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Abstract

Let us assume that f is a continuous function defined on the unit ball of Rd, of
the form f(x) = g(Ax), where A is a k×d matrix and g is a function of k variables
for k � d. We are given a budget m ∈ N of possible point evaluations f(xi),
i = 1, . . . ,m, of f , which we are allowed to query in order to construct a uniform
approximating function. Under certain smoothness and variation assumptions on
the function g, and an arbitrary choice of the matrix A, we present in this paper

1. a sampling choice of the points {xi} drawn at random for each function
approximation;

2. algorithms (Algorithm 1 and Algorithm 2) for computing the approximating
function, whose complexity is at most polynomial in the dimension d and in the
number m of points.

Due to the arbitrariness of A, the choice of the sampling points will be according
to suitable random distributions and our results hold with overwhelming probabil-
ity. Our approach uses tools taken from the compressed sensing framework, recent
Chernoff bounds for sums of positive-semidefinite matrices, and classical stability
bounds for invariant subspaces of singular value decompositions.
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1 Introduction

1.1 Learning high dimensional functions from few samples

In large scale data analysis and learning, several real-life problems can be formulated
as capturing or approximating a function defined on Ω ⊂ Rd with dimension d very
large, from relatively few given samples or queries. The usual assumption on the class
of functions to be recovered is smoothness. The more regular a function is, the more
accurately and the more efficiently it can be numerically approximated. However, in
the field of information based complexity it has been clarified that such a problem is in
general intractable, i.e., it does not have polynomial complexity. To clarify this poor
approximation phenomenon, assume

Fd := {f : [0, 1]d → R, ‖Dαf‖∞ ≤ 1, α ∈ Nd
0},

to be the class of smooth functions we would like to approximate. We define the
sampling operator Sn = φ◦N , where N : Fd → Rn is a suitable measurement operator
and φ : Rn → L∞([0, 1]d) a recovery map. For example N can take n samples f(xi),
i = 1, . . . , n of f and φ can be a suitable interpolation operator. The approximation
error provided by such a sampling operator is given by

e(Sn) := sup
f∈Fd

‖f − Sn(f)‖∞.

With this notion we further define the approximation numbers

e(n, d) := inf
Sn

e(Sn),

indicating the performance of the best sampling method, and

n(ε, d) := inf{n : e(n, d) ≤ ε}, (1)

which is the minimal number of samples we need for the best sampling method to
achieve a uniform accuracy ε ∈ (0, 1).

1.2 Intractability results

Recent results by Novak and Woźniakowski [24] state that for a uniform approximation
over Fd we have e(n, d) = 1 for all n ≤ 2bd/2c − 1 or n(ε, d) ≥ 2bd/2c for all ε ∈ (0, 1).
Hence, the number of samples to approximate even a C∞-function grows exponentially
with the dimension d. This result seems to obliterate any hope for an efficient solution
of the learning problem in high dimension, and this phenomenon is sometimes referred
to as the curse of dimensionality.
Nevertheless, very often the high dimensional functions which we can expect as so-
lutions to real-life problems exhibit more structure and eventually are much better
behaved with respect to the approximation problem. There are several models cur-
rently appearing in the literature for which the approximation problem is tractable, i.e.,
the approximation error does not grow exponentially with respect to the dimension d.
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According to the behavior of the information complexity n(ε, d), cf. (1), for small
ε > 0 and large d ∈ N, one speaks about

• polynomial tractability : if n(ε, d) depends polynomially on ε−1 and d,

• strong polynomial tractability : if n(ε, d) depends polynomially only on ε−1,

• weak tractability : if lim
ε−1+d→∞

log n(ε, d)
ε−1 + d

= 0.

We point to [23, Chapters 1 and 2] for further notions of tractability and many refer-
ences.

In the next two subsections we will recount a few relevant approaches leading in
some cases to (some sort of) tractability.

1.3 Functions of few variables

A function f : [0, 1]d → R of d variables (d large) may be a sum of functions, which
only depend on k variables (k small):

f(x1, . . . , xd) =
m∑

`=1

g`(xi1 , . . . , xik). (2)

In optimization such functions are called partially separable. This model arises for
instance in physics, when we consider problems involving interaction potentials, such
as the Coulomb potential in electronic structure computations, or in social and eco-
nomical models describing multiagent dynamics. Once k is fixed and d → ∞, the
learning problem of such functions is tractable, even if the g` are not very smooth. We
specifically refer to the recent work of DeVore, Petrova, and Wojtaszczyk [13] which
describes an adaptive method for the recovery of high dimensional functions in this
class, for m = 1.
This model can be extended to functions which are only approximatively depending
on few variables, by considering the unit ball Hd,γ of the weighted Sobolev space of
functions f : [0, 1]d → R with

‖f‖2
d,γ :=

∑
u⊂[d]

γ−1
d,u

∫
[0,1]d

(
∂|u|

∂xu
f(x)

)2

dx ≤ 1, (3)

where [d] := {1, . . . , d}, and γ := {γd,u} are non-negative weights; the definition 0
0 := 0

and the choice of γd,u = 0 leads us again to the model (2). A study of the tractability
of this class, for various weights, can be found in [23].

1.4 Functions of one linear parameter in high dimensions

One of the weaknesses of the model classes introduced above is that they are very
coordinate biased. It would be desirable to have results for a class of basis changes
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which would make the model basis-independent. A general model assumes that,

f(x) = g(Ax), (4)

for A an arbitrary k × d matrix. While solution to this unconstrained problems have
so far been elusive, the special case of

f(x) = g(a · x), (5)

where a is a stochastic vector, i.e., a = (a1, . . . , ad), aj ≥ 0,
∑d

j=1 aj = 1, and
g : [0, 1] → R is a Cs function for s > 1 has been fully addressed with an optimal
recovery method in [11].

The aim of this work is to find an appropriate formulation of the general model
(4), which generalizes both the model of k active coordinates as well as the model of
one stochastic vector, and to analyze the tractability of the corresponding approxima-
tion problem. The rest of the paper is organized as follows. After introducing some
basic notations, the next section is dedicated to the motivation and discussion of the
generalized model. As an introduction to our formulation and solution approach, we
then proceed to analyze the simple case of one active direction in Section 3, under
milder assumptions on the vector a = (a1, . . . , ad), before finally addressing the fully
generalized problem in Section 4. The last section is dedicated to the discussion of
further extensions of our approach, to be addressed in successive papers.

1.5 Notations

In the following we will deal exclusively with real matrices and we denote the space
of n × m real matrices by Mn×m. The entries of a matrix X are denoted by lower
case letters and the corresponding indices, i.e., Xij = xij . The transposed matrix
XT ∈ Mm×n of a matrix X ∈ Mn×m is the matrix with entries xT

ij = xji. For
X ∈ Mn×m we can write its (reduced) singular value decomposition [19] as

X = UΣV T

with U ∈ Mn×p, V ∈ Mm×p, p ≤ min(n, m), matrices with orthonormal columns and
Σ = diag(σ1, . . . , σp) ∈ Mp×p a diagonal matrix where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 are the
singular values. For specific matrices X we write the singular value decomposition

X = U(X)Σ(X)V (X)T = UXΣXV T
X .

For symmetric, positive semidefinite matrices, i.e., X = XT and vT Xv ≥ 0 for all
vectors v, we can take V = U and the singular value decomposition is equivalent to
the eigenvalue decomposition. Note also that σi(X) =

√
λi(XT X), where λi(XT X) is

the ith largest eigenvalue of the matrix XT X (actually, this holds for n ≥ m, whereas
we may want to consider XXT instead of XT X if m > n). The rank of X ∈ Mn×m
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denoted by rank(X) is the number of nonzero singular values. We define the Frobenius
norm of a matrix X as

‖X‖F :=

∑
ij

|xij |2
1/2

.

It is also convenient to introduce the `n
p vector norms

‖x‖`n
p

:=

(
n∑

i=1

|xi|p
)1/p

, 0 < p < ∞.

We denote by In ∈ Mn×n the identity matrix. The symbol BRn stands for the unit
ball and BRn(r) for the ball of radius r > 0 in Rn. The unit sphere in Rn is denoted
by Sn−1. Finally, Ln indicates the Lebesgue measure in Rn.

2 The General Model f(x) = g(Ax) and Its Simplifications

The first approach one may be tempted to consider to a generalization of (5) is to ask
that f : [0, 1]d → R is of the form f(x) = g(Ax), where A is a k × d stochastic matrix
with orthonormal rows, i.e., aij ≥ 0,

∑d
j=1 aij = 1 for all i = 1, . . . , k, AAT = Ik, and

g : A([0, 1]d) → R is a Cs function for s > 1. There are however two main problems
with this formulation. The conditions of stochasticity and orthonormality of the rows
of A together are very restrictive - the only matrices satisfying both of them are those
having only one non-negative entry per column - and the domain of g cannot be chosen
generically as [0, 1]k but depends on A, i.e., it is the k-dimensional polytope A([0, 1]d).
Thus we will at first return to the unconstrained model in (4) and give up the conditions
of stochasticity and orthonormality. This introduces rotational invariance for the rows
of A and the quadrant defined by [0, 1]d is no longer set apart as search space. In
consequence and to avoid the complications arising with the polytope A([0, 1]d) we
will therefore focus on functions defined on the Euclidean ball.
To be precise, we consider functions f : BRd(1 + ε̄) → R of the form (4), where A is an
arbitrary k × d matrix whose rows are in `d

q , for some 0 < q ≤ 1, d∑
j=1

|aij |q
1/q

≤ C1.

