

ures 4.9 and 4.10 show the runtime and speedup of the auto-calibration using

CityDrain3 as simulation software. The diagram includes four speedup curves

representing the execution of CityDrain3 with 1, 6, 12 and 24 threads. It shows

that nested parallelism may increase the speedup a little. Moreover, it has

no bad influence on the performance of the auto-calibration algorithm of the

Calimero framework.
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Chapter 5.

Conclusion

Calimero is a parallel, model independent and generalized framework for auto-

calibration. Its aim is to use all available cores on a multi-core system during

an auto-calibration even if the simulation software is written in sequential

code. For extending the framework a complete interface is provided, moreover,

CPython is embedded to enable the usage of Python within the Calimero

framework for implementing own optimization algorithm and objective func-

tions easy and fast without the need of any compiler.

One main part of an auto-calibration algorithm is an optimization algo-

rithm. It is responsible for choosing possible solution candidates. They try

to optimise a set of objective functions (fitness functions). One parallelisation

strategy to enable the usage of all cores on a multi-core system is to parallelise

the evaluation of possible solution candidates. This strategy is demonstrated

on three optimization algorithms named Brute-force-search, Genetic-algorithm

and Particle Swarm optimization.

Ongoing performance tests on two different benchmark environments con-

taining a Intel R©Core
TM

i7 Processor 860 and several Intel R©Xeon R©Processor

X5650 show that a good speedup could be reached with parallelising the evalu-

ation of possible solution candidates independent of the used model simulation

software. Moreover, one benchmark with CD3 show that nested parallelism can

increase the speedup.

To enable the support of Python for a fast prototyping of auto-calibration

algorithms, objective functions and result handlers ”CPython” was embedded

in the framework. Calimero shows in some cases bad performance, because of

the global interpreter lock contained in this python interpreter implementation,

If an auto-calibration algorithm is written in Python the testing of possible

solution candidates is as fast as it would be with an equivalent C++ implemen-

tation. Bad performance occurs if some parts in the evaluation of one possible
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solution candidate is written in Python.

Python should only be used for a fast development and testing of new objective

functions or auto-calibration algorithms. To achieve a feasible performance

objective functions have to be rewritten in C++.
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Appendix A.

CALIMERO-A model independent and

generalised tool for autocalibration
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ABSTRACT 
During the last decades the use of numerical models and software in the field of urban drainage 
modeling grew steadily. With the growing computational power the complexity of the models 
increased and consequently the number of model parameters required as input increased as well. 
Although (or because) the applied models are getting more and more sophisticated, the number of 
unknown inputs increases. However, to obtain realistic modeling results it is impossible to use a 
model as a black-box-system. An accurate calibration is obviously indispensable. In this paper we 
present a freely available software tool for autocalibration of simulation models in the field of urban 
drainage. The innovation of that tool is 1) the flexibility to work with any model which’s input and 
output files are plaintext and which can be started from command line and 2) the possibility to 
consider a-priori knowledge on system behaviour. The algorithms for evaluating the objective 
function and the calibration algorithm itself are defined by the user in a scripting environment to 
provide best possible flexibility. A simple example shows the capabilities of the tool presented to 
adapt calibration algorithms depending on specific case study characteristics. 
 
 
KEYWORDS 
A-priori knowledge, Autocalibration, CALIMERO, Levenberg-Marquardt algorithm, Model, 
Software, Tool, Uncertainties, Urban drainage 
 
INTRODUCTION 
Urban drainage simulation models are state of the art instruments for planners, consultants and 
scientist, working in the field of urban hydrology. Calibration of models is one of the key steps to 
be taken during the process of model building to assure results which are close to reality. With 
simultaneous consideration of uncertainties (in input-data, model-structure and calibration-data) 
calibration strategies, autocalibration algorithms and methods for uncertainty analysis have become 
one of the most important research fields in present-day urban drainage modelling (e.g. Kuzmin et 
al., 2008 or Kleidorfer et al., 2008b). As the choice of the performance indicator (i.e. the objective 
function which is minimized during calibration) is essential, modern auto-calibration algorithms are 
based on multiple objectives (e.g. Madsen, 2000 or Muschalla et al., 2008). However in defiance of 
above auto-calibration algorithms they are rarely implemented in software products. And even if 
they are available either as software specific tool or model-independent (e.g. PEST (Doherty, 
1999)) the user is confined to some specific objective functions implemented. 
 
In everyday engineering practice, limited calibration-data availability and accuracy is one of the 
central issues when calibrating urban drainage models (Kleidorfer et al., 2009). Furthermore 
calibration data from not representative events or unrecognized measurement errors can rather 



distort than improve model calibration. However, sewer system operators, consultants and engineers 
often have an extensive knowledge on the behaviour of the analysed system which cannot be 
expressed in a mathematically exact way. Such empirical information and fuzzy data is an essential 
element in manual calibration but is hardly ever used in autocalibration algorithms (Kleidorfer et 
al., 2008a). 
 
In this paper we present the methodology and the application of a novel calibration software tool 
denoted CALIMERO, which combines the following 3 features:  
 

1. Model and software independence, i.e. it can be used in conjunction with nearly any 
simulation software product via interface.  

2. The objective functions (single or multi-objective) and the calibration algorithm itself can be 
chosen from a set of predefined functions or defined using scripting language depending on 
personal requirements.  

3. Empirical insight and a-priori knowledge on the systems behaviour is considered by various 
possibilities e.g. weighting procedures considering the accuracy of data, fuzzy data, setting 
boundary conditions to predicted model results, etc. Hence CALIMERO is a combination of 
autocalibration and manual calibration in order to join the advantages of both methods. 
Especially this feature makes the tool novel and innovative. 

 
 
SOFTWARE DESCRIPTION 
Software architecture 
CALIMERO is a software tool written in C++ using Qt libraries (Nokia, 2009) and it is designed to 
integrate nearly any computer model. The only requirements are that a) the model can be run over 
command line without graphical user interface and b) that model input and output files are plaintext 
(i.e. not an encrypted or binary file format). The software architecture of CALIMERO with its 
interfaces to model and data is shown in Figure 1. 
 

 
 

Figure 1. Software architecture of CALIMERO 
 
All relevant data for simulations can be imported into an internal database. That is model input data 
(e.g. rainfall data), calibration data (i.e. observed data as flow measurements) and system data 
including calibration parameters. Additional knowledge about system performance (e.g. information 



about measurement uncertainties and data collection) should also be considered during calibration 
and has to be described mathematically. Hence it is possible to add the information if e.g. certain 
data-sets are highly reliable and have been collected carefully or if they are estimated roughly from 
old projects. 
 
Fuzzy knowledge as information if e.g. combined sewer overflow discharge occurs “frequently” or 
“seldom” at a specific point in the system is often available from sewer system operators but rarely 
considered during model calibration. Such information also has to be described mathematically and 
added to the calibration framework. 
 
The objective function(s) (i.e. one or more values that are optimized during autocalibration) and the 
autocalibration algorithm itself can be defined via the script engine or selected from a predefined set.  
 
