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Abstract—In this talk we summarise part of the results from
our recent work [1] and [2]. We give theoretical insights into
the performance of K-SVD, a dictionary learning algorithm that
has gained significant popularity in practical applications, by
answering the question when a dictionary Φ can be recovered
as local minimum of the minimisation criterion underlying K-
SVD from a set of training signals yn = Φxn. Assuming the
training signals are generated from a tight frame with coefficients
drawn from a random symmetric distribution, then in expectation
the generating dictionary can be recovered as a local minimum
of the K-SVD criterion if the coefficient distribution exhibits
sufficient decay. This decay can be characterised by the coherence
of the dictionary and the `1-norm of the coefficients. Further it is
demonstrated that given a finite number of training samples N
with probability O(exp(−N1−4q)) there is a local minimum of
the K-SVD criterion within a radius O(N−q) of the generating
dictionary.

Index Terms—dictionary learning, sparse coding, finite sam-
ples, K-SVD, sampling complexity, dictionary identification, min-
imisation criterion, sparse representation

I. INTRODUCTION

Research in the last decade has proven that sparsity provides
an efficient way of dealing with high-dimensional data, since
sparse signals are easily compressed, are robust to corruption
and can therefore easily be restored from incomplete infor-
mation. Triggered by this success an increasingly important
research direction is how to learn dictionaries providing sparse
representations for the data at hand, known as dictionary
learning or sparse coding. The problem under investigation
is usually formulated as follows. Given N signals yn ∈ Rd,
stored as columns in a matrix Y = (y1, . . . yN ) find a
decomposition,

Y ≈ ΦX,

into a d×K dictionary matrix Φ with unit norm columns and
a K ×N coefficient matrix with sparse columns.
So far research has provided several dictionary learning algo-
rithms, which are efficient in practice and therefore popular
in applications, but there exists only a handful of dictionary
learning schemes, for which theoretical results available, [3],
[4], [5], [6], [7]. Unfortunately, however, these then tend to be
rather cumbersome in practice. In this talk we start bridging
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the gap between practically efficient and provably efficient
dictionary learning schemes, by shedding some light on the
theoretical performance of K-SVD, one of the most widely
applied dictionary algorithms.
K-SVD was introduced by Aharon, Elad and Bruckstein in [8]
as an algorithm to solve the following minimisation problem.
Given some signals Y = (y1, . . . , yN ), yn ∈ Rd, find

min
Φ∈D,X∈XS

‖Y − ΦX‖2F , (1)

for D := {Φ = (φ1, . . . , φK), φi ∈ Rd, ‖φi‖2 = 1} and
XS := {X = (x1, . . . , xN ), xn ∈ RK , ‖xn‖0 ≤ S}, where
‖x‖0 counts the number of non-zero entries of x, and ‖ · ‖F

denotes the Frobenius norm. In short we are looking for
the dictionary Φ that provides on average the best S-term
approximation to the signals in Y .
Since for a signal yn the best S-term approximation using
Φ is given by the largest projection onto a set of S atoms
ΦI = (φi1 . . . φiS

), ie. PI(Φ) = ΦIΦ
†
I where Φ†I denotes the

Moore-Penrose pseudo inverse of ΦI , instead of (1) we can
equivalently consider the following maximisation problem,

max
Φ∈D

∑
i

max
|I|≤S

‖PI(Φ)yn‖22. (2)

Let us assume that the training signals are all created from
an admissible generating dictionary Φ̄ ∈ D, and coefficients
drawn at random from a distribution ν of sparse or rapidly
decaying coefficient, ie.

yn = Φ̄x̄n. (3)

The goal of dictionary identification is to give conditions
under which an algorithm can locally identify the generating
dictionary from the training signals. To achieve this we will
first study when Φ̄ is exactly at a local maximum in the
limiting case, ie. when we replace the sum in (2) with the
expectation,

max
Φ∈D

Ey

(
max
|I|≤S

‖PI(Φ)y‖22
)
. (4)

In the next section we will provide identification results for the
case when in (4) we have S = 1, ie. XS = X1, assuming first a
simple (discrete, noise-free) signal model and then progressing



to a noisy, continuous signal model. In Section III we will
extend these asymptotic results to the case of a finite number
of samples and finally we will discuss the implications of our
results for practical applications and compare them to related
dictionary identification results.

II. ASYMPTOTIC IDENTIFICATION RESULTS

A. The problem for S = 1
In case S = 1 the objective function in (4) can be radically

simplified and the maximisation problem we want to analyse
reduces to,

max
Φ∈D

Ey

(
‖Φ?y‖2∞

)
. (5)

Clearly if the signals y are all 1-sparse in a dictionary Φ̄ then
Φ̄ is a global maximiser of (5). However what happens if we
do not have perfect sparsity? Let us start with a very simple
negative example.

Example 2.1: Let U be an orthonormal basis and x be
randomly 2-sparse with ’flat’ coeffcients, ie. pick two indices
i, j choose σi/j = ±1 uniformly at random and set xk = σk

for k = i, j and zero else. Then U is not a local maximum
of (5), since we can construct an ascent direction. Choose
Uε = (u1, . . . , ud−1, (ud + εu1)/

√
1 + ε2), then we have

Ey

(
‖U?

ε y‖2∞
)

= Ex

(
‖(x1, . . . , xd−1,

xd+εx1√
1+ε2 )‖2∞

)
= 1 + 1

d(d−1)
ε

1+ε2 > 1 = Ey

(
‖U?y‖2∞

)
From the above example we see that in order to have a
local maximum at the original dictionary we need a sig-
nal/coefficient model where the coefficients show some type
of decay.

B. A simple model of decaying coefficients

We first consider a very simple coefficient model, con-
structed from a non-negative, non-increasing sequence c ∈ RK

with ‖c‖2 = 1, which we permute uniformly at random and
provide with random ± signs. To be precise for a permu-
tation p : {1, ...,K} → {1, ...,K} and a sign sequence σ,
σi = ±1, we define the sequence cp,σ component-wise as
cp,σ(i) := σicp(i), and set y = Φx where x = cp,σ with
probability (2KK!)−1.
The normalisation ‖c‖2 = 1 has the advantage that for
dictionaries, which are an orthonormal basis, the resulting
signals also have unit norm and for general dictionaries the
signals have unit square norm in expectation, ie. E(‖y‖22) = 1.
This reflects the situation in practical application, where we
would normalise the signals in order to equally weight their
importance.
Armed with this model we can now prove a first dictionary
identification result for (5).

Theorem 2.1: Let Φ be a unit norm tight frame with frame
constant A = K/d and coherence µ. Let x ∈ Rd be a random
permutation of a sequence c, where c1 ≥ c2 ≥ c3 . . . ≥ cK ≥
0 and ‖c‖2 = 1, provided with random ± signs, i.e. x = cp,σ

with probability P(p, σ) = (2KK!)−1. If c satisfies c1 > c2 +
2µ‖c‖1, then there is a local maximum of (5) at Φ. Moreover

we have the following quantitative estimate for the basin of
attraction around Φ. For all perturbations Ψ = (ψ1 . . . ψK) of
Φ = (φ1 . . . φK) with 0 < maxi ‖ψi − φi‖2 ≤ ε we have
Ex‖Ψ?Φx‖2∞ < Ex‖Φ?Φx‖2∞ as soon as ε < 1/5 and

ε ≤

(
1− 2 c2+µ‖c‖1

c2+c1

)2

2A log
(
2AK/(c21 −

1−c2
1

K−1 )
) . (6)

Proof: We briefly sketch the proof. The condition
c1 > c2 + 2µ‖c‖1 ensures that the maximal inner product
|〈φi,Φcp,σ〉| is always attained by ip = p−1(1), leading to

Ex‖Φ?Φx‖2∞ = c21 +
(1− c21)
K − 1

(A− 1).

