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Abstