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2) k − ε turbulence closure Introduction

K − ε turbulence closure - Objectives

Improve the reproduction of boundary layer dynamics at the
mesoscale, through novel turbulence closures

Why?

Currently mesoscale models adopt K − ℓ 1D turbulence closures,
mostly for numerical stability reasons.

Problems...

× Correctly define the length scale for TKE and dissipation,
especially in complex and heterogeneous terrain, where the
”memory effect” can be relevant

× ℓ is commonly obtained from measurements/LES in flat terrain

Idea!

Employing a K − ε closure in order to avoid to define a mixing length
scale
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2) k − ε turbulence closure PBL equations

The K − ε turbulence closure (1.5 order)
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2) k − ε turbulence closure PBL equations

Tuning the standard K − ε closure

a) Dissipation dependence on the eddy scale (Zeng et al., 2020)

Buoy prod = Buoy prod + c4 min
⎛
⎝1,
√

Ri

c5

⎞
⎠Nε

b) Counter-gradient term for the heat flux

1) wθ = −νH (∂Θ∂z − γ) γ = C wθs
w⋆h

(NL)

2) wθ = −νH ∂Θ
∂z +Φcg(Kθ) ∂Kθ

∂t = −∂wKθ

∂z −wθ ∂Θ
∂z − εθ (L)
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2) k − ε turbulence closure Setup

LES and RANS simulation Set-Up
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2) k − ε turbulence closure Results

Complex terrain - LES (50 m) vs RANS (1 km)
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2) k − ε turbulence closure Results

SIM vs OBS - RMSE - 2-m min air temperature
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2) k − ε turbulence closure Results

SIM vs OBS - 10-m wind speed
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2) k − ε turbulence closure Conclusions

3) K − ε turbulence closure - Conclusions

Idealized simulations

✓ The new k − ε outperforms PBL models in complex terrain.
The best results are shown by the scheme with temperature
variance prognostic equation. We can deduce that:

a) The inclusion of a prognostic equation for ε (”memory effect”)
improves the results with respect to the use of a diagnostic ℓ.

b) Model locality improves the simulations, especially at increasing
level of complexity.

Reference: A. Zonato, A. Martilli, P. A. Jimenez, J. Dudhia, D. Zardi
& L. Giovannini, A new K − ε turbulence parameterization for
mesoscale meteorological models, Accepted by Monthly Weather
Review.

Acknowledgments and funding: Atmospheric boundary-layer
modeling over complex terrain (ASTER) project.
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