Model and data interface 
Import of model input data, system data and calibration data is possible via a predefined 
xml-interface which has either to be prepared by the user prior to autocalibration or can be 
configured in CALIMERO. Therefore the model input-files, a template of simulation results, 
calibration data and additional boundary conditions can be imported to CALIMERO in the same 
format as they are used by the model. Parameter names can be assigned to relevant values from the 
imported files for further use in the calibration script (see figure 2). Simultaneously templates for 
the model input-files are created the same way. If certain values from the model-input file are 
defined as calibration parameters they are replaced during calibration process prior to each iteration 
to test the new parameter values. Simulation results are defined in the same way: After assigning 
parameter names these specified values are read from the simulation results subsequently in each 
iteration run and evaluated by the calibration scripts. 
 

 
Figure 2. Screenshot CALIMERO: Definition of calibration parameters 
 
Script integration 
A drawback of many autocalibration tools is that they include one specific autocalibration algorithm 
and one specific objective function (e.g. most commonly minimization of square errors) which 
cannot be changed unless the user may change the source code. 
 
In CALIMERO objective functions and calibration algorithms are defined in a script engine to 
provide best possible flexibility. The scripting language follows ECMA/JavaScript specifications 
(ECMA-262, 1999) as this is a rather simple scripting language designed for non-programmers to 



work with. Due to its wide use in client side website programming there are a lot of tutorials and 
manuals available. This standardized scripting language shall encourage the exchange of calibration 
scripts among different users. CALIMERO comes with a script editor and a script debugger for 
development and testing of algorithms (see figure 3). 
 

 
Figure 3. Screenshot CALIMERO: Script Engine for definition of calibration algorithm and 
objective function. 
 
Consideration of a-priori knowledge and boundary conditions 
The term “a priori knowledge” does not completely correspond with the terminology of statistics 
and Bayesian inference in the sense that it describes an assumed but mathematical exact probability 
distribution. Here “a priori knowledge” is meant as additional, sometimes diffuse information about 
system behaviour and data accuracy. 
 
Such information is often available from sewer system operators but hardly used in autocalibration 
(in contrast to manual calibration). For example when modelling a spatial distributed sewer system 
data collection is mostly not homogenous for the whole system. In certain areas it might have been 
carried out with e.g. a detailed, up to date examination of aerial photos and catastral surveys for 
determining the fraction imperviousness in an accurate way while data from other regions might 
come from former and possibly old investigations of vague origin. 
 
Other examples are measurement devices which are known to record partly inaccurate data. A 
common practice is to completely exclude such doubtful data from calibration in order to not distort 
model calibration. But even such information can improve calibration, especially when working 
with badly defined systems under limited data availability (Kleidorfer et al., 2008a). Additionally 
measurement devices are calibrated for a specific data range (e.g. high water levels) and 
measurement uncertainties increase when recording data-points outside that range (e.g. very low 
water levels). In order to not consider less reliable data points often a manual data processing is 
necessary. An exclusion of such less-reliable data points directly in the calibration algorithm itself 
helps the model user and reduces effort for model calibration especially when testing different 
calibration strategies. 
 
By adapting algorithms for calibration and objective function evaluation different data sources can 
be considered with different weights. Hence all available data can be taken into account where 



reliable data-sets (or reliable ranges of measurement points) dominate autocalibration and less 
reliable data-sets are considered as additional information. Muschalla et al., (2008) present an 
application of multi-objective autocalibration where they conclude that multi-objective algorithms 
react highly sensitively to erroneous data. They expect an improvement in autocalibration by 
adapting the calibration algorithm to consider different objective functions. As in CALIMERO the 
calibration algorithms are included via script engine such adaptations are also possible for users 
who are not so familiar with programming. 
 
 
 
APPLICATION IN A CASE STUDY 
In the following part a rather simple example of a potential application of CALIMERO in a case 
study for calibration of a rainfall/runoff simulation in an urban catchment is presented.  
 
Case study description 
The data used in this example are two years of continuous rainfall and runoff measurements from 
the catchment “Richmond” in the inner eastern suburbs of Melbourne, Australia. The data was 
collected by Monash University Melbourne and distributed over the International Working group on 
Data and Models (IWGDM) to provide a standard data-set for testing methodologies of uncertainty 
analysis. Richmond has a total area of 89.10 ha, land use is high-density residential with a total 
imperviousness of 0.74 and an average slope of less than 0.1%. Due to measurement uncertainties it 
is known that only values >3 l/s in flow measurements are reliable.  
 
A detailed description is available in (Francey et al., in press). Applications of the same data-set can 
be found e.g. in (Dotto et al., 2008) or (Kleidorfer et al., 2008b). 
 
Model 
For rainfall / runoff simulation a simple linear reservoir model is used. The model is a very limited 
and simplified version of the software package KAREN (Rauch and Kinzel, 2007) and it is also 
distributed over IWGDM together with the data-set. KAREN is a continuous-based model and 
includes some parameters that should be inferred by calibration. The model requires the catchment 
area and a rainfall time series as inputs to generate a series of flows originated from impervious 
area. The pervious components of the catchments are not considered. Calibration parameters are the 
fraction imperviousness, the flowtime on surface, the initial loss and the permanent loss. A 
description of KAREN and its calibration parameters can be found in (Kleidorfer et al., 2009). 
 
Calibration algorithm 
In this example autocalibration is carried out using the Levenberg-Marquardt algorithm (LMA) 
(Levenberg, 1944; Marquardt, 1963), which is commonly used for minimizing nonlinear functions. 
 
The Levenberg-Marquardt algorithm provides a numerical solution for minimizing least square 
errors between measured data M and simulated data S over n time steps to find the best possible set 
of calibration parameters p: 

MINSMpError
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Here the Jacobian matrix is approximated using finite differences. A detailed description of the 
LMA can be found e.g. in (Moré, 1977). In general CALIMERO can be used with any user-defined 
autocalibration algorithm. 
 
For evaluating calibration performance (i.e. comparing observed and predicted data points) the 
Nash-Sutcliffe efficiency coefficient E (Nash and Sutcliffe, 1970) was chosen: 
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iM  is the mean value of the observed data points. Hence its values range from -∝ to 1. The closer 
the Nash-Sutcliffe efficiency is to 1, the more accurate are the simulation results. Values <0 indicate 
that the mean value of the observed data points is a better prediction than model output. 
 
Simulation and calibration results 
To show the potentials of the possibility to adapt calibration algorithms in an easy way rainfall / 
runoff simulation for the catchment presented above is calibrated in three different ways: 

• Calibration on complete timeseries 
• Calibration on values > 3 l/s 
• Calibration on values > 1 m³/s 

 
The calibration results are presented in figure 4 to figure 6. Table 1 shows the Nash-Sutcliffe 
efficiency E for the whole timeseries and of a randomly chosen single event as well as the ratio of 
the measured peak value Peakm and simulated peak value Peaks of the single-event. 
 
The first calibration strategy is a calibration on the whole timeseries. In other words every single 
data point is considered. Figure 4 shows calibration results with a comparison of measured and 
estimated data points of the whole period of two years on the left hand side and a comparison of 
measured and simulated runoff of the randomly chosen single event on the right hand side. The 
accordance of simulated and estimated values is very good with E=0.76 for the whole timeseries 
and E=0.79 for the single-event. But as to be seen in figure 4 the model does not reproduce peak 
values properly. For the single event the ratio Peakm/Peaks is 2.1 which means that the measured 
peak is more than twice the amount of the estimated peak. 
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Figure 4. Estimated versus observed data points for calibration on whole timeseries. 
 