Further, we assume, that the function g is defined on the image of BRd(1+ ε̄) under the
matrix A and is twice continuously differentiable on this domain, i.e., g ∈ C2(ABRd(1+
ε̄)), and

max
|α|≤2

‖Dαg‖∞ ≤ C2.

For µSd−1 the uniform surface measure on the sphere Sd−1 we define the matrix

Hf :=
∫

Sd−1

∇f(x)∇f(x)T dµSd−1(x). (6)
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From the identity ∇f(x) = AT∇g(Ax) we get that

Hf = AT ·
∫

Sd−1

∇g(Ax)∇g(Ax)T dµSd−1(x) ·A, (7)

and therefore that the rank of Hf is k or less. We will require Hf to be well condi-
tioned, i.e., that its singular values satisfy σ1(Hf ) ≥ · · · ≥ σk(Hf ) ≥ α > 0.
The parameters in our model are the dimension d (large), the linear parameter dimen-
sion k (small), the nonnegative constants C1, C2, 0 < q ≤ 1, and 0 < α ≤ kC2

2 .
We now show that such a model can be simplified as follows. First of all we see that
giving up the orthonormality condition on the rows of A was actually unnecessary. Let
us consider the singular value decomposition of A = UΣV T , hence we rewrite

f(x) = g(Ax) = g̃(Ãx), ÃÃT = Ik,

where g̃(y) = g(UΣy) and Ã = V T . In particular, by simple direct computations,

• sup|α|≤2 ‖Dαg̃‖∞ ≤ sup|α|≤2 ‖Dαg‖∞ ·max{
√

kσ1(A), kσ1(A)2}, and

•
(∑d

j=1 |ãij |q
)1/q

≤ C1σk(A)−1k1/q−1/2.

Hence, by possibly considering different constants C̃1 = k1/q−1/2σk(A)−1C1 and C̃2 =
max{

√
kσ1(A), kσ1(A)2}C2, we can always assume that AAT = Ik, meaning A is row-

orthonormal. Note that for a row-orthonormal matrix A, equation (7) tells us that the
singular values of Hf are the same as those of Hg, where

Hg :=
∫

Sd−1

∇g(Ax)∇g(Ax)T dµSd−1(x).

The following simple result states that our model is almost well-defined. As we will
see later, the conditions on A and f will be sufficient for the unique identification of f
by approximation up to any accuracy, but not necessarily for the unique identification
of A and g.

Lemma 2.1. Assume that f(x) = g(Ax) = g̃(Ãx) with A, Ã two k × d matrices such
that AAT = Ik = ÃÃT and that Hf has rank k. Then Ã = OA for some k × k
orthonormal matrix O.

Proof. Because A and Ã are row-orthonormal the singular values of Hg and Hg̃ are the
same as those of Hf , i.e., we have Hg = UΣUT and Hg̃ = ŨΣŨT , where Σ is a k × k
diagonal matrix containing the singular values of Hf in nonincreasing order and U, Ũ
are orthonormal k × k matrices. Inserting this into (7) we get

Hf = AT HgA = AT UΣUT A

= ÃT Hg̃Ã = ÃT ŨΣŨT Ã.

UT A and ŨT Ã are both row-orthonormal, so we have two singular value decompositions
of Hf . Because the singular vectors are unique up to an orthonormal transform, we
have ŨT Ã = V UT A for some orthonormal matrix V or Ã = OA for O = ŨV UT ,
which is by construction orthonormal.
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With the above observations in mind, let us now restate the problem we are address-
ing and summarize our requirements. We restrict the learning problem to functions
f : BRd(1 + ε̄) → R of the form f(x) = g(Ax), where A ∈ Mk×d and AAT = Ik.
As we are interested in recovering f from a small number of samples, the accuracy
will depend on the smoothness of g. In order to get simple convergence estimates, we
require g ∈ C2(BRk(1 + ε̄)). These choices determine two positive constants C1, C2 for
which  d∑

j=1

|aij |q
1/q

≤ C1, (8)

and
sup
|α|≤2

‖Dαg‖∞ ≤ C2. (9)

For the problem to be well-conditioned we need that the matrix Hf is positive definite

σ1(Hf ) ≥ · · · ≥ σk(Hf ) ≥ α, (10)

for a fixed constant α > 0 (actually later we may simply choose α = σk(Hf )).

Remark 1. Let us shortly comment on condition (10) in the most simple case k = 1,
by showing that such a condition is actually necessary in order to formulate a tractable
algorithm for the uniform approximation of f from point evaluations.
The optimal choice of α is given by

α =
∫

Sd−1

|g′(a · x)|2dµSd−1(x) =
Γ(d/2)

π1/2Γ((d− 1)/2)

∫ 1

−1
(1− |y|2)

d−3
2 dy, (11)

cf. Theorem 3.7. Furthermore, we consider the function g ∈ C2([−1− ε̄, 1+ ε̄]) given by
g(y) = 8(y−1/2)3 for y ∈ [1/2, 1+ ε̄] and zero otherwise. Notice that, for every a ∈ Rd

with ‖a‖`d
2

= 1, the function f(x) = g(a · x) vanishes everywhere on Sd−1 outside of
the cap U(a, 1/2) := {x ∈ Sd−1 : a · x ≥ 1/2}, see Figure 1. The µSd−1 measure of
U(a, 1/2) obviously does not depend on a and is known to be exponentially small in d
[21], see also Section 3.3. Furthermore, it is known, that there is a constant c > 0
and unit vectors a1, . . . , aK , such that the sets U(a1, 1/2), . . . ,U(aK , 1/2) are mutually
disjoint and K ≥ ecd. Finally, we observe that maxx∈Sd−1 |f(x)| = f(a) = g(1) = 1.

We conclude that any algorithm making only use of the structure of f(x) = g(a ·x)
and the condition (9) needs to use exponentially many sampling points in order to
distinguish between f(x) ≡ 0 and f(x) = g(ai · x) for some of the ai’s as constructed
above. Hence, some additional conditions like (8) and (10) are actually necessary to
avoid the curse of dimensionality and to achieve at least some sort of tractability. Let
us observe that α = α(d) decays exponentially with d for the function g considered
above. We shall further discuss the role of α in Section 3.3.

Contrary to the approach in [11] our strategy used to learn functions of the type (4)
is to first find an approximation Â to A. Once this is known, we will give a pointwise
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Figure 1: The function g and the spherical cap U(a, 1/2).

definition of the function ĝ on BRk(1) such that f̂(x) := ĝ(Âx) is a good approximation
to f on BRd(1). This will be in a way such that the evaluation of ĝ at one point will
require only one function evaluation of f . Consequently, an approximation of ĝ on its
domain BRk(1) using standard techniques, like sampling on a regular grid and spline-
type approximations, will require a number of function evaluations of f depending only
on the desired accuracy and k, but not on d. We will therefore restrict our analysis to
the problem of finding Â, defining ĝ, and the amount of queries necessary to do that.

3 The One Dimensional Case k = 1

For the sake of an easy introduction, we start by addressing our recovery method again
in the simplest case of a ridge function

f(x) = g(a · x), (12)

where a = (a1, . . . , ad) ∈ Rd is a row vector, ‖a‖`d
2

= 1, and g is a function from the
image of BRd(1 + ε̄) under a to R, i.e., g : BR(1 + ε̄) → R.
The ridge function terminology was introduced in the 1970’s by Logan and Shepp [22] in
connection with the mathematics of computer tomography. However these functions
have been considered for some time, but under the name of plane waves. See, for
example, [12, 20]. Ridge functions and ridge function approximation are studied in
statistics. There they often go under the name of projection pursuit. Projection
pursuit algorithms approximate a function of d variables by functions of the form

f(x) ≈
∑̀
j=1

gj(aj · x). (13)

Hence the recovery of f in (12) from few samples can be seen as an instance of the
projection pursuit problem. For a survey on some approximation-theoretic questions
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concerning ridge functions and their connections to neural networks, see [27] and refer-
ences therein, and the work of Candès and Donoho on ridgelet approximation [5, 6, 7].
For further clarity of notations, in the following we will assume a to be a row vector,
i.e., a 1 × d matrix, while other vectors, x, ξ, ϕ . . . , are always assumed to be column
vectors. Hence the symbol a · x stands for the product of the 1× d matrix a with the
d× 1 vector x.

3.1 The Algorithm

As in [11] a basic ingredient of the algorithm is a version of Taylor’s theorem giving
access to the vector a. For ξ ∈ BRd , ϕ ∈ BRd(r), ε, r ∈ R+, with rε ≤ ε̄, we have, by
Taylor expansion, the identity

[g′(a · ξ)a] · ϕ =
∂f

∂ϕ
(ξ)

=
f(ξ + εϕ)− f(ξ)

ε
− ε

2
[ϕT∇2f(ζ)ϕ], (14)

for a suitable ζ(ξ, ϕ) ∈ BRd(1 + ε̄). Thanks to our assumptions (8) and (9), the term
[ϕT∇2f(ζ)ϕ] is uniformly bounded as soon as ϕ is bounded. We will consider the
above equality for several directions ϕi and at several sampling points ξj .

