Department of
Mathematics

Inn'formal Probability Seminar

Alexander Glazman (Universität Innsbruck)
 "Delocalisation of height functions."

Abstract

Take a Simple Random Walk in dimension 1 that starts at 0, makes $2 n$ steps and ends at 0 . It is elementary that the variance of the position of the walk at time n is of order \sqrt{n}. Same is true for the lazy Random Walk that can stay at the same place with a positive probability.

Now consider a version of this question with a two-dimensional time. Take a square of size n on the hexagonal lattice and place integer heights at the faces, so that the heights at two adjacent faces differ by 0, 1 or -1 and the height at the boundary is fixed to be 0 . Assign weight $x>0$ for every disagreement between adjacent heights.
It was predicted in physics in 70 s-80s that a phase transition occurs at $1 / \sqrt{2}$:

- when $x<1 / \sqrt{2}$, the variance of the height at the origin is uniformly bounded;
- when $x \geq 1 / \sqrt{2}$, the function is delocalised and the variance diverges as $\log n$.

We show the second part of this conjecture for all $x \in[1 / \sqrt{2}, 1]$.

Our approach goes through graphical representations of this random Lipschitz function, positive correlation (FKG) inequalities and planar duality. It applies also to the six-vertex (ice-type) model. Note that planarity is crucial: in dimension 3 and higher, the height function is expected to be localised for all $x>0$.

Based on a joint work with Piet Lammers.

Tuesday | 23.05.2023 | 14:15