Figure 5 shows calibration results when considering only values > 3 l/s according to known 
measurement uncertainties of the flow measurement device. As seen in figure 5 and table 1 
calibration results are very similar. Hence the consideration of measurement uncertainties has in this 
case no impact on calibration performance. 
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Figure 5. Estimated versus observed data points for calibration on values > 3 l/s. 
 
Figure 6 shows calibration results when calibrating a model with the aim to predict peak values as 
good as possible. Therefore here only values > 1 m³/s are considered for calibration. As one can see 
in figure 6 now the model reproduces peak values in a better way, in case of the selected single 
event the ratio Peakm/Peaks is 0.98. But on the other hand Nash-Sutcliffe efficiencies for the whole 
timeseries as well as for the single event are very low with values below 0. Hence the mean value of 
the observed data points is a better prediction than model output. This shows the model’s 
inadequacies to reproduce runoff peaks and average values with the same set of calibration 
parameters in this case study. A possible reason for this effect is that the model neglects pervious 
components of the catchment which contribute to runoff in case of high rainfall intensities. 
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Figure 6. Estimated versus observed data points for calibration on peak values > 1 m³/s. 
 



Table 1. Calibration results. 
 E Eevent Peakm/Peaks 
Calibration on whole timeseries 0.76 0.79 2.1 
Calibration on values > 3 l/s 0.77 0.79 2.1 
Calibration on peaks (values > 1 m³/s) -0.92 -0.13 0.98 
 
 
CONCLUSIONS 
In this paper the model independent and generalized software tool CALIMERO for autocalibration 
of simulation models in urban drainage modelling is presented. CALIMERO is freely available 
from the first author upon request. 
 
The novelty of that tool lies in the flexibility to work with any model which’s input and output files 
are plaintext and which can be started from command line. The algorithms for evaluating the 
objective function and the calibration algorithm itself are defined in the scripting language ECMA 
/JavaScript via built-in script editor to provide best possible calibration results under consideration 
of additional knowledge about system behaviour. A simple example shows the capabilities of 
CALIMERO to adapt calibration algorithms depending on specific case study characteristics.  
 
Due to the modular design CALIMERO can also be used for automated uncertainty analysis (e.g. 
Monte Carlo simulation with subsequent results evaluation) with only a few adaptations. This will 
be the next step in development. 
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1 About Calimero

Calimero is a freely available software tool for auto calibration of simulation models in the
field of urban water management modeling. The innovation of this tool is the flexibility
to work with any model considering a priori knowledge of system behaviors. The only
limit is that the input and output files have to be in plain text and the simulation
software can be started from command line. The algorithms for evaluating the objective
functions and the calibration algorithm are defined by the user in a scripting environment
to provide best possible flexibility[1].
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2 Installation

2.1 System requirements

In general the system requirements depend on the system requirements of the simulation
software, but it is recommended to have a multi-core architecture to enable parallel
execution of the simulation software.

2.2 Windows XP/Vista/7

Click on calimero-swig-1.11.2-win32.exe to start the installation and follow the instruc-
tions on screen.

2.3 Linux - Ubuntu

Click on calimero-swig-1.11.2-Linux.deb to start the installation and follow the instruc-
tions on screen.

2.4 Building from Source

Type following commands in a command prompt:

Listing 1: Building from Source

1 :~$ tar -xzf calimero -swig -1.11.2 - source.tar.gz

2 :~$ cd calimero

3 :~$ cmake ./

4 :~$ make

5 :~$ make install
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3 User Manual

This manual describes the usage of Calimero. If you want to get a fast overview of
Calimero in general and its usage read sections 3.1 (Calibrating a model with Calimero in
general) and 3.2 (Quick start). The sections after this part guide through all calibration
settings of Calimero in detail.

Terms and Concept

Button This picture explains a user-interaction in the Calimero graphical user inter-
face. It could represent a simple button or some special value in a check box. The
name of this value is equivalent to the representation in the graphical user interface
of Calimero.

Sans Serif font text Text which is written in a Sans Serif font style represents an
input mask section of the Calimero graphical user interface.

’Sans Serif font text with apostrophe’ Represents an example input for a specific in-
put mask.

TOOLBAR → TOOLBAR Represents a sequence of clicks in the toolbar of the Cal-
imero graphical user interface.
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3.1 Calibrating a model with Calimero
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Figure 1: Calimero system in general

Figure 1 illustrates the general concepts of calibrating any model with Calimero. Cal-
imero may only handle models, simulation results and real measured data which are
represented in plain-text files (yellow boxes). Handling none plain-text representations
are not in the scope of Calimero and must therefore be converted with external con-
verters. They convert these files into plain-text files (red boxes). For creating an auto
calibration project there are five minor steps to do:

1. Extracting parameters from all plain-text files to define the model, simulation
results (results of running the simulation program with the not calibrated model)
and the real measured data. These parameters are following called calibration
parameters, iteration parameters and observed parameters.

2. Define objective functions. They have as input some iteration parameters, observed
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parameters and objective functions.

3. Define which auto calibration algorithm should be used for the auto calibration.

4. Set paths for the simulation software and if needed for some file converters.

5. Run the auto calibration algorithm.

When executing an auto calibration algorithm, new values for all calibration parame-
ters are chosen. With these new values Calimero generates a new model represented
as plain-text files. If the external simulation software needs the model representation
in another format than the plain-text files, an external file converter is started before
the external simulation software is executed. As result of running the simulation soft-
ware with the new model, some simulation result files are created. Here are the same
circumstances as for the model representation. If the result files are not in plain-text
format, Calimero executes an external converter. Now it is possible to extract all itera-
tion parameters values for this run of the simulation software with the newly generated
model. Furthermore all new values for objective function parameters are evaluated. At
this point Calimero has tested one value-set of calibration parameters ( also called auto
calibration iteration) and the whole process starts from the beginning. Depending on
the result of the objective function parameters the auto calibration algorithms choses
new value-sets for all calibration parameters. By default Calimero tries to minimize the
objective function parameters.
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3.2 Quick start

This section demonstrates the calibration of a simple model using Calimero. The model
file defines a right-angled triangle with two values. As real measured data we have a file
containing one value. It is the surface area of this triangle. Aim is to find two values
which define the same surface area as in the real measured data. This example is quite
simple but it demonstrates the usage of Calimero in a simple step-by-step example.
As demonstrated in listing 2 the model simulation software is a python implementation
which has two files as input. The first file should represent the model, in this case
it contains two values representing the length of the opposite leg and adjacent leg of
the right-angled triangle. The second file is the result file of the model simulation and
contains the surface of the triangle which is defined by the opposite and adjacent leg of
the first file.

Listing 2: Triangle model software

1 import sys

2

3 if sys.argv.__len__ () < 3:

4 print "USAGE: triangle.py [inputfile] [outputfile]"

5 sys.exit (0)

6

7 ifile = open(sys.argv[1],’r’)

8 ofile = open(sys.argv[2],’w’)

9

10 a = float(ifile.readline ())

11 b = float(ifile.readline ())

12 ofile.write(str((a*b)/2))

13 ifile.close()

14 ofile.close()

15

16 sys.exit (1)

Step 1 - Defining parameters from external files Defining file templates in Calimero
is the first step. This has to be done for calibrations where the simulation software
is an external program. These templates represent the interface between Calimero
and the external program. In this example we have to define templates for both
files of the triangle model software.