The main idea now is that for small perturbations and most
sign patterns σ the maximal inner product is still attained by
ip. For an ε-perturbations Ψ of the original dictionary Φ where
ψi = (1−ε2i /2)φi+(ε2i−ε4i /4)

1
2 zi, for some zi with 〈φi, zi〉 =

0, ‖zi‖2 = 1 and ε1 ≤ ε, we have

max
i=1...K

|〈ψi,Φcp,σ〉| = |〈ψip ,Φcp,σ〉|,

except with probability

η := 2
∑

i|εi 6=0

exp

−
(
1− ε2

2 − 2 c2+µ‖c‖1
c2+c1

)2

2Aε2i

 ,

which leads to the following bound

Ex‖Ψ?Φx‖2∞ ≤ 2Aη +
c21
K

K∑
i=1

(1− ε2i /2)2

+
1− c21
K − 1

(
A− 1

K

K∑
i=1

(1− ε2i /2)2
)
.

Since e−c/ε2
and therefore η decays much faster than ε2 as ε

goes to zero we have Ex‖Ψ?Φx‖2∞ < Ex‖Φ?Φx‖2∞, as soon
as ε is small enough.

Remark 2.2: (i) Note that in some sense Theorem 2.1
is sharp. Assume that Φ is an orthonormal basis (ONB) then
µ = 0 and the condition to be a local maximum reduces to
c1 > c2. However from Example 2.1 we see that if c1 = c2
we can again construct an ascent direction and so Φ is not a
local maximum.
(ii) Similarly the condition that Φ is a tight frame is almost
necessary in the non-trivial case where |c1| < 1, as otherwise
the candidate local maximiser at the generating dictionary
may be distorted towards the maximal eigenvector of the
frame.

C. A continuous model of decaying coefficients

Next we would like to extend the result from the last
subsection to a wider range of coefficient distributions, espe-
cially continuous ones. To characterise suitable distributions
we make the following definitions.



Definition 2.1: A probability measure ν on the unit sphere
Sd−1 ⊂ Rd is called symmetric if for all measurable sets
X ⊆ Sd−1, for all sign sequences σ ∈ {−1, 1}d and all
permutations p we have

ν(σX ) = ν(X ), σX := {(σ1x1, . . . , σdxd) : x ∈ X}
ν(p(X )) = ν(X ), p(X ) := {(xp(1), . . . , xp(d)) : x ∈ X}

Definition 2.2: A probability distribution ν on the unit
sphere SK−1 ⊂ RK is called (β, µ)-decaying if there exists
a β < 1/2 such that for c1(x) ≥ c2(x) ≥ . . . ≥ cd(x) ≥ 0
a non increasing rearrangement of the absolute values of the
components of x we have,

ν

(
c2(x) + µ‖c(x)‖1
c2(x) + c1(x)

≤ β

)
= 1 (7)

For the case µ = 0 it will also be useful to define the following
notion. A probability distribution ν on the unit sphere Sd−1 ⊂
Rd is called f -decaying if there exists a function f such that

exp
(
−f(ε)2

8ε2

)
= o(ε2)

and ν

(
c2(x)
c1(x)

≥ 1− f(ε)
)

= o(ε2).

Note that (β, 0)-decaying is a special case of f -decaying, ie.
f(ε) can be chosen constant β. To illustrate both concepts we
give simple examples for (β, µ)- and f -decaying distributions
on S1.

Example 2.3: • Let ν be the symmetric distribution on
S1 defined by c2(x) being uniformly distributed on
[0, 1√

2
− θ] for θ > 0 (and accordingly c1(x) =√

1− c22(x)), then ν is (β, µ)-decaying for all µ < θ√
2

.
• Let ν be the symmetric distribution on S1 defined

by c2(x) being distributed on [0, 1√
2
] with density

20
√

2( 1√
2
−x)4, then ν is f -decaying for e.g. f(ε) =

√
ε.