To be more precise we define two sets X ,Φ of points. The first

X = {ξj ∈ Sd−1 : j = 1, . . . ,mX }, (15)

contains the mX sampling points and is drawn at random in Sd−1 according to the
probability measure µSd−1 . For the second, containing the mΦ derivative directions,
we have

Φ =
{

ϕi ∈ BRd(
√

d/
√

mΦ) : ϕi` =
1√
mΦ

{
1, with probability 1/2,
−1, with probability 1/2,

i = 1, . . . ,mΦ, and ` = 1, . . . , d} . (16)

Actually we identify Φ with the mΦ×d matrix whose rows are the vectors ϕi. To write
the mX ×mΦ instances of (14) in a concise way we collect the directional derivatives
g′(a · ξj)a, j = 1, . . . ,mX as columns in the d×mX matrix X, i.e.,

X = (g′(a · ξ1)aT , . . . , g′(a · ξmX )aT ), (17)

and we define the mΦ ×mX matrices Y and E entrywise by

yij =
f(ξj + εϕi)− f(ξj)

ε
, (18)

and
εij =

ε

2
[ϕT

i ∇2f(ζij)ϕi]. (19)
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We denote by yj the columns of Y and by εj the columns of E , j = 1, . . . ,mX . With
these matrices we can write the following factorization

ΦX = Y − E . (20)

The algorithm we propose to approximate the vector a is now based on the fact that the
matrix X has a very special structure, i.e., X = aTGT , where G = (g′(a · ξ1), . . . , g′(a ·
ξmX ))T . In other words every column xj is a scaled copy of the vector aT and com-
pressible if a is compressible. We define a vector a compressible informally by saying
that it can be well approximated in `p-norm by a sparse vector. Actually, any vector a
with small `q-norm can be approximated in `p by its best K-term approximation a[K]

according to the following well-known estimate

σK(x)`d
p

:= ‖a− a[K]‖`d
p
≤ ‖a‖`d

q
K1/p−1/q, p ≥ q. (21)

Thus by changing view point to get

Y = ΦX + E

we see that due to the random construction of Φ we actually have a compressed sens-
ing problem and known theory tells us that we can recover a stable approximation
x̂j to xj via `1-minimization (see Theorem 3.2 for the precise statement). To get an
approximation of a we then simply have to set â = x̂j/‖x̂j‖`d

2
for j such that ‖x̂j‖`d

2
is

maximal. From these informal ideas we derive the following algorithm.

Algorithm 1:

• Given mΦ,mX , draw at random the sets Φ and X as in (15) and (16), and
construct Y according to (18).

• Set x̂j = ∆(yj) := arg minyj=Φz ‖z‖`d
1
.

• Find
j0 = arg max

j=1,...,mX
‖x̂j‖`d

2
. (22)

• Set â = x̂j0/‖x̂j0‖`d
2
.

• Define ĝ(y) := f(âT y) and f̂(x) := ĝ(â · x).

The quality of the final approximation clearly depends on the error between x̂j and
xj , which can be controlled through the number of compressed sensing measurements
mΦ, and the size of â ≈ maxj ‖xj‖`d

2
= maxj |g′(a · ξj)|, which is related to the number

of random samples mX . If (11) is satisfied with α large, we shall show in Lemma 3.6
with help of Hoeffding’s inequality that also maxj ‖xj‖`d

2
= maxj |g′(a · ξj)| is large

with high probability. If the value of α is unknown and small, the values of ‖x̂j‖`d
2

produced by Algorithm 1 could be small as well and, as discussed after the formula
(11), no reliable and tractable approximation procedure is possible.

To be exact we will in the next section prove the following approximation result.
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Theorem 3.1. Let 0 < s < 1 and log d ≤ mΦ ≤ [log 6]−2d. Then there is a constant c′1
such that using mX ·(mΦ +1) function evaluations of f , Algorithm 1 defines a function
f̂ : BRd(1 + ε̄) → R that, with probability

1−

(
e−c′1mΦ + e−

√
mΦd + 2e

− 2mX s2α2

C4
2

)
, (23)

will satisfy
‖f − f̂‖∞ ≤ 2C2(1 + ε̄)

ν1√
α(1− s)− ν1

, (24)

where

ν1 = C ′

([
mΦ

log(d/mΦ)

]1/2−1/q

+
ε

√
mΦ

)
(25)

and C ′ depends only on C1 and C2 from (8) and (9).

Remark 2. 1. We shall fix ν1 as defined by (25) for the rest of this section. Fur-
thermore, we suppose that the selected parameters (s, ε and mΦ) are such that ν1 <√

α(1− s) holds. See Remark 4 (ii) for knowing how we can circumvent in practice
the case that this condition may not hold, clearly invalidating the approximation (24).

2. In order to show a concrete application of the previous result, let us consider,
for simplicity, a class of uniformly smooth functions g such that |g′(0)| 6= 0; hence, by
Proposition 3.8, α = α(g) > 0 is independent of the dimension d. If additionally we
choose q = 1, mΦ < d, and ε > 0 such that mΦ(ε +

√
log(d/mΦ))−2 = O(δ−2α−1),

δ > 0, for δ, α → 0 and mX = O(α−2) for α → 0, then, according to Theorem 3.1, we
obtain the uniform error estimate

‖f − f̂‖∞ = O (δ) , δ → 0,

with high probability. Notice that, if 1/ log(d) > δ > 0, then the number of evaluation
points mX · (mΦ + 1) = O((δ · α)−3), for δ, α → 0, is actually independent of the
dimension d.

3.2 The Analysis

We will first show that x̂j is a good approximation to xj for all j. This follows by
the results from the framework of compressed sensing [3, 8, 10, 14, 16, 18, 17]. In
particular, we state the following useful result which is a specialization of Theorem 1.2
from [36], to the case of Bernoulli matrices.

Theorem 3.2. Assume that Φ is an m × d random matrix with all entries being
independent Bernoulli variables scaled with 1/

√
m, see, e.g., (16).

(i) Let 0 < δ < 1. Then there are two positive constants c1, c2 > 0, such that the
matrix Φ has the Restricted Isometry Property

(1− δ)‖x‖2
`d
2
≤ ‖Φx‖2

`m
2
≤ (1 + δ)‖x‖2

`d
2

(26)
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for all x ∈ Rd such that # supp(x) ≤ c2m/ log(d/m) with probability at least

1− e−c1m. (27)

(ii) Let us suppose that d > [log 6]2m. Then there are positive constants C, c′1, c
′
2 >

0, such that, with probability at least

1− e−c′1m − e−
√

md, (28)

the matrix Φ has the following property. For every x ∈ Rd, ε ∈ Rm and every natural
number K ≤ c′2m/ log(d/m) we have

‖∆(Φx + ε)− x‖`d
2
≤ C

(
K−1/2σK(x)`d

1
+ max{‖ε‖`m

2
,
√

log d‖ε‖`m
∞}
)

, (29)

where
σK(x)`d

1
:= inf{‖x− z‖`d

1
: # supp z ≤ K}

is the best K-term approximation of x.

Remark 3. (i) The first part of Theorem 3.2 is well known, see, e.g., [3] or [16, Page
15] and references therein.
(ii) The second part of Theorem 3.2 is relatively new. It follows from Theorem 2.3 of
[36] combined with Theorem 3.5 of [13], and the first part of Theorem 3.2. Without
the explicit bound of the probability (28), it appears also as Theorem 1.2 in [36].

Applied to the situation at hand we immediately derive the following corollary.

Corollary 3.3. (i) Let d > [log 6]2mΦ. Then with probability at least

1− (e−c′1mΦ + e−
√

mΦd)

all the vectors x̂j = ∆(yj), j = 1, . . . ,mX calculated in Algorithm 1 satisfy

‖xj − x̂j‖`d
2
≤ C

([
mΦ

log(d/mΦ)

]1/2−1/q

+ max{‖εj‖`
mΦ
2

,
√

log d‖εj‖`
mΦ∞
}

)
(30)

where C depends only on C1 and C2 from (8) and (9).
(ii) If furthermore mΦ ≥ log d holds, then with the same probability also

‖xj − x̂j‖`d
2
≤ C ′

([
mΦ

log(d/mΦ)

]1/2−1/q

+
ε

√
mΦ

)
(31)

where C ′ depends again only on C1 and C2 from (8) and (9).
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Proof. We apply Theorem 3.2 to the equation yj = Φxj+εj and K ≤ c′2mΦ/ log(d/mΦ).
To do so, we have to estimate the best K-term approximation error of σK(xj)`d

1
and

the size of the errors εj . We start by bounding σK(xj)`d
1
. Recall that due to the

construction of X every column is a scaled copy of the vector aT , i.e., xj = g′(a · ξj)aT ,
so we have by (21)

K−1/2σK(xj)`d
1
≤ |g′(a · ξj)| · ‖a‖`d

q
·K1/2−1/q ≤ C1 C2

[
mΦ

log(d/mΦ)

]1/2−1/q

. (32)

This finishes the proof of the first part.
To prove the second part, we estimate the size of the errors using (19),

‖εj‖`
mΦ∞

=
ε

2
· max

i=1,...,mΦ

|ϕT
i ∇2f(ζij)ϕi|

=
ε

2mΦ
· max

i=1,...,mΦ

∣∣∣∣∣∣
d∑

k,l=1

akalg
′′(a · ζij)

∣∣∣∣∣∣ (33)

≤ ε‖g′′‖∞
2mΦ

(
d∑

k=1

|ak|

)2

≤ ε‖g′′‖∞
2mΦ

(
d∑

k=1

|ak|q
)2/q

≤ C2
1C2

2mΦ
ε,

‖εj‖`
mΦ
2

≤
√

mΦ‖εj‖`
mΦ∞

≤ C2
1C2

2
√

mΦ
ε, (34)

leading to

max{‖εj‖`
mΦ
2

,
√

log d‖εj‖`
mΦ∞
} ≤ C2

1C2

2
√

mΦ
ε ·max

{
1,

√
log d

mΦ

}
.