The tab called Source includes all features for defining templates (Figure 2). With
this editor it is possible to import model-, simulation result- and real measured
data files into Calimero (top yellow blocks in figure 1) and afterwards defining auto
calibration relevant parameters.
As already defined, in this example there is one model-file which defines a right-

angled triangle with two edges (opposite leg and adjacent leg) and one real mea-
sured data-file which has only one value representing the surface area of a triangle.
For calibrating the two edges of this triangle we also need one simulation result-file
of the initial model. This file is generated by running the simulation software with
the initial model file manually.
Now it is possible to extract all needed parameters from all files.

1. Choose Calibration templates on the left top box.

2. Click on + and give the new template the name ( ’modeltemplate’ ).

3. Select the new template named ’modeltemplate’
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Figure 2: Template editor - Quick start

4. On the right side click somewhere in the white field with right click to open
the context menu

5. Select Import file and choose the model file which contains the values for the
two edges of the triangle

6. Mark the value, which should be the first calibration parameter.

7. Right-click on the marked value and choose Create Parameter .

8. Give this parameter the name ’a’ .

9. Do the same for the second parameter which has the name ’b’ starting from
point 3.

Now all calibration parameters are defined. Do the same for Iteration templates where

you create a template of the simulation result-file and for Observed data templates

defining the real measured triangle surface area. The simulation result parameter
should be named as ’modelsurface’ and the real measured parameter should be
named as ’observedsurface’ .
Now we have defined all needed templates and parameters. With its help Calimero
knows how to extract values from these files. At this point all defined parameters do
not have any initial value. The ’observedsurface’ parameter represents the surface

of the triangle we want to reach. For loading this value select Observed data templates

, afterwards the ’observedsurface’ and Load values . Select the file containing the
real surface of the triangle. Calimero compares the selected file with the template
and extracts the needed values.
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Step 2 - Specify file paths We are still working with the Template Editor . Each im-
ported file needs a dynamic path during the execution of the auto calibration
algorithm, which means you have to define how all these files should be named
during an auto calibration iteration.

1. Choose Calibration templates on the left top box.

2. Select ’modeltemplate’

3. Click on Set path .

4. Add ’$iteration$’ somewhere to the filename (e.g. input.txt → $itera-
tion$input.txt).

5. Do the same for ’modeloutput’ in Iteration templates .

Step 3 - Set Calibration parameter settings Clicking on the next tab ( Parameters )
of the Calimero GUI shows all defined parameters. As shown in figure 3 each
parameter is part of one out of four groups.

• Calibration parameters

• Iteration parameters

• Observed parameters

• Objective function parameters

Figure 3: Set parameter settings - Quick start

We start with editing all calibration parameters to specify the boundaries and step
size for each model parameter.

1. Choose Calibration parameters on the left top box
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2. Choose a calibration parameter in the right list by clicking once on ’a’ .

3. Change the Max value , Min value and Step size field to ’0’ , ’200’ and
’0.00001’ .

4. Start at point 2 again and do the same for parameter ’b’

The last step in this tab is to define objective function parameters. In our example
we choose SSE as objective function, which represents the difference between the
observed triangle surface and the modeled triangle surface raise to the power of 2.

1. Choose Objective function parameters on the left top box

2. Click on + and specify a name ( ’objectivefunction’ ).

3. Select ’objectivefunction’

4. Click on + right after the members list on the right side

5. Add ’modelsurface’ and ’observedsurface’

6. Select SSE (Sum of Squared Errors) on the Function: box

Step 5 - Set calibration settings Now all calibration parameters and objective func-
tions are defined. The next step is to define which auto calibration algorithm and
external program should be used and which objective function parameters should
be minimized by the chosen auto calibration algorithm. All options are set in the
Calibrationsettings tab (Figure 4).

Figure 4: Set calibration settings - Quick start

1. Click on the tab ( Calibrationsettings ) of the Calimero GUI.

2. Choose GeneticAlgorithm in the Algorithm input mask
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3. Choose External Model in the Simulation Software input mask

4. Click on + at the Objective functions section

5. Add the objective function parameter named ’objectivefunction’

The last step before starting the calibration process is do define the paths where
Calimero can find the external simulation software. In this example the external
simulation software is written in Python. Therefore the external program is a
Python interpreter.

1. Click Advanced next to the Simulation software: mask

2. Enter the correct path of the interpreter on your machine in the Iteration-
exec-path: mask (e.g. ’/usr/bin/python’ ).

3. Define the workspace where temporal files can be stored at the Iteration-
workspace: mask (e.g. ’ /Desktop’ )

4. Specify the program arguments for the python interpreter in the Iteration-
arguments: mask. In this example the program code of the simulation soft-
ware is stored in a file named ’trianlge.py’ , so the first argument is the name
of the file and after that the two arguments for the simulation software (
’modeltemplate’ and ’modeloutput’ )

10



Step 6 - Run calibration and show results All necessary settings for calibrating our
model are done. Therefore we switch to the Results tab of the Calimero GUI
and start the auto calibration algorithm by clicking the Start button in the right
lower corner of this tab. By default the result tab shows the values of each cal-
ibration parameter for each auto calibration iteration. It is possible to switch to
the values of objective function parameters for each auto calibration iteration by

right click in the result window and choosing Compare parameters .

Figure 5: Show results - Quick start
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3.3 Calimero Toolbar

Figure 6: Filemenue

• File

– File → New Creates a new Calimero project.

– File → Open Opens an existing Calimero project. A Calimero project does
not include all needed script files. It is up to the user do load all needed script
files before loading the project.

– File → Save Save the current project.

– File → Save As. . . Save the current project in a new file specified by the
user.

– File → Load Python script Load/Reload a python script which con-
tains a new Objective function, Calibration Algorithm, Simulation Software
or Result handler.

– File → Exit Exit Calimero.

• Tools → Options Input Mask for setting Calimero options (see 3.8).

• Help

– Help → Calimero Help Shows this Manual.

– Help → About Calimero General information about Calimero.
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3.4 Defining Parameters and Groups

As shown in figure 7 the Paramters tab is the first tab of the Calimero graphical user
interface. Here it is possible to define Calibration, Iteration, Observed and Objective
function parameters. Calibration parameters are parameters which are changed during
a calibration by the chosen calibration algorithm. Iteration parameters are parameters
representing the result of each model simulation during a calibration, which are then
compared with the observed parameters by an objective function.
If there are too many calibration parameters it is possible to summarize parameters in
groups. By default each new calibration parameters is part of the ’Default’ group.

Figure 7: Parameters tab

On the left top side of the GUI it is possible to choose between four parameter type

views: Calibration parameters , Iteration parameters , Observed parameters and Objective function parameters

which are described following in detail.
Independent which parameter type is chosen most parts of the Properties section do not
change. After choosing one type all available parameters are listed below the type box
and the Properties mask is updated according to the specified parameter type. With
+ and - a new parameter can be created or deleted.

Calibration parameters
Shows all possible calibration parameter settings. Additionally to

all other parameter types, this view enables the button Manage groups . Clicking
on that, opens a window where you can add and remove groups. If a group is
deleted all related calibration parameter members are automatically removed from
this group.

Name Shows the name of the current selected parameter
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Min value Lower bound of the chosen calibration parameter

Max value Upper bound of the chosen calibration parameter

Step size Step size between lower and upper bound of the chosen parameter. If
for example the lower bound is ’0’ , the upper bound is ’2’ and step size is
’0.5’ possible values for this parameter are 0, 0,5, 1, 1,5 and 2.

