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K — ¢ turbulence closure - Objectives

Improve the reproduction of boundary layer dynamics at the
mesoscale, through novel turbulence closures

Why?
Currently mesoscale models adopt K — £ 1D turbulence closures,
mostly for numerical stability reasons.

Problems...

x Correctly define the length scale for TKE and dissipation,
especially in complex and heterogeneous terrain, where the
"memory effect” can be relevant

x ¢ is commonly obtained from measurements/LES in flat terrain

Idea!

Employing a K - € closure in order to avoid to define a mixing length

scale
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PBL equations

2) k — e turbulence closure

Tuning the standard K — ¢ closure

a) Dissipation dependence on the eddy scale (Zeng et al., 2020)

T
Buoy prod = Buoy prod + ¢4 min (1, —Z) Ne
Cs

b) Counter-gradient term for the heat flux
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Terrain Height (m)
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2) k — e turbulence closure

Setup

LES and RANS simulation Set-Up
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Height from ground (m)

2) k — e turbulence closure Results

Complex terrain - LES (50 m) vs RANS (1 km)
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Complex terrain - LES (50 m) vs RANS (1 km)
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2) k — e turbulence closure Results

SIM vs OBS - RMSE - 2-m min air temperature
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SIM vs OBS - 10-m wind speed
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