Together with our assumption mΦ ≥ log d this finishes the proof.

Next we need a technical lemma to relate the error between the normalized version of
x̂j and a to the size of ‖x̂j‖`d

2
.

Lemma 3.4 (Stability of subspaces - one dimensional case). Let us fix x̂ ∈ Rd, a ∈
Sd−1, 0 6= γ ∈ R, and n ∈ Rd with norm ‖n‖`d

2
≤ ν1 < |γ|. If we assume x̂ = γa + n

then ∥∥∥∥∥sign γ
x̂

‖x̂‖`d
2

− a

∥∥∥∥∥
`d
2

≤ 2ν1

‖x̂‖`d
2

. (35)

Proof. Applying the triangular inequality and its reverse form several times and using
that a ∈ Sd−1 we get∥∥∥∥∥sign γ

x̂

‖x̂‖`d
2

− a

∥∥∥∥∥
`d
2

≤

∥∥∥∥∥sign γ
x̂

‖x̂‖`d
2

− |γ|a
‖x̂‖`d

2

∥∥∥∥∥
`d
2

+

∥∥∥∥∥ |γ|a‖x̂‖`d
2

− a

∥∥∥∥∥
`d
2

≤ ν1

‖x̂‖`d
2

+

∣∣∣∣∣ |γ|‖x̂‖`d
2

− 1

∣∣∣∣∣ ≤ 2ν1

‖x̂‖`d
2

.

13



Applied to our situation where x̂j = g′(a · ξj)aT + nj we see that the bound in (35)
is best for ‖x̂j‖`d

2
maximal which justifies our definition of â in Algorithm 1.

As a last ingredient for the proof of Theorem 3.1 we need a lower bound for
maxj=1,...,mX ‖x̂‖`d

2
. Since we have maxj ‖x̂j‖`d

2
≥ maxj |g′(a · ξj)|−maxj ‖x̂j −xj‖`d

2
≥

maxj |g′(a · ξj)| − ν1 we just have to show that, with high probability, our random
sampling of the gradient via the ξj provided a good maximum. To do this we will use
Hoeffding’s inequality, which we recall below for reader’s convenience.

Proposition 3.5 (Hoeffding’s inequality). Let X1, . . . , Xm be independent random
variables. Assume that the Xj are almost surely bounded, i.e., there exist finite scalars
aj , bj such that

P{Xj − EXj ∈ [aj , bj ]} = 1,

for j = 1, . . . ,m. Then we have

P


∣∣∣∣∣∣

m∑
j=1

Xj − E

 m∑
j=1

Xj

∣∣∣∣∣∣ ≥ t

 ≤ 2e
− 2t2Pm

j=1
(bj−aj)2 .

Let us now apply Hoeffding’s inequality to the random variables Xj = |g′(a · ξj)|2.

Lemma 3.6. Let us fix 0 < s < 1. Then with probability 1− 2e
− 2mX s2α2

C4
2 we have

max
j=1,...,mX

|g′(a · ξj)| ≥
√

α(1− s),

where α := Eξ(|g′(a · ξj)|2).

Proof. By our assumptions (10) and (9) we have

EXj = Eξ(|g′(a · ξj)|2) =
∫

Sd−1

|g′(a · ξ)|2dµSd−1(ξ) ≥ α > 0,

and
Xj − EXj ∈ [−α, C2

2 − α].

Hence, by Hoeffding’s inequality we have

P


∣∣∣∣∣∣
mX∑
j=1

|g′(a · ξj)|2 −mXα

∣∣∣∣∣∣ ≥ smXα

 ≤ 2e
− 2mX s2α2

C4
2 . (36)

Using (36) we immediately obtain

1
mX

mX∑
j=1

|g′(a · ξj)|2 ≥ α(1− s), (37)
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with probability 1 − 2e
− 2mX s2α2

C4
2 . If |g′(a · ξj)|2 < α(1 − s) for all j = 1, . . . ,mX then

(37) would be violated. Hence for the maximum we have

max
j=1,...,mX

|g′(a · ξj)| ≥
√

α(1− s).

Finally we have all the tools ready to prove Theorem 3.1.

Proof of Theorem 3.1:

Proof. Lemma 3.6 ensures that

|g′(a · ξj0)| ≥
√

α(1− s)

with probability 1 − 2e
− 2mX s2α2

C4
2 . Therefore, Corollary 3.3 together with Lemma 3.4

show that with probability at least

1−

(
e−c′1mΦ + e−

√
mΦd + 2e

− 2mX s2α2

C4
2

)
,

â as defined in Algorithm 1 satisfies∥∥sign(g′(a · ξj0))â− a
∥∥

`d
2
≤ 2ν1√

α(1− s)− ν1

(38)

for the unknown sign of g′(a · ξj0).
Using this estimate we can prove that f̂ as defined in Algorithm 1 is a good approxi-
mation to f . For x ∈ BRd(1 + ε̄) we have,

|f(x)− f̂(x)| = |g(a · x)− ĝ(â · x)|
= |g(a · x)− f(âT · â · x)|
= |g(a · x)− g(a · âT · â · x)|
≤ C2|a · x− a · [âT â] · x|
= C2|a · (Id − âT â)x|.

Because â(Id − âT â) = 0 and therefore sign(g′(a · ξj0))â(Id − âT â) = 0, we can further
estimate

|f(x)− f̂(x)| ≤ C2|a · (Id − âT â)x|
= C2|(a− sign(g′(a · ξj0))â) · (Id − âT â)x|
≤ C2‖a− sign(g′(a · ξj0))â‖`d

2
· ‖x‖`d

2

≤ 2C2(1 + ε̄)
ν1√

α(1− s)− ν1

.
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Remark 4. We collect here a few comments about this result.
(i) Our recovery method differs from the one proposed by Cohen, Daubechies, DeVore,
Kerkyacharian, Picard [11]. In their approach, the domain is taken to be [0, 1]d and
they make heavy use of the additional assumption

∑d
j=1 aj = 1 and aj ≥ 0. This allows

them to derive an almost completely deterministic and adaptive strategy for sampling
the function f in order to find first an approximation to g and only then addressing the
approximation to a. Here we follow somehow the opposite order, first approximating a
and then finding a uniform approximation to g and, eventually, to f as well. Notice
further that not having at disposal additional information on a, which is fully arbitrary
in our case, we need to use a random sampling scheme which eventually gives a result
holding with high probability.
(ii) Note that Theorem 3.1 gives an a priori estimate of the success probability and
approximation error of Algorithm 1. If the problem parameters q, C1, C2, and α are
known, they can be used to choose mΦ and mX big enough to have, say, a prescribed
desired accuracy δ with probability at least 1− p.
However once Algorithm 1 has been run we have the following a posteriori estimate.
With probability at least 1− (e−c′1mΦ + e−

√
mΦd) we have that

‖f − f̂‖∞ ≤ C2(1 + ε̄)
2ν1

‖xj0‖`d
2

.

Hence, the ratio 2ν1
‖xj0
‖

`d
2

� 1 defines an a posteriori indicator that the number of sam-

ples mX and mΦ has been properly calibrated, otherwise just more points will be drawn
until such a condition is obtained.
(iii) The parameter ε is chosen at the very beginning in the Taylor expansion (14)
and, from a purely theoretical point of view, could be chosen arbitrarily small. Unfor-
tunately, this may affect the numerical stability in the approximation in (14) of the
derivative ∂f

∂ϕ(ξ) by means of a finite difference. Hence, the parameter ε should not be
taken too small in practice. Up to some extent this may be compensated by choosing a
larger number of points mΦ in (25), as in our expression for ν1 in (25) ε appears in
a ratio of the form ε√

mΦ
. We return in more detail to this point later in Section 5.1.

In recent numerical experiments associated to the work [31], we have been experiencing
very stable reconstructions with reasonable choices, e.g., ε ≈ 0.1. Hence we do not
consider this issue of any practical relevance or difficulty.