Groups List of all groups where the chosen parameter is a member. Add and

remove a parameter from a group by clicking on + and - below the list.

Iteration parameters
Iteration parameters contain the results of each model simulation.

Each parameter is a vector.

Name Shows the name of the current selected parameter

Value Show the current vector values of the chosen parameter. To edit a value of

the vector just double click on the value. By click on + or - below the
value list it is possible to add or remove an index.

Observed parameters
Each parameter is a vector.

Name Shows the name of the current selected parameter

Value Show the current vector values of the chosen parameter. To edit a value of

the vector just double click on the value. By click on + or - below the
value list it is possible to add or remove an index.

Objective function parameters
Name Shows the name of the current selected parameter

Value Show the current value of the chosen objective function parameter

Members Show all involved parameters of the current objective function. Possible
member parameter types are iteration parameters, observed parameters and
objective function parameters.

Function List of available objective function types

Advanced This option is only enabled if the chosen objective function type has
additional options implemented
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3.5 Creating Templates

Figure 8: Templates Editor

Clicking on Source tab shows the GUI for creating and editing parameter templates.
If the simulation software is an external program the communication is realized via
template files. Depending on each specified template parameter values are set and read

before and after each model simulation. Similar to the Parameters tab three template

types are possible: Calibration templates , Iteration templates and Observed data templates .
As shown in figure 8 on the left top corner it is possible to choose between the three
template types. Below that all current templates for the chosen template type are listed.

To add or remove a template click on + or - . If a new template is created the field
on the left side is white, right click somewhere in this field to open the context menu. At

the beginning only the Import file option is available. It is possible to import an already
created template file of any other file which is readable by humans.
Now editing the templates is done via the context menu:

Start Vector Option of the context menu, by right click on a marked value in the editor.
It specifies the beginning of a vector.

Finish Vector Option of the context menu, by right click on a marked value in the
editor, which specifies the end of a vector. After this action the user has to specify
a delimiter. Calimero generates a vector stored in one parameter named by the
user.

Cancel Vector Option of the context menu, which cancels the vector creation process.
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Delimiter Specifies the delimiter (e.g. ’, ’ , which helps Calimero to split the file (e.g.
CSV-file split columns by ’, ’ ).

Create parameter
Option of the context menu, by right click on a marked value in the

editor, which creates a new parameter with the current marked value as initial
value.

If a new parameter is specified in a template, a new parameter is added to the Cal-
imero system. For example if someone adds a new parameter in a calibration template, a
calibration parameter is automatically added to Calimero. The new parameter is unini-

tialized. To initialize all parameters of one template click on Load values . Now you can
choose the file, which contains all values and matches the template. To save the current

template click on Export template . While observed templates are only used once in each
calibration, calibration and observed data templates are used in each model simulation
during a calibration. Calimero needs the path for each calibration template to know
where each new model file should be stored and for each iteration data template to know
which files are the output of one model simulation. They are produced by the external
model simulation software. Therefore when choosing the calibration or iteration tem-

plate view the Set path button is enabled. By clicking on it, it is possibly to specify
the path for each selected template.
If the calibration algorithm does not support parallel execution of model simulation any
path can be chosen. If someone wants to use parallel execution of model simulations and
the chosen calibration algorithm supports parallel execution each path of all templates
must contain the key ’$iteration$’ somewhere. Calimero replaces this keyword in each
iteration by a number to enable parallel execution.
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3.6 Calibration settings

Figure 9: Calibration settings

The Calibrationsettings tab (Figure 9) is split in Calibration settings and Group settings

. The second is only available if an additional group has been specified in the Parameters

section.

Calibration settings Input mask for general settings of the current auto calibration.

Algorithm: Selects the type of the auto calibration algorithm for this Calimero
project

Simulation software: Select the type of the model simulation. If the model is
an external program, choose ’ExternalModel’

Objective functions List of objective functions parameters which are considered
by the current auto calibration algorithm. To add or remove an objective

function parameter click on + or -

Group settings This input mask only appears if there are more than only the ’default’
group contained in the current Calimero project. It contains Monitored Groups
mask and Ignored Groups mask. The groups in the Monitored Groups mask are
considered by the current auto calibration algorithm and the groups in the Ignored

Groups mask are ignored. To add or remove groups from a list click on + or
- below the wanted list.
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3.7 View calibration results - Results

All results of the current Calimero project are shown in a Cartesian coordinate system
where the x-axis represents the current auto calibration iteration and the y-axis repre-
sents the current values of the parameters (Figure 10). For changing the view of the
coordinate system just right-click at the coordinate system and a context menu will ap-

pear with to options ( Compare parameters and Calibration parameters ). During a running
calibration it is possible to switch between the results of calibration parameters and
objective function parameters (Compare parameters). The Cartesian coordinate system
is updated automatically. To enable/disable the automatic update mechanism of the
coordinate system check/uncheck the Enable Diagram box.

If a calibration has finished the Result analyses button gets available. It opens the Result

analyses window. With + and - the user can add and remove one result analysis.
When adding a new analysis you have do specify the name of the new result analysis.
Afterwards a toolbox appears where you can choose from all available result analysis
types of Calimero. For defining a new result analyze type see section 4.
The settings for each analyses are implementation specific and are reachable over the
Advanced settings button. If the button is disabled, the current analyses has no options.

To start a result analyses you have to click on the Start button. Clicking on the
Start all button starts all result analyses where the Enable check box is enabled.

Figure 10: Result tab with context menue
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3.8 Calimero system settings

Tools → Options opens the Calimero Settings input mask.

Figure 11: Calimero system settings

Include paths With the buttons + and - it is possible to add and remove include
paths. Every time when Calimero is started each of the paths is scanned for files
ending with .py, .so and .dll, which may contain Objective functions, Calibration
Algorithms, Simulation softwares and result handlers for Calimero. Calimero tries
to load all found files and prints a message to the output window of the Calimero
GUI or command prompt.

Memory Calimero stores all results for each objective function parameter for each iter-
ation. If the check box Result in RAM is checked, the results are stored in the
RAM. This is fast but it is limited by the RAM size of the current system. So
if the calibration is running out of memory try to uncheck this option to enable
Calimero saving the results to the hard disk. This might be slow but Calimero
keeps calibrating.
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3.9 Running Calimero from a command prompt

It is possible to start Calimero from a command prompt with no GUI. Calimero will
load a specified Calimero project and automatically calibrate until all objective functions
reach a specified threshold. The results are stored in the Calimero project. Listing 3
shows all available options of Calimero. To get this information in your command prompt
type: ’calimero -h’

Listing 3: Calimero command options

1 :~ $ calimero -h

2 Calimero command line options:

3 -h [ --help ] produce help message

4 -c [ --nogui ] run calimero in command line mode

5 -l [ --log ] arg write log to specified file

6 -v [ --maxlog ] arg max loglevel

7 0 all debug

8 1 all standard

9 2 all warnings

10 3 only errors

11 -p [ --project ] arg project which specifies a calibration
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4 Developer Manual

Calimero has already included several objective functions, model simulations, calibration
algorithms and result handlers which are loaded dynamically at runtime. For writing
functions for Calimero on its own it is possible to do that in C++ or Python. For a fast
prototyping of several functions it is recommended to program in Python.