• Let ν be the symmetric distribution on S1 defined by
c2(x) being distributed on [0, 1√

2
] with density 4( 1√

2
−x),

then ν is not f -decaying.
With these examples of suitable probability distributions in

mind we can now give a continuous version of Theorem 2.1.
Theorem 2.2: (a) Let Φ be a unit norm tight frame with

frame constant A = K/d and coherence µ. If x is drawn
from a symmetric (β, µ)-decaying probability distribution ν
on the unit sphere SK−1, then there is a local maximum of
(5) at Φ.
(b) If Φ is an orthonormal basis, there is a local maximum of
(5) at Φ whenever x is drawn from a symmetric f -decaying
probability distribution ν on the unit sphere Sd−1.

D. Bounded white noise

With the tools used to prove the two noiseless identification
results it is also possible to analyse the case of (very small)
bounded white noise.

Theorem 2.3: Let Φ be a unit norm tight frame with frame
constant A = K/d and coherence µ. Assume that the signals

y are generated from the following model

y = Φx+ r, (8)

where r is a bounded random white noise vector, ie. there exist
two constants ρ, ρmax such that ‖r‖2 ≤ ρmax almost surely,
E(r) = 0 and E(rr?) = ρ2I . If x is drawn from a symmetric
decaying probability distribution ν on the unit sphere SK−1

with Ex‖x‖2∞ = c̄1
2 and the maximal size of the noise is

small compared to the size and decay of the coefficients c1, c2,
meaning there exists β < 1/2, such that

ν

(
c2(x) + ‖c(x)‖1 + ρmax

c1(x)− c2(x)
≤ β

)
= 1 (9)

then there is a local maximum of (5) at Φ.

III. FINITE SAMPLE SIZE

We are now ready to analyse the local maxima of the non-
asymptotic maximisation problem for S = 1. For simplicity
we choose a normalised version of (2).

max
Φ∈D

1
N

N∑
n=1

‖Φ?yn‖2∞. (10)

Theorem 3.1: Let Φ be a unit norm tight frame with frame
constant A = K/d and coherence µ. Assume that the signals
yn are generated as yn = Φxn + rn, where rn is a bounded
random white noise vector, ie. there exist two constants
ρ, ρmax such that ‖rn‖2 ≤ ρmax almost surely, E(rn) = 0 and
E(rnr?

n) = ρ2I . Further let xn be drawn from a symmetric
decaying probability distribution ν on the unit sphere SK−1

with Ex‖x‖2∞ = c̄1
2 and the maximal size of the noise be

small compared to the size and decay of the coefficients c1, c2,
meaning there exists β < 1/2, such that

ν

(
c2(x) + ‖c(x)‖1 + ρmax

c1(x)− c2(x)
≤ β

)
= 1. (11)

Abbreviate γ := c̄1
2− 1−c̄1

2

K−1 and CL = (
√
A+ ρmax)2. If for

some 0 < q < 1/4 the number of samples N satisfies

N−q +N−2q/K ≤ (1− 2β)2

4A log(4AK/γ)
(12)

then except with probability

exp
(
−N1−4qγ2

4K2CL
+Kd log(NKCL/γ)

)
,

there is a local maximum of (10) resp. local minimum of (1)
within distance at most 2N−q to Φ, ie. for the local maximum
Ψ̃ we have maxk ‖ψ̃k − φk‖2 ≤ 2N−q.

Proof: We again give a brief sketch of the proof. From
the last section we know that for any ε-perturbation we have

Ey‖Φ?y‖2∞ − Ey‖Ψ?y‖2∞ ≈ ε2γ/K.

Hoeffding’s inequality lets us estimate the probability that for
a fixed perturbation the finite sample sum deviates from its
expectation as

P

(∣∣ 1
N

N∑
n=1

‖Ψ?yn‖2∞ − Ey‖Ψ?y‖2∞
∣∣ > t

)
≤ e−Nt2/CL .