3.3 Discussion on tractability

The approximation performances of our learning strategy are basically determined by
the optimal value of α (see, e.g., (10)), which is achieved by the choice

α :=
∫

Sd−1

|g′(a · x)|2dµSd−1(x). (39)

Due to symmetry reasons this quantity does not depend on the particular choice of a.
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The rotation invariant probability measure µSd−1 on Sd−1 is induced on the sphere
by the (left) Haar measure on the Lie group of all orientation preserving rotations. For
a given k × d matrix U such that UUT = Ik (i.e., with orthonormal rows) we define
the measure µk on the unit ball BRk in Rk induced by the projection of µSd−1 via U ,
i.e., for any Borel set B ⊂ BRk we define

µk(B) := U#µSd−1(B) := µSd−1(U←(B)). (40)

Since µSd−1 is rotation invariant, µk does not depend on the particular matrix U ,
and is itself a rotation invariant measure on BRk . Hence for any summable function
h : BRk → R, for any k× k orthogonal matrix O such that OOT = Ik = OTO, and for
any k × d matrix U such that UUT = Ik, we have the identities∫

BRk

h(Oy)dµk(y) =
∫

BRk

h(y)dµk(y) =
∫

Sd−1

h(Ux)dµSd−1(x). (41)

The following result is well known. We refer to [30, Section 1.4.4] for the case of
Cn. The proof given there works literally also in the real case.

Theorem 3.7. Let 1 ≤ k < d be natural numbers. Then the measure µk defined in
(40) is given by

dµk(y) =
Γ(d/2)

πk/2Γ((d− k)/2)
(1− ‖y‖2

`k
2
)

d−2−k
2 dy.

Notice that as d → ∞, and for fixed k, the measure µk becomes more and more
concentrated around 0, in the sense that, for ε > 0 fixed

µk(BRk(ε)) → 1, for d →∞,

very rapidly (typically exponentially). By using the explicit form of the measure µk

we can compute

µk(BRk(ε)) = 1− Γ(d/2)
πk/2Γ((d− k)/2)

∫
BRk\BRk (ε)

(1− ‖y‖2
`k
2
)

d−2−k
2 dy

= 1− 2Γ(d/2)
Γ(k/2)Γ((d− k)/2)

∫ 1

ε
(1− r2)

d−2−k
2 rk−1dr

≥ 1− 2Γ(d/2)
Γ(k/2)Γ((d− k)/2)

e−
d−2−k

2
ε2

.

By Stirling’s approximation 2Γ(d/2)
Γ(k/2)Γ((d−k)/2) ≈

√
dd−1

πkk−1(d−k)d−k−1 , thus for k and ε con-
stant

µk(BRk(ε)) → 1

exponentially fast as d → ∞. For k = 1, this phenomenon can be summarized in-
formally by saying that the surface measure of the unit sphere in high dimension is

17



concentrated around the equator [21]. Hence in case d � k we may want to take into
account possible rescaling, i.e., working with spheres of larger radii, in order to even-
tually consider properties of g (actually the matrix Hg) on larger subsets of Rk, see
also Remark 4. Without loss of generality, by keeping in mind this possible rescaling,
we can therefore assume to work with the unit sphere.

For k = 1, we observe, that α as in (39) is determined by the interplay between
the variation properties of g and the measure µ1. As just mentioned above, the most
relevant feature of µ1 is that it concentrates around zero exponentially fast as d →∞.
Hence, the asymptotic behavior of α exclusively depends on the behavior of the function
g′ in a neighborhood of 0.

To illustrate this phenomenon more precisely, we present the following result.

Proposition 3.8. Let us fix M ∈ N and assume that g : BR → R is CM+2-differentiable
in an open neighborhood U of 0 and d`

dx` g(0) = 0 for ` = 1, . . . ,M . Then

α(d) =
Γ(d/2)

π1/2Γ((d− 1)/2)

∫ 1

−1
|g′(y)|2(1− y2)

d−3
2 dy = O(d−M ), for d →∞.

Proof. First of all, we compute the `th moment of the measure Γ(d/2)

π1/2Γ((d−1)/2)
(1 −

y2)
d−3
2 L1:

Γ(d/2)
π1/2Γ((d− 1)/2)

∫ 1

−1
y`(1− y2)

d−3
2 dy =

[1 + (−1)`]Γ(d/2)Γ((1 + `)/2)
2
√

πΓ((d + `)/2)
. (42)

Notice that all the odd moments vanish. By Taylor expansion of g′ around 0 and by
taking into account that d`

dx` g(0) = 0 for ` = 1, . . . ,M , we obtain

g′(y) =
M+1∑
`=1

1
(`− 1)!

d`

dx`
g(0)y`−1 +O(yM+1) =

1
M !

dM+1

dxM+1
g(0)yM +O(yM+1).

Hence,

|g′(y)|2 =
(

1
M !

dM+1

dxM+1
g(0)

)2

y2M +O(y2M+1),

and

α(d) =
Γ(d/2)

π1/2Γ((d− 1)/2)

∫ 1

−1
|g′(y)|2(1− y2)

d−3
2 dy

=
Γ(d/2)

π1/2Γ((d− 1)/2)

(∫
U
|g′(y)|2(1− y2)

d−3
2 dy +

∫
BR\U

|g′(y)|2(1− y2)
d−3
2 dy

)

=
Γ(d/2)

π1/2Γ((d− 1)/2)

((
1

M !
dM+1

dxM+1
g(0)

)2 ∫
U

y2M (1− y2)
d−3
2 dy

+
∫
U
O(y2M+2)(1− y2)

d−3
2 dy +

∫
BR\U

|g′(y)|2(1− y2)
d−3
2 dy

)
.
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Notice that we consider the (2M + 2)th moment in the expression above because the
previous one is odd and therefore vanishes. Now, the term

∫
BR\U |g

′(y)|2(1− y2)
d−3
2 dy

goes to zero exponentially fast for d → 0. By using (42) we immediately obtain

α(d) =
Γ(d/2)

π1/2Γ((d− 1)/2)

∫ 1

−1
|g′(y)|2(1− y2)

d−3
2 dy

= O
(

Γ(d/2)Γ((1 + 2M)/2)
Γ((d + 2M)/2)

)
, d →∞.

By Stirling’s approximation, for which Γ(z) =
√

2π
z

(
z
e

)z +O(1 + 1/z), for z →∞, we
obtain

Γ(d/2)Γ((1 + 2M)/2)
Γ((d + 2M)/2)

≈ d(d−1)/2(1 + 2M)M (d + 2M)−( d+1
2

+M), d →∞.

This eventually yields

α(d) =
Γ(d/2)

π1/2Γ((d− 1)/2)

∫ 1

−1
|g′(y)|2(1− y2)

d−3
2 dy = O

(
d−M

)
, d →∞.

The number mX × (mΦ + 1) of points we need in order to achieve a prescribed
accuracy in the error estimate (24) of Theorem 3.1 depends on α. Proposition 3.8
ensures that, if g′(y) does not vanish for y → 0 super-polynomially, then the dependence
of α (therefore of the error estimate and the number mX × (mΦ + 1) of points) on d
is at most polynomial. According to this observation we distinguish three classes of
ridge functions:

(1) For 0 < q ≤ 1, C1 > 1 and C2 ≥ α0 > 0, we define

F1
d := F1

d (α0, q, C1, C2) := {f : BRd → R :
∃a ∈ Rd, ‖a‖`d

2
= 1, ‖a‖`d

q
≤ C1 and

∃g ∈ C2(BR), |g′(0)| ≥ α0 > 0 : f(x) = g(a · x) }.

(2) For a neighborhood U of 0, 0 < q ≤ 1, C1 > 1, C2 ≥ α0 > 0 and N ≥ 2, we
define

F2
d := F2

d (U , α0, q, C1, C2, N) := {f : BRd → R :
∃a ∈ Rd, ‖a‖`d

2
= 1, ‖a‖`d

q
≤ C1 and ∃g ∈ C2(BR) ∩ CN (U)

∃0 ≤ M ≤ N − 1, |g(M)(0)| ≥ α0 > 0 : f(x) = g(a · x) }.

(3) For a neighborhood U of 0, 0 < q ≤ 1, C1 > 1 and C2 ≥ α0 > 0, we define

F3
d := F3

d (U , α0, q, C1, C2) := {f : BRd → R :
∃a ∈ Rd, ‖a‖`d

2
= 1, ‖a‖`d

q
≤ C1 and ∃g ∈ C2(BR) ∩ C∞(U)

|g(M)(0)| = 0 for all M ∈ N : f(x) = g(a · x) }.
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Theorem 3.1 and Proposition 3.8 immediately imply the following tractability result
for these function classes.

Corollary 3.9. The problem of learning functions f in the classes F1
d and F2

d from
point evaluations is strongly polynomially tractable and polynomially tractable re-
spectively.

On the one hand, let us notice that if in the class F3
d we remove the condition

‖a‖`d
q
≤ C1, then the discussion on the functions described in Remark 1 shows that

the problem actually becomes intractable. On the other hand, we conjecture that the
restriction imposed by a condition such as ‖a‖`d

q
≤ C1 should instead give to the prob-

lem some sort of tractability. Unfortunately, our learning method and approximation
estimates in Theorem 3.1 do not provide any information about the tractability of the
problem for functions in the class F3

d .

4 The General Case k ≥ 1

In this section we generalize our approach to the case k ≥ 1, i.e., we consider k-ridge
functions

f(x) = g(Ax). (43)

Obviously, the sum of k ridge functions (as appearing for example in (13)) is a k-ridge
function and the same holds true also for the product.

We will proceed as in the one-dimensional case, giving first the basic ideas, which
motivate the recovery algorithm and then stating and proving our main theorem.
Remember that we assume, that A is a k × d matrix such that AAT = Ik, and
g : BRk(1 + ε̄) → R is a C2 function.