4.1 Compile Calimero from source

The main core and GUI of Calimero is written in C++ using Qt and Boost. To allow
an easy compile process on Linux and Windows, CMake was used as build system.
Tested compilers are gcc 4.4.3 on Linux and Visual Studio 2008 on Windows. Minimal
requirements for compiling Calimero on Linux are: gcc 4.4.3, cmake 2.8.0, Qt 4.6.3,
Boost 1.42.0, Python 2.6.3. On Windows there are the same requirements except the
compiler has to be at least Visual Studio 2008 compiler. If everything is installed well,
Calimero should compile by the commands shown in listing 4 on Linux and on Windows
shown in listing 5.

Listing 4: Building from Source in Linux

1 :~$ tar -xzf calimero -swig -1.11.2 - source.tar.gz

2 :~$ cd calimero

3 :~$ mkdir build

4 :~$ cd build

5 :~$ mkdir Release

6 :~$ cd Release

7 :~$ cmake -DCMAKE_BUILD_TYPE=Release ../../

8 :~$ make -j

9 :~$ make install

Listing 5: Building from Source in Windows

1 dir calimero

2 cmake -DCMAKE_BUILD_TYPE=Release ./

3 nmake

4.2 Extending Calimero

Calimero defines four different interfaces for developing own objective functions, model
simulations, calibration algorithms and result handler. They are described in the follow-
ing sections. As already mentioned it is possible to extend Calimero in C++ or Python.
Therefore this manual is split into two parts for programming in C++ and programming
in Python.
In general to extend Calimero a programmer has to implement a predefined interface
class. Currently Calimero contains four abstract classes from which a programmer can
inherit. All of them are subclasses of ’IFunction’ (see figure 12).

’IFunction’ The class named ’IFunction’ is the base class of all abstract classes for
extending Calimero. It contains methods which allow to load and store extension
specific parameters. For example if someone implements a new parallel model sim-
ulator it is possible to define model specific parameters. They are automatically
saved and loaded to and from a Calimero project. Depending on the type of the
defined parameters, Calimero automatically generates a user interface for interac-
tion with the user and the new function. Allowed parameter types are ’STRING’
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Figure 12: Class structure of Calimero interface classes

, ’DOUBLE’ , ’INT’ , ’BOOL’ , ’UINT’ , ’FILESTRING’ and ’DIRSTRING’ . For
example if the parameter type is ’FILESTRING’ , Calimero will create a UI with a
string input field and a button to open a file chooser.

’ICalibrationAlg’ ICalibrationAlg is the base class for all calibration algorithms which
contains one method called start . The parameters are vectors of all calibration/ob-
jective function parameters, an object representing the current calibration environ-
ment and an object representing the current calibration. Output is a boolean set
to ’TRUE’ , if the calibration has stopped with no errors and ’FALSE’ otherwise.
The calibration environment object is the heart of each calibration. It allows to
control the whole functionality of Calimero, even changing the user interface if
someone wants to. The calibration object stores all settings of the current calibra-
tion including all parameters and results.

’IModelSimulator’ IModelSimulator is the base class of all model simulation programs.
This abstract class has one method called ’exec’ which has a ’Domain’ object
as attribute. The object contains the current calibration and iteration parameters
for the current model simulation. The calibration parameters could be seen as
input of this function and the iteration parameters are the output of the current
model simulation. The return value of the exec methode is a boolean which is
TRUE if no error occurs during the simulation and FALSE otherwise. Figure
13 shows an example window of an external model simulator. This extension
executes an external program by starting a new system process. After the execution
has finished the result files are analysed and included into the current running
calibration.
If someone has access to the source code of the model simulation or wants to write

it on its own, IModelSimulator is the base class to embed the model in Calimero.
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Figure 13: External model simulator window

’IObjectiveFunction’ IObjectiveFunction is the base class of all objective function pa-
rameters. The class has one method named ’eval’ with vectors of iteration, ob-
served and objective function parameters as input. The function returns a vector
of doubles as result, which is stored into the corresponding objective function.

’IResulthandler’ ’IResulthandler’ is the base class for all calibration analyse tools. It
should be seen as extending the Calimero user interface. It is not part of a running
calibration. An example is a result handler which plots all objective function values
of all samples.
The class has one methode called ’run’ which has a vector of all simulation results
as input.

For a detail description of all classes of Calimero have a look on the html documenta-
tion. The following sections show example codes for extending Calimero with C++ and
Python.

4.3 Extending Calimero with C++

Listing 6 shows a generic CMake file for building a new module library for Calimero in
Windows (.dll) or Linux (.so). Copy this file in the directory were all header and source
files are stored. CMake searches automatically in this directory for all included files.
The name of the new module library for this example CMake file is ’newmodule’ , by
replacing this string you can specify your own name for the new module.

Listing 6: CMake Build file for dynamic link library

1 file(GLOB_RECURSE CPP_FILES ./ *.cpp)

2

3 add_library(newmodule SHARED ${CPP_FILES })

4

5 SET_TARGET_PROPERTIES(newmodule PROPERTIES PREFIX "")
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6

7 if (${CMAKE_CXX_COMPILER_ID} STREQUAL MSVC)

8 target_link_libraries(newmodule calimerocore)

9 else()

10 target_link_libraries(newmodule calimerocore

11 ${Boost_THREAD_LIBRARY })

12 endif()

The entry point for Calimero to load all new extensions are four methods. They
are shown in listing 7. This code is stored in a source file named ’Functions.cpp’ .
Calimero only calls the functions ’registerObjectiveFunctions’ , ’registerCalibrationAlgs’ ,
’registerModelSimulations’ and ’registerResultHandler’ , therefore the new extension has
to be registered in the related method. In this example a new Objective function ’SSE’
was created which is registered in the ’registerObjectiveFunctions’ methode (Line 24).

Listing 7: C++ dynamic link library

1 // general includes

2 #include <CalimeroGlob.h>

3 #include <Registry.h>

4 #include <IFunctionFactory.h>

5 #include <IObjectiveFunction.h>

6 #include <ICalibrationAlg.h>

7 #include <IModelSimulator.h>

8

9 // Objective function includes

10 #include <NativeErrorSquare.h>

11

12 // Calibration algorithm includes

13 #include <BruteForceSearch.h>

14

15 //Model simulator includes

16 #include <Schmutzstoffmodell.h>

17

18 extern "C"

19 {

20 void CALIMERO_PUBLIC registerObjectiveFunctions(

21 Registry <IObjectiveFunction > *registry)

22 {

23 registry ->registerFunction(

24 new NativeFunctionFactory <SSE >());

25 }

26

27 void CALIMERO_PUBLIC registerCalibrationAlgs(

28 Registry <ICalibrationAlg > *registry)

29 {

30 registry ->registerFunction(

31 new NativeFunctionFactory <BruteForceSearch >());

32 }

33

34 void CALIMERO_PUBLIC registerModelSimulations(

35 Registry <IModelSimulator > *registry)

36 {

37 registry ->registerFunction(

38 new NativeFunctionFactory <Schmutzstoffmodell >());

39 }

40

41 void CALIMERO_PUBLIC registerResultHandler

42 Registry <IResultHandler > *registry)

43 {

44 //load new ResultHandler

45 }
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46 }

Objective function example

To implement a new objective function in Calimero all new classes have to inherit from
the abstract ’IObjectiveFunction’ class. Listings 8 and 9 show an example implemen-
tation of the sum of squared errors ( ’SSE’ ). The Calimero framework has defined
two pragmas which make it easy to create a new objective function. The first pragma
’CALIMERO DECLARE OFUNCTION’ (Listing 8 line 7) defines the header of each new
objective function, including the inheritance of the abstract ’IObjectiveFunction’ class.
’CALIMERO DECLARE OFUNCTION NAME’ defines the name of an objective function,
which is internally used by Calimero. This name is the name which occurs in the user
interfaces. The pragma is part of the source file and must be used for each new objective
function (Listing 9 line 6).
As already demonstrated in the introduction of the developer manual, the abstract class
’IObjectiveFunction’ has a abstract method called ’eval’ . This method is the interface
of an objective function and must be generalized in the new objective function. This
abstract method is implemented as pure virtual function in C++, so the compiler will
throw an error message if someone has forgot to implement this function in his new
objective function.
For a detailed description about the input parameters of this method please read the
online html documentation.

