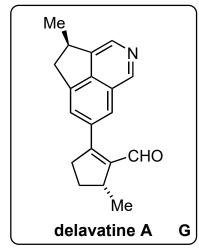
A Short Synthesis of Delavatine A Unveils New Insights into Site-Selective Cross-Coupling of 3,5-Dibromo-2-pyrone


Palani, V.; Hugelshofer, C. L.; Kevlishvili, L.; Liu, P.; Sarpong, R. *J. Am. Chem. Soc.* **2019**, *141*, 2652–2660.

- 1) Br₂
- 2) EtONa
- 3) O_3
- 4) LDA, Tf₂O

- 5) Pd(dppf)Cl₂, B₂pin₂
- 6) (Me₃Sn)₂CuLi
- 7) Dibal-H
- 8) TPAP, NMO

- 2) Show the mechanism of step 2. hint: A cyclopentane is formed
- 5) Which by-product must be avoided?
 Suzuki-coupling between vinyl triflate
 and vinyl-boronate
- 6) Propose two mechanisms
 Michael-retro-Michael or
 1,4-addtion followed by an E1cB or
 Oxidative addition-Reductive Elimination

9) Pd(PPh₃)₄, CuI, **B** 10) Pd(PPh₃)₄, CuTC, **C**

11) NaCN, then K₂CO₃, Mel

12) TBSOTf, Et₃N, then DBU, PhMe, Δ 13) LiAlH₄ 14) (COCl)₂, DMSO, Et₃N 15) NH₄OAc,

- 9) Give the name of steps 9 and 10 Suzuki-Cross-Coupling
- 10) Show the structure of CuTC

- 11) Show the mechanism of step 11 1,6-addition followed by a vinylogous retro-oxa-Michael
- 12) Show the mechanism of step 12

Extra questions: Step 2

The relationship between oxyallyl cation and cyclopropanone is an equilibrium or a ressonance? answer: equilibrium It is an electrocyclization.

Conrotatory or disrotatory? Disrotatory

I want you to show me the mechanism of two reactions:

- an oxyallyl cation with an nucleophile;

Nucleophilic addition followed by enolate protonation

- with a diene: 4+3 cycloaddition

Extra question: Step 4

Can you show two reagents to replace Tf₂O? PhNTf₂ and Comins

Extra question: Step 5

How to avoid the Suzuki? Avoid addition of base (doule check)

'Ме

Me

Extra questions: Step 6

Why is there a typical 1,4 vs 1,2 selectivity for organocuprates?

Cu-coordinates to the double bond η -2 complex, migratory insertion then reductive elimination

Explain the mechanistical difference between E1cB and a E2?

E2 is concerted whereas E1cB is stepwise, in which initially there is a conjugated base formation prior to the elimination of the leaving group

Consider the elimination of a homobenzyl halide in the presence of a base

$$X \xrightarrow{H} \underbrace{t\text{-BuOK}}_{Y}$$

For Y = EDG or weak EWG: E2 Mechanism (Me, MeO or CI)

For Y = strong EWG: E1cB (CN or NO_2)

Mention that in a Hammett-Plot this is a classical example of shift in inclination typical of shift in reaction mechanism

Extra questions: Step 9

What kind of selectivity is operating in step 9? regioselectivity

Extra questions: Step 10

What is the synthetic advantage of preparing two building blocks from the same synthetic intermediate?

There is an overrall reduction in the number of steps

Extra questions: Step 12

What is the role of DBU?

To eliminate the cyano after the electrocyclization

Extra questions: Step 15

Show the mechanism of step 15