4.1 The Algorithm

As before we consider a version of Taylor’s theorem giving access to the matrix A. For
ξ ∈ BRd , ϕ ∈ BRd(r), ε, r ∈ R+, with rε ≤ ε̄, we have the identity

[∇g(Aξ)T A]ϕ =
f(ξ + εϕ)− f(ξ)

ε
− ε

2
[ϕT∇2f(ζ)ϕ], (44)

for a suitable ζ(ξ, ϕ) ∈ BRd(1 + ε̄) and thanks to (9) the term [ϕT∇2f(ζ)ϕ] is again
uniformly bounded as soon as ϕ is bounded.
As in the one-dimensional case we now consider (44) for the mΦ directions in the set Φ
and at the mX sampling points in the set X , where X ,Φ are defined as in (15) and (16)
respectively. Again we collect the directional derivatives ∇g(Aξj)T A, j = 1, . . . ,mX
as columns in the d×mX matrix X, i.e.,

X = (AT∇g(Aξ1), . . . , AT∇g(AξmX )), (45)
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and using the matrices Y and E as defined in (18) and (19), we can write the following
factorization

ΦX = Y − E . (46)

Similarly to the one-dimensional case we find that the matrix X has a special
structure, which we will exploit for the algorithm, i.e., X = ATGT , where G =
(∇g(Aξ1)T | . . . |∇g(AξmX )T )T . The columns of X are now no longer scaled copies
of one compressible vector but they are linear combinations of k compressible vectors,
i.e., the rows of the matrix A. Thus compressed sensing theory again tells us that we
can stably recover the columns of X from the columns of Y via `1-minimization and
in consequence get a good approximation X̂ to X.
Furthermore, since A has rank k, as long as GT has full rank, also X will have rank k
and moreover the column span of the right singular vectors of XT = USV T will coin-
cide with the row span of A, i.e., AT A = V V T . Moreover, V T gives us an alternative
representation of f as follows, i.e.,

f(x) = g(Ax) = g(AAT Ax) = g(AV V T x) =: g̃(V T x),

where g̃(y) := g(AV y) = f(V y). If X̂ is a good approximation to X, then we can
expect that the first k right singular vectors of X̂ have almost the same span as those
of X and thus of A, which inspires the following algorithm.

Algorithm 2:

• Given mΦ,mX , draw at random the sets Φ and X as in (15) and (16), and
construct Y according to (18).

• Set x̂j = ∆(yj) := arg minyj=Φz ‖z‖`d
1
, for j = 1, . . . ,mX , and X̂ =

(x̂1, . . . , x̂mX ).

• Compute the singular value decomposition of

X̂T =
(

Û1 Û2

)( Σ̂1 0
0 Σ̂2

)(
V̂ T

1

V̂ T
2

)
, (47)

where Σ̂1 contains the k largest singular values.

• Set Â = V T
1 .

• Define ĝ(y) := f(ÂT y) and f̂(x) := ĝ(Âx).

The quality of the final approximation of f by means of f̂ depends on two kinds of
accuracies:

1. The error between X̂ and X, which can be controlled through the number of
compressed sensing measurements mΦ;
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2. The stability of the span of V T , simply characterized by how well the singular
values of X or equivalently G are separated from 0, which is related to the number
of random samples mX .

To be precise, in the next section we will prove the following approximation result.

Theorem 4.1. Let log d ≤ mΦ ≤ [log 6]2d. Then there is a constant c′1 such that using
mX ·(mΦ+1) function evaluations of f , Algorithm 2 defines a function f̂ : BRd(1+ε̄) →
R that, with probability

1−

(
e−c′1mΦ + e−

√
mΦd + ke

−mXαs2

2kC2
2

)
, (48)

will satisfy
‖f − f̂‖∞ ≤ 2C2

√
k(1 + ε̄)

ν2√
α(1− s)− ν2

, (49)

where

ν2 = C

(
k1/q

[
mΦ

log(d/mΦ)

]1/2−1/q

+
εk2

√
mΦ

)
,

and C depends only on C1 and C2 (cf. (8) and (9)).

4.2 The Analysis

We will first show that X̂ is a good approximation to X by applying Theorem 3.2
columnwise. This leads to the following corollary.

Corollary 4.2. Let log d ≤ mΦ < [log 6]2d. Then with probability

1− (e−c′1mΦ + e−
√

mΦd)

the matrix X̂ as calculated in Algorithm 2 satisfies

‖X − X̂‖F ≤ C
√

mX

(
k1/q

[
mΦ

log(d/mΦ)

]1/2−1/q

+
εk2

√
mΦ

)
, (50)

where C depends only on C1 and C2 (cf. (8) and (9)).

Proof. The proof works essentially like that of Corollary 3.3. We decompose

‖X − X̂‖2
F =

mX∑
j=1

‖xj − x̂j‖2
`d
2
.

The best K-term approximation of xj may be estimated using

‖xj‖`d
q

= ‖AT∇g(Aξj)‖`d
q
≤ C2

(
d∑

v=1

(
k∑

u=1

|auv|

)q)1/q

≤ C1 C2 k1/q,
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which leads to

K−1/2σK(xj)`d
1
≤ ‖xj‖`d

q
K1/2−1/q ≤ C1 C2 k1/qK1/2−1/q.

The norms of εj may be estimated similarly to the proof of Corollary 3.3 as

‖εj‖`
mΦ
2

≤ C2
1 C2 k2ε

2
√

mΦ
and ‖εj‖`

mΦ∞
≤ C2

1 C2 k2ε

2mΦ
.

Putting all these estimates (with the choice K ≈ mΦ/ log(d/mΦ)) into Theorem 3.2
we obtain the result.

Remark 5. The construction x̂j = ∆(yj) := arg minyj=Φz ‖z‖`d
1
, for j = 1, . . . ,mX ,

and X̂ = (x̂1, . . . , x̂mX ) and Corollary 4.2 are not the unique possible approach to
approximate X. As we are expecting X to be a k-rank matrix for k � min{d, mX },
one might want to consider also nuclear norm minimization, i.e., the minimization
of the `1-norm of singular values, as a possible way of accessing X from mΦ random
measurements, as in the work [15, 26, 28]. However, presently no estimates of the
type (29) are available in this context, hence we postpone an analysis based on these
methods fully tailored to matrices to further research.

Next we need the equivalent of Lemma 3.4 to relate the error between the subspaces
defined by the largest right singular values of X̂ and X respectively to the error ‖X −
X̂‖F . We will develop the necessary tools in the following subsection.

4.2.1 Stability of the singular value decomposition

Given two matrices B and B̂ with corresponding singular value decompositions

B =
(

U1 U2

)( Σ1 0
0 Σ2

)(
V T

1

V T
2

)
and

B̂ =
(

Û1 Û2

)( Σ̂1 0
0 Σ̂2

)(
V̂ T

1

V̂ T
2

)
,

where it is understood that two corresponding submatrices, e.g., U1, Û1, have the same
size, we would like to bound the difference between V1 and V̂1 by the error ‖B − B̂‖F .
As a consequence of Wedin’s perturbation bound [34], see also [32, Section 7], we have
the following useful result.

Theorem 4.3 (Stability of subspaces - Wedin’s bound). If there is an ᾱ > 0 such that

min
`,ˆ̀

|σˆ̀(Σ̂1)− σ`(Σ2)| ≥ ᾱ, (51)

and
min

ˆ̀
|σˆ̀(Σ̂1)| ≥ ᾱ, (52)
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then
‖V1V

T
1 − V̂1V̂

T
1 ‖F ≤

2
ᾱ
‖B − B̂‖F . (53)

The conditions (51) and (52) are separation conditions. The first says that the
singular values of Σ1 are separated from those of Σ2. Actually, strictly speaking the
separation is between Σ1 and Σ̂2. However, if ‖B− B̂‖F is sufficiently small compared
to ᾱ, then Weyl’s inequality [35]

|σ`(B)− σ`(B̂)| ≤ ‖B − B̂‖F ,

guarantees that the two separations are essentially equivalent. The second condition
says that the singular values of Σ1 or Σ̂1 have to be far away from 0.
Applied to our situation, where X has rank k and thus Σ2 = 0, we get

‖V1V
T
1 − V̂1V̂

T
1 ‖F ≤

2
√

mX ν2

σk(X̂T )
, (54)

and further since σk(X̂T ) ≥ σk(XT )− ‖X − X̂‖F , that

‖V1V
T
1 − V̂1V̂

T
1 ‖F ≤

2
√

mX ν2

σk(XT )−√mX ν2
. (55)

As final ingredient we need to estimate the k-th singular value of X. The next subsec-
tion will provide us with a generalization of Hoeffding’s inequality, that can be used
to show that with high probability on the random draw of the sampling points ξj the
k-th singular value of X is separated from zero.

4.2.2 Spectral estimates and sums of random semidefinite matrices

The following theorem generalizes Hoeffding’s inequality to sums of random semidefi-
nite matrices and was recently proved by Tropp in [33, Corollary 5.2 and Remark 5.3],
improving over results in [1], and using techniques from [29] and [25].