Listing 8: C++ Objective function header example

1 #ifndef NATIVEERRORSQUARE_H

2 #define NATIVEERRORSQUARE_H

3

4 #include <vector >

5 #include <IObjectiveFunction.h>

6

7 CALIMERO_DECLARE_OFUNCTION(SSE)

8 public:

9 SSE();

10 std::vector <double > eval(

11 std::vector <Variable*> iterationpar ,

12 std::vector <Variable*> observedpar ,

13 std::vector <ObjectiveFunctionVariable*> objectivefunctionpar );

14 };

15 #endif // EXTERNALMODEL_H

Listing 9: C++ Objective function source example

1 #include <NativeErrorSquare.h>

2 #include <vector >

3 #include <Variable.h>

4 #include <ObjectiveFunctionVariable.h>

5

6 CALIMERO_DECLARE_OFUNCTION_NAME(SSE)

7

8 SSE::SSE()

9 {

10 }

11

12 std::vector <double > SSE::eval(

13 std::vector <Variable*> iterationpar ,
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14 std::vector <Variable*> observedpar ,

15 std::vector <ObjectiveFunctionVariable*> objectivefunctionpar );

16 {

17 std::vector <double > ev = magic_function(iterationpar ,

18 observedpar ,

19 objectivefunctionpar );

20

21 double result = 0.0;

22

23 for(uint index =0; index < ev.size (); index ++)

24 result += ev[index];

25

26 return std::vector <double >(1, result );

27 }

Model simulation example

Listings 10 and 11 show an example implementation of a model simulation. Predefined
pragmas are ’CALIMERO DECLARE MODELSIMULATOR’ (header file) and ’CAL-
IMERO DECLARE MODELSIMULATOR NAME’ (source file). All Calimero model sim-
ulators have to inherit from ’IModelSimulator’ abstract class, which defines one pure
virtual function named ’exec’ .

Listing 10: C++ model simulator header example

1 #ifndef TESTMODEL_H

2 #define TESTMODEL_H

3

4 #include <vector >

5 #include <IModelSimulator.h>

6

7 CALIMERO_DECLARE_MODELSIMULATOR(Schmutzstoffmodell)

8 public:

9 Schmutzstoffmodell ();

10 bool exec(Domain *dom);

11 };

12 #endif // TESTMODEL_H

Listing 11: C++ model simulator source example

1 #include <TestModel.h>

2 #include <Logger.h>

3 #include <Domain.h>

4 #include <CalibrationVariable.h>

5 #include <QString >

6 #include <math.h>

7

8 using namespace std;

9

10 CALIMERO_DECLARE_MODELSIMULATOR_NAME(Schmutzstoffmodell)

11

12 Schmutzstoffmodell :: Schmutzstoffmodell ()

13 {

14 setDataType("Abfluss -Parameter",STRING ,"");

15 setDataType("W-Parameter",STRING ,"");

16 setDataType("b-Parameter",STRING ,"");

17 setDataType("Result -Parameter",STRING ,"");

18 }

19
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20 bool Schmutzstoffmodell ::exec(Domain *dom)

21 {

22 vector <double > result;

23 string abfluss = QString :: fromStdString(

24 getValueOfParameter("Abfluss -Parameter")). toStdString ();

25 string wpar = QString :: fromStdString(

26 getValueOfParameter("W-Parameter")). toStdString ();

27 string bpar = QString :: fromStdString(

28 getValueOfParameter("b-Parameter")). toStdString ();

29 string rpar = QString :: fromStdString(

30 getValueOfParameter("Result -Parameter")). toStdString ();

31

32 if(!dom ->contains(abfluss ))

33 return false;

34

35 if(!dom ->contains(wpar))

36 return false;

37

38 if(!dom ->contains(bpar))

39 return false;

40

41 if(!dom ->contains(rpar))

42 return false;

43

44 if(dom ->getPar(wpar)->getType ()!= CALIBRATIONVARIABLE)

45 return false;

46

47 if(dom ->getPar(bpar)->getType ()!= CALIBRATIONVARIABLE)

48 return false;

49

50 if(dom ->getPar(rpar)->getType ()!= ITERATIONVARIABLE)

51 return false;

52

53 if(dom ->getPar(abfluss)->getType ()!= OBSERVEDVARIABLE)

54 return false;

55

56 CalibrationVariable *w = static_cast <CalibrationVariable *>(

57 dom ->getPar(wpar ));

58 CalibrationVariable *b = static_cast <CalibrationVariable *>(

59 dom ->getPar(bpar ));

60 Variable *r = dom ->getPar(rpar);

61 Variable *a = dom ->getPar(abfluss );

62

63 vector <double > avector = a->getValues ();

64

65 for(uint index =0; index < avector.size (); index ++)

66 result.push_back( w->getValues ()[0]* powf(avector[index],

67 b->getValues ()[0]));

68

69 return r->setValues(result );

70 }

Calibration algorithm example

Listings 12 and 13 show an example implementation of a model simulation. Prede-
fined pragmas are ’CALIMERO DECLARE CALFUNCTION’ (header file) and ’CAL-
IMERO DECLARE CALFUNCTION NAME’ (source file). All Calimero model simulators
have to inherit from ’ICalibrationAlg’ abstract class, which defines one pure virtual func-
tion named ’start’ .
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Listing 12: C++ calibration algorithm header example

1 #ifndef BRUTEFORCESEARCH_H

2 #define BRUTEFORCESEARCH_H

3

4 #include <ICalibrationAlg.h>

5

6 CALIMERO_DECLARE_CALFUNCTION(BruteForceSearch)

7 private:

8 std::vector <uint > steps;

9 uint maxiterations;

10 CalibrationEnv *env;

11 public:

12 BruteForceSearch ();

13 virtual ~BruteForceSearch ();

14 virtual bool start(vector <CalibrationVariable*> calpars ,

15 vector <ObjectiveFunctionVariable*> opars ,

16 CalibrationEnv *env ,

17 Calibration *calibration );

18 bool sample(int iteration ,

19 vector <CalibrationVariable*> calpars );

20 };

21

22 #endif // BRUTEFORCESEARCH_H

Listing 13: C++ calibration algorithm source example

1 #include <BruteForceSearch.h>

2 #include <boost/lexical_cast.hpp >

3 #include <boost/format.hpp >

4 #include <Logger.h>

5 #include <CalibrationEnv.h>

6 #include <CalibrationVariable.h>

7 #include <IFunction.h>

8 #include <math.h>

9

10 CALIMERO_DECLARE_CALFUNCTION_NAME(BruteForceSearch)

11

12 BruteForceSearch :: BruteForceSearch ()

13 {

14 setDataType("parallel",UINT ,"1");

