
Short, Enantioselective Total Synthesis of (+)-Chatancin

Yu-Ming Zhao and Thomas J. Maimone Angew. Chem. Int. Ed. 2015, 54, 1223-1226

- 1–4
- C + C'
 - Me, H OMe OMe OMe (+)-Chatancin

5-7

- 1) **B**, BF₃•OEt₂, then DMP
- 2) PhMe, reflux, then NEt₃, Tf₂O 3) CO (1 atm), i-Pr₂NEt, DPEPhos, Pd(OAc)₂
- 4) PhMe, 100 °C

5) SO₂Cl₂, Na₂CO₃, CH₂Cl₂ 6) Zn, THF, reflux 7) H₂ Pd/C

DPEPhos:

How would you prepare A from farnesol? How would you prepare B from malonic acid?

In step 4:

Two separable diastereomers are formed as 1:1 mixture. **Please** explain their formation mechanistically.

Both diastereomers can undergo a decomposition reaction, leading to the same sideproduct. **Which one? Mechanism?**In the presence of TMSOTf, the wrong diastereomer undergoes lactone-opening and a cyclisation reaction froming another 6-membered carbocycle. **Which one?**

Chatancin is highly unstable even under mildly acidic conditions. What is the decomposition-product and how does it form?