Theorem 4.4 (Matrix Chernoff). Consider X1, . . . , Xm independent random, positive-
semidefinite matrices of dimension k × k. Moreover suppose

σ1(Xj) ≤ C, (56)

almost surely. Compute the singular values of the sum of the expectations

µmax = σ1

 m∑
j=1

EXj

 and µmin = σk

 m∑
j=1

EXj

 , (57)

then

P

σ1

 m∑
j=1

Xj

− µmax ≥ sµmax

 ≤ k

(
(1 + s)

e

)−µmax(1+s)
C

, (58)
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for all s > (e− 1), and

P

σk

 m∑
j=1

Xj

− µmin ≤ −sµmin

 ≤ ke−
µmins2

2C , (59)

for all s ∈ (0, 1).

Applied to the matrix XT the above theorem leads to the following estimate of the
singular values of XT .

Lemma 4.5. For any s ∈ (0, 1) we have that

σk(XT ) ≥
√

mXα(1− s) (60)

with probability 1− ke
−mXαs2

2kC2
2 .

Proof. The proof is based on an application of Theorem 4.4. First of all note that

XT = GA = UGΣG [V T
G A],

hence ΣXT = ΣG . Moreover

σi(G) =
√

σi(GTG), for all i = 1, . . . , k.

Thus, to get information about the singular values of XT it is sufficient to study that
of

GTG =
mX∑
j=1

∇g(Aξj)∇g(Aξj)T .

We further notice that

σ1(∇g(Aξj)∇g(Aξj)T ) ≤

 k∑
`,`′=1

|∇g(Aξj)`∇g(Aξj)`′ |2
1/2

≤ kC2
2 := C.

Hence Xj = ∇g(Aξj)∇g(Aξj)T is a random positive-semidefinite matrix, that is almost
surely bounded. Moreover

EXj = Eξ∇g(Aξj)∇g(Aξj)T =
∫

Sd−1

∇g(Ax)∇g(Ax)T dµSd−1(x) = Hg.

Hence, remembering that the singular values of Hg are equivalent to that of Hf , by
condition (10) we have µmax = mXσ1(Hg) ≤ mXkC2

2 and µmin = mXσk(Hg) ≥ mXα >
0. In particular

mXk2C2 ≥ µmax ≥ µmin ≥ mXα > 0.
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By an application of Theorem 4.4 we conclude that

σk(XT ) = σk(G) =

√√√√√σk

mX∑
j=1

∇g(Aξj)∇g(Aξj)T

 ≥
√

µmin(1− s) ≥
√

mXα(1− s),

with probability

1− ke
−µmins2

2kC2
2 ≥ 1− ke

−mXαs2

2kC2
2 ,

for all s ∈ (0, 1).

Finally we have collected all the results necessary to prove Theorem 4.1.

Proof of Theorem 4.1:

Proof. Combining Corollary 4.2, Theorem 4.3, and Lemma 4.5 shows that with prob-
ability at least

1−

(
e−c′1mΦ + e−

√
mΦd + ke

−mXαs2

2kC2
2

)
,

for the first k right singular vectors of X̂ and X we have

‖V1V
T
1 − V̂1V̂

T
1 ‖F ≤

2ν2√
α(1− s)− ν2

.

Recalling from the proof of Lemma 4.5 that the (first k) right singular vectors V T
1 of

XT have the form V T
1 = V T

G A then shows that Â as defined in Algorithm 2 satisfies

‖AT A− ÂT Â‖F = ‖AT VGV
T
G A− V̂1V̂

T
1 ‖F = ‖V1V

T
1 − V̂1V̂

T
1 ‖F ≤

2ν2√
α(1− s)− ν2

,

Using this estimate we can prove that f̂ as defined in Algorithm 2 is a good approxi-
mation to f . Since A is row-orthogonal we have A = AAT A and therefore

|f(x)− f̂(x)| = |g(Ax)− ĝ(Âx)|
= |g(Ax)− g(AÂT Âx)|

≤ C2

√
k‖Ax−AÂT Âx‖`k

2

= C2

√
k‖A(AT A− ÂT Â)x‖`k

2

≤ C2

√
k‖(AT A− ÂT Â)‖F ‖x‖`d

2

≤ 2C2

√
k(1 + ε̄)

ν2√
α(1− s)− ν2

.
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Remark 6. (i) Note that Theorem 4.1 is again an a priori estimate of the success
probability and approximation error of Algorithm 2. Once Algorithm 2 has been run we
have the following a posteriori estimate. With probability at least 1−(e−c′1mΦ +e−

√
mΦd)

we have that
‖f − f̂‖∞ ≤ 2C2

√
kmX (1 + ε̄)

ν2

σk(X̂T )
.

(ii) We further observe that Theorem 4.1 does not straightforwardly reduce to Theo-
rem 3.1 for k = 1, because in the one-dimensional case we used the simpler maximum
strategy as in (22) instead of the singular value decomposition (47).

4.3 Discussion on tractability

Recall, that the push-forward measure µk = Γ(d/2)

πk/2Γ((d−k)/2)
(1− ‖y‖2

`k
2
)

d−2−k
2 Lk of µSd−1

on the unit ball BRk was determined in Theorem 3.7 as the measure, for which

Hg =
∫

Sd−1

∇g(Ax)∇g(Ax)T dµSd−1(x)

=
Γ(d/2)

πk/2Γ((d− k)/2)

∫
BRk

∇g(y)∇g(y)T (1− ‖y‖2
`k
2
)

d−2−k
2 dy.

As an instructive example, let us apply this formula to the case when g is a radial
function, i.e.,

g(y) = g0(‖y‖`k
2
),

for a function g0 : [0, 1] → R sufficiently smooth, and g′0(0) = 0.
A direct calculation shows, that ∇g(y) = g′0(r)

r · y, where r = ‖y‖`k
2
, and

∇g(y)∇g(y)T =
g′0(r)

2

r2
yyT .

Hence,

(Hg)ij =
Γ(d/2)

πk/2Γ((d− k)/2)

∫
BRk

g′0(‖y‖`k
2
)2

‖y‖2
`k
2

yiyj(1− ‖y‖2
`k
2
)

d−2−k
2 dy.

If i 6= j, the integral vanishes due to the symmetry of BRk . If i = j, we get again by
symmetry

(Hg)ii =
Γ(d/2)

πk/2Γ((d− k)/2)

∫
BRk

g′0(‖y‖`k
2
)2

‖y‖2
`k
2

y2
i (1− ‖y‖2

`k
2
)

d−2−k
2 dy

=
Γ(d/2)

kπk/2Γ((d− k)/2)

∫
BRk

g′0(‖y‖`k
2
)2(1− ‖y‖2

`k
2
)

d−2−k
2 dy

=
2Γ(d/2)

kΓ((d− k)/2)Γ(k/2)

∫ 1

0
g′0(r)

2(1− r2)
d−2−k

2 rk−1dr =: α(k, d).
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Hence, Hg = α(k, d)Ik. Similarly to Proposition 3.8, we can expand g′0 into a Taylor
series

g′0(r) =
N−1∑
`=2

g
(`)
0 (0)

(`− 1)!
r`−1 +O(rN ).

If we assume that g
(`)
0 (0) = 0, for all ` = 1, . . . ,M , but g

(M+1)
0 (0) 6= 0, then we obtain

g′0(r)
2 =

(
g
(M+1)
0 (0)

M !

)2

r2M +O(r2M+1),

and, by Stirling’s approximation,

α(k, d) = O
(

Γ(d/2)
Γ((d− k)/2)

∫ 1

0
r2M+k−1(1− r2)

d−k−2
2 dr

)
= O

(
Γ(d/2)

Γ(d/2 + M)

)
= O

(
d−M

)
, d →∞.

From these computations, we deduce that learning functions f(x) = g(Ax), where g
is radial (or nearly radial), using our method has usually polynomial complexity with
respect to the dimension d.

5 Extensions and Generalizations

We assumed throughout the paper that the function f is defined on the unit ball BRd

of Rd. To be able to approximate the derivatives of f even on the boundary of BRd ,
we actually supposed, that f is defined also on an ε̄ neighborhood of the unit ball.
Furthermore, we assumed that the function values may be measured exactly without
any error. The main aim of this section is to discuss the possibilities and limitations of
our method. Firstly, we discuss the numerical stability of our approach with respect to
noise. Secondly, we deal with functions defined on a convex body Ω ⊂ Rd. As it is our
intention here only to sketch, still rigorously, further interesting research directions, we
limit our discussion to the case of k = 1.

5.1 Stability under noisy measurements

Let us assume that the function evaluation in (14) can be performed only with certain
precision. We again collect the mX ×mΦ instances of (14) as

ΦX = Y − E +
W
ε

, (61)

where the (i, j) entry of W (denoted by wij) is the difference between the exact value
of f(ξj + εϕi) − f(ξj) and its value measured with noise. This leads to a compressed
sensing setting

Y = ΦX + E − W
ε

. (62)
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Applying Theorem 3.2 we obtain a substitute for Corollary 3.3 with E replaced by
E − W/ε. Therefore we would like to estimate the norm of wj (the j-th column of
W) in `mΦ

2 and `mΦ∞ . If we merely assume that the noise is bounded (i.e. |wij | ≤ ν),
the best possible estimate is ‖wj‖`

mΦ
2

≤ ν
√

mΦ. We observe that the more sampling
points we take the greater is the level of noise. This effect of amplification of the noise
is actually known under the name of noise folding [2] and, unfortunately, corrupts the
estimate (31), see also [11, Section 4] for a discussion in a related context.