Using a union bound this leads to an estimate for the prob-
ability that the above holds for a δ-net N for the set of all
ε-perturbations with ε ≤ εmax. Since this set is the product of
K (d− 1)-dimensional balls with radius εmax we have

]N ≤ (3εmax/δ)K(d−1).

Choosing δ and t to be O(N−q) the final result then follows
from a triangular inequality argument and the fact that

|‖Ψ?yn‖2∞ − ‖Ψ̄?yn‖2∞| ≤ 3CL max
k
‖ψk − ψ̄k‖2.

IV. DISCUSSION

We have shown that the K-SVD minimisation principle with
sparsity parameter 1 can correctly identify a tight frame from
signals generated from a wide class of decaying coefficients
distributions. Since any simple greedy algorithm will always
find the best 1-term approximation for any signal in any
dictionary our results give conditions under which the K-SVD
algorithm can identify the underlying dictionary given a good
initialisation.
Before turning to a comparison of our results to other dic-
tionary learning schemes we illustrate the limitations of the
K-SVD principle for learning non-tight frames. We generated
1000 coefficients by drawing c2(x) uniformly at random from
the interval [0, 0.6], setting c1(x) =

√
1− c22(x), randomly

permuting the resulting vector and providing it with random
± signs. We then generated two sets of signals, using an
orthogonal and an oblique basis with the same coefficients,
and for both sets of signals found the minimiser of the K-SVD
criterion (1) with S = 1. Figure 1 shows the two signal sets,
the generating bases and the recovered bases. As predicted by
our theoretical results when the generating basis is orthogonal
it is also the minimiser of the K-SVD criterion, while for the
oblique generating basis the minimiser is distorted towards the
maximal eigenvector of the basis.
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Fig. 1. Signals created from an orthogonal and an oblique basis Φ =
(φ1, φ2) with decaying coefficients, together with the corresponding min-
imiser Ψ = (ψ1, ψ2) of the K-SVD-criterion for S = 1.

Finally let us point out further research directions based
on a comparison of our results for the K-SVD-minimisation
principle to the identification results for the `1-minimisation

principle,

min
Φ∈D,X:Y =ΦX

∑
ij

|Xij |, (13)

derived in [5], [6]. On first glance it seems that the K-SVD-
criterion requires a larger sample size than the `1-criterion, ie.
N1−4q/ logN = O(K3d) as opposed to O(d2 log d) reported
in [5] for a basis and O(K3) reported in [6] for an overcom-
plete dictionary. Also it does not allow for exact identification
with high probability but only guarantees stability. However
this effect may be due to the more general signal model which
assumes decay rather than exact sparsity. Indeed it is very
interesting to compare our results to a recent result for a noisy
version of the `1-minimisation principle, [7], which provides
stability results under unbounded white noise and, omitting
log factors, also derives a sampling complexity of O(K3d).

Another difference, apparently intrinsic to the minimisa-
tion criteria is that the K-SVD criterion can only identify
tight dictionary frames exactly, while the `1-criterion allows
identification of arbitrary dictionaries. Thus to support the
use of K-SVD for the learning of non-tight dictionaries also
theoretically, we plan to study the stability of the K-SVD
criterion under non-tightness by analysing the maximal dis-
tance between an original, non tight dictionary with condition
number

√
B/A > 1 and the closest local maximum, cp. also

Figure 1.
The last research direction we want to point out is how
much decay of the coefficients is actually necessary. For the
asymptotic results we used condition c1 > c2 + 2µ‖c‖1 to
ensure that the maximal inner product is always attained at
ip. However typically we have |〈φi,Φcp,σ〉| ≈ cp(i) ± µ.
Therefore a condition such as c1 > c2+O(µ), which allows for
outliers, ie. signals for which the maximal inner product is not
attained at ip, might be sufficient to prove exact identifiability
or - failing that - to again show stability. Together with the
inspiring techniques from [7], we expect the tools developed
in the course of such an analysis to allow us also to deal with
unbounded white noise.
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