15 setDataType("clean results", BOOL , "1");

16 setDataType("disableautothreads",BOOL ,"0");

17 }

18

19

20 BruteForceSearch ::~ BruteForceSearch ()

21 {

22 }

23

24 bool BruteForceSearch ::start(vector <CalibrationVariable*> calpars ,

25 vector <ObjectiveFunctionVariable*> opars ,

26 CalibrationEnv *env ,

27 Calibration *calibration)

28 {

29 steps.clear ();

30 uint maxiterations =1;

31 this ->env=env;

32

33 //init

34 for(uint index =0; index <calpars.size (); index ++)

35 {

36 CalibrationVariable *currentvar = calpars[index];
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37 steps.push_back(floor((currentvar ->getMax()-

38 currentvar ->getMin ())/ currentvar ->getStep ())+1);

39 maxiterations *=steps[index];

40 }

41

42 Logger(Standard) << "Maxiterations: " << (int)maxiterations;

43 //make samples

44 if(QString(

45 getValueOfParameter("disableautothreads").c_str ()). toInt ())

46 {

47 Logger(Error) << "Please compile calimero with openmp";

48 return false;

49 }

50 else

51 {

52 for(uint iteration =0; iteration <maxiterations; iteration ++)

53 {

54 if(! sample(iteration ,calpars ))

55 return false;

56 }

57 }

58 return true;

59 }

60

61 bool BruteForceSearch :: sample(int iteration ,

62 vector <CalibrationVariable*> calpars)

63 {

64 vector <CalibrationVariable*> newpars;

65 int forward = iteration;

66

67 for(uint var=0; var < calpars.size (); var++)

68 {

69 CalibrationVariable *newpar;

70 newpar = new CalibrationVariable (* calpars[var]);

71 std::vector <double > value;

72 value.push_back(newpar ->getMin ()+

73 newpar ->getStep ()*( forward%steps[var ]));

74 newpar ->setValues(value);

75 forward = forward/steps[var];

76 newpars.push_back(newpar );

77 }

78

79 bool ok = env ->execIteration(newpars );

80

81 for(uint var=0; var < newpars.size (); var++)

82 delete newpars[var];

83

84 if(!ok)

85 return false;

86

87 return true;

88 }

4.4 Extending Calimero with Python

The whole Calimero framework is wrapped in Python. Extending Calimero with a
Python model is similar to develop a module in C++.
To use Calimero the related package is ’pycalimero’ . It has to be included with ’import
pycalimero’ or ’from pycalimero import *’ . Following sections show example codes for
defining a new objective function, calibration algorithm and result handler.
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For a detailed description of the whole Calimero framework using Python, please use the
’help’ command in a python interactive shell.

Objective function

Writing a new objective function in Python as shown in listinglisting:pyofun is quiet
easy. Important here is line 4 where the class definition of the new objective function
includes the inheritance of the ’IObjectiveFunction’ . The abstract method named ’eval’
has to be implemented.

Listing 14: Python objective function example

1 from pycalimero import *

2 import math

3

4 class VectorError(IObjectiveFunction ):

5 def __init__(self):

6 IObjectiveFunction.__init__(self)

7

8 def eval(self ,iterationpars , observedpars , objectivefunctionpars ):

9 #search for number of vectors

10 numberofvectors = 0

11 numberofvectors = numberofvectors+iterationpars.__len__ ()

12 numberofvectors = numberofvectors+observedpars.__len__ ()

13 numberofvectors = numberofvectors+objectivefunctionpars.__len__ ()

14

15 if(numberofvectors !=2):

16 log("Only two vectors are allowed in VectorError", Warning)

17

18 #search for vectors and check their size

19 vectors = doublevectorvector ()

20

21 for var in iterationpars:

22 vectors.append(var.getValues ())

23

24 for var in observedpars:

25 vectors.append(var.getValues ())

26

27

28 for var in objectivefunctionpars:

29 vectors.append(var.getValues ())

30

31 if(vectors [0]. __len__ ()!= vectors [1]. __len__ ()):

32 log("Vectors do not have the same size", Warning)

33

34 #calculate

35 result = doublevector ()

36

37 index = 0

38 for value1 in vectors [0]:

39 currentresult = value1 - vectors [1][ index]

40 result.append(currentresult)

41 index = index+1

42

43 return result

Calibration algorithm

Writing a new objective function in Python as shown in listinglisting:pycalalg is quiet
easy. Important here is line 4 where the class definition of the calibration algorithm
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includes inheritance of the ’ICalibrationAlg’ . Similar to the implementation in C++,
also here the abstract method named ’start’ has to be implemented.

Listing 15: Python calibration algorithm example

1 from pycalimero import *

2 from calimeropublic import frange

3

4 class BruteForceSearch_P(ICalibrationAlg ):

5 def __init__(self):

6 ICalibrationAlg.__init__(self)

7 self.setDataType("parallel", UINT , "1")

8 self.setDataType("clean results", BOOL , "1")

9

10 def bruteforcesearch(self , calpars , currentv , env):

11 var = calpars[currentv]

12

13 for currentvalue in frange(var.min ,var.max ,var.step) + [var.max]:

14 result = doublevector ()

15 result.append(currentvalue)

16 var.setValues(result)

17

18 if (currentv ==( calpars.__len__ () -1)):

19 if (execIteration(calpars) == False):

20 log("BruteForceSearch_P stoped by user",Standard)

21 return False

22 else:

23 if(self.bruteforcesearch(calpars ,currentv+1,env)== False):

24 return True

25

26 return True

27

28 def start(self ,calpars , objectivevars , env , calibration ):

29 log("Start BruteForceSearch_P",Standard)

30 result = self.bruteforcesearch(calpars ,0,env)

31 barrier ()

32 log("BruteForceSearch_P DONE",Standard)

33

34 return result;

Result handler

Writing a new result handler in Python as shown in listinglisting:pyresulthandler is quiet
easy. Important here is line 4 where the class definition of the new objective function
includes inheritance of the ’IResultHandler’ . Similar to the implementation in C++,
also here the abstract method named ’run’ has to be implemented.

Listing 16: Python result handler example

1 import pycalimero

2 import calimeropublic

3 import sys , os, random

4 from PyQt4.QtCore import *

5 from PyQt4.QtGui import *

6 import numpy as np

7 import math

8

9 from calimeropublic import findBestitNumber

10

11 class FindBestResult(pycalimero.IResultHandler ):

12 def __init__(self):
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13 pycalimero.IResultHandler.__init__(self)

14 self.setDataType("objective function parameter",pycalimero.STRING , "")

15

16 def run(self , results ):

17 name = self.getValueOfParameter("objective function parameter")

18 it = findBestiterationNumber(results ,name)

19 bestvalue = -1

20 if(it > -1):

21 bestvalue = results[it]. getObjectiveFunctionParameterResults(name )[0]

22

23 title = "Best result"

24 values = (name , str(it), str(bestvalue) )

25 text = "Name: %s it: %s Value: %s" % values

26 QMessageBox.information(QApplication.activeWindow (),title ,text)

27 return True
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