Let us therefore sketch a different approach. We make the rather natural assump-
tion that wij is a random noise.

The analogue of Theorem 3.2 for the recovery of x from noisy measurements
y = Φx + ω, where ω = (ω1, . . . , ωm) are independent identically distributed (i.i.d.)
Gaussian variables with mean zero and variance σ2, was given in the work of Candès
and Tao [9]. They proposed a certain `1-regularization problem, whose solution (called
the Dantzig selector) satisfies

‖x− x̂‖2
`d
2
≤ C2 · 2 log d ·

(
σ2 +

d∑
i=1

min(x2
i , σ

2)

)
.

Especially, if x is a k-sparse vector, then ‖x−x̂‖`d
2
≤ C ·

√
2 log d·

√
k + 1·σ. We observe

that this estimate scales very favorably with d (only as
√

log d) and, moreover, does
depend only on the sparsity of x, and not anymore on the number of measurements
mΦ. Therefore, there is no noise folding in this case.

The equation (62) requires a combination of Theorem 3.2 and the result of Candès
and Tao. Namely, we would like to reconstruct x if y = Φx + ε + ω is given, where ε
is a deterministic error and ω is a vector of i.i.d. Gaussian variables. Obviously, the
detailed analysis of this issue goes beyond the scope of this paper. Nevertheless, let
us present some numerical evidence of the numerical stability of our approach in the
presence of random noise.

We consider the function

f(x) = max
([

1− 5
√

(x3 − 1/2)2 + (x4 − 1/2)2
]3

, 0
)

, x ∈ R1000 (63)

in dimension d = 1000. We use a variant of Algorithm 1 based on `1 minimization to
identify the active coordinates of f , cf. [31] for details. We suppose that function evalu-
ations were distorted by Gaussian error νω with ω ≈ N (0, 1) and ν ∈ {0.1, 0.01, 0.001}.
We chose ε = 0.1 in the approximation (14). For each number of points mX ∈ {6`, ` =
1, . . . , 10} (x-axis) and each number of directions mΦ ∈ {20`, ` = 1, . . . , 10} (y-axis)
we produced one hundred trials. The success rates of recovery go from white color (no
success) to black (100 successful recoveries).
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Figure 2: Recovery of active coordinates of f(x) given by (63) with ν = 0.1, ν = 0.01
and ν = 0.001, from left to right respectively. Let us mention that the success rates
of recovery for noise-free setting are hardly distinguishable from the last picture above
(ν = 0.001).

We conclude from Figure 2 that there is a smooth increase of the rate of successful
recovery with decreasing noise power and a fully stable recovery behavior.

5.2 Convex bodies

A careful inspection of our method shows, that it may be generalized to arbitrary
convex bodies. Let us describe the necessary modifications and give an overview of the
results for the case k = 1. First of all, one has to replace (6) by

Hf :=
∫

Ω
∇f(x)∇f(x)T dµΩ(x). (64)

Here, µΩ is a probability measure on Ω and the points in X (cf. (15)) are selected at
random with respect to µΩ. For Ω = BRd , we simply selected µΩ = µSd−1 to be the
normalized surface measure on Sd−1. This corresponded to the fact, that a ∈ Sd−1 was
arbitrary and therefore a-priori no direction was preferred. To be able to evaluate the
derivatives of f even on the boundary of Ω, we suppose, that f is actually defined on
an ε̄ neighborhood of Ω, namely on the set Ω + ε̄ := {x ∈ Rd : dist(Ω, x) ≤ ε̄}. The
function g is supposed to be defined on the image of Ω+ ε̄ under the mapping x → a ·x,
i.e., on an interval. We assume again (9).
Surprisingly enough, these are all the modifications necessary to proceed with the iden-
tification of â and (38) holds true under these circumstances.

The proof of Theorem 3.1 was based on the fact, that for every y ∈ BR, we can
easily find an element xy ∈ BRd , such that â ·xy = y. It is enough to consider xy = âT y.
In the case of a general convex set Ω, we first need to define for any â ∈ Sd−1 fixed, a
function x· : â(Ω + ε̄) → Ω + ε̄ given by y 7→ xy, and such that

â · xy = y.
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In particular, for all y ∈ â(Ω + ε̄) we need to find

xy ∈ Ω + ε̄ ∩ {x ∈ Rd : â · x = y}.

Since both Ω + ε̄ and the solution space {x ∈ Rd : â · x = y} are closed convex sets
in Rd, one could use an alternating projection algorithm for finding xy [4]. Thus, we
can assume that, at least algorithmically, this map can be computed. Moreover, and
alternatively, since the operation described above, i.e., finding xy ∈ BRd , such that
â · xy = y, has to be executed as many times as we need to define, e.g., an appropriate
spline approximation of ĝ, we may proceed as follows: we find first xmax, xmin ∈ BRd ,
such that â · xmax = maxx∈BRd

â · x and â · xmin = minx∈BRd
â · x. Then any other xy

such that y = â · xy is computed very fast by xy = λyxmin + (1 − λy)xmax for some
λy ∈ [0, 1].

With this modification, also Theorem 3.1 holds true, with the definition of ĝ given
in Algorithm 1 replaced now by

ĝ(y) := f(xy), y ∈ â(Ω + ε̄)

and (24) replaced by

‖f − f̂‖∞ ≤ 2C2(diam(Ω) + 2ε̄)
ν1√

α(1− s)− ν1

.

Unfortunately, and this seems to be the main drawback of this approach, the diameter
of Ω, diam(Ω) = maxx,x′∈Ω ‖x − x′‖`d

2
may grow with d. This is especially the case,

when Ω = [−1, 1]d, which gives diam(Ω) =
√

2d.

5.3 An approach through Minkowski functional

To get better results for specific convex bodies (i.e. Ω = [−1, 1]d), we propose another
approach. We stress very clearly that up to now this is only to be understood as an
open direction, which is a subject of further research.
We assume, that Ω is a closed convex set, which is absorbing and balanced, i.e.

• for every x ∈ Rd, there is a t = t(x) > 0, such that tx ∈ Ω,

• αΩ := {αx : x ∈ Ω} ⊂ Ω for every α ∈ [−1, 1].

Then we can define its Minkowski functional as

pΩ(x) := inf{r > 0 : x/r ∈ Ω}, x ∈ Rd.

It is well known, that this expression is actually a norm and Ω is its unit ball. Hence

sup
x,x′∈Ω

pΩ(x− x′) ≤ 2. (65)

This allows us to replace the inequality

|(a− â) · (xy − x)| ≤ ‖a− â‖2 · ‖xy − x‖2
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by
|(a− â) · (xy − x)| ≤ ‖a− â‖′Ω · ‖xy − x‖Ω.

Here, ‖ · ‖Ω = pΩ(·) and ‖ · ‖′Ω is its dual norm. According to (65), this solves the
problem of the factor diam(Ω) - the diameter of Ω with respect to ‖ · ‖Ω is always
bounded by 2. Unfortunately the problem is transferred to the second factor, namely
‖a− â‖′Ω. For this, one would need the analogue of Theorem 3.2 with the `d

2-norm in
(29) replaced by ‖ · ‖′Ω. While any treatment of this general case is clearly beyond the
scope of this paper and remains a subject of further investigation, we can shortly sketch
what happens in the special case Ω = [−1, 1]d. Then we simply have ‖ · ‖Ω = ‖ · ‖`d

∞
and ‖ · ‖′Ω = ‖ · ‖`d

1
. To estimate ‖a − â‖`d

1
we would have to combine Lemma 3.1 in

[11] with (38) and would get again a result that does not depend on the dimension d.
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2008.

[24] , Approximation of infinitely differentiable multivariate functions is in-
tractable, Journal of Complexity 25 (2009), 398–404.

[25] R. I. Oliveira, Sums of random Hermitian matrices and an inequality by Rudelson,
arXiv:1004.3821, 2010.

[26] S. Oymak, K. Mohan, M. Fazel, and B. Hassibi, A simplified approach to recovery
conditions for low-rank matrices, Preprint (2011).

[27] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta
Numerica 8 (1999), 143–195.

[28] B. Recht, M. Fazel, and P. Parillo, Guaranteed minimum rank solutions to linear
matrix equations via nuclear norm minimization, SIAM Rev. 52 (2010), no. 3,
471–501.

[29] M. Rudelson and R. Vershynin, Sampling from large matrices: An approach
through geometric functional analysis, J. ACM 54 (2007), no. 4, Art. 21, 19 pp.

[30] W. Rudin, Function theory in the unit ball of Cn, Springer-Verlag, New York-
Berlin, 1980.

[31] K. Schnass and J. Vyb́ıral, Compressed learning of high-dimensional sparse func-
tions, ICASSP11, 2011.

[32] G. W. Stewart, Perturbation theory for the singular value decomposition, SVD
and Signal Processing, II (R. J. Vacarro, ed.), Elsevier, 1991.

[33] J. Tropp, User-friendly tail bounds for sums of random matrices, arXiv:math.PR
1004.4389v6 (2010).

[34] P.-A. Wedin, Perturbation bounds in connection with singular value decomposi-
tion, BIT 12 (1972), 99–111.

[35] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller
Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraum-
strahlung), Mathematische Annalen 71 (1912), 441–479.

[36] P. Wojtaszczyk, `1 minimisation with noisy data, preprint (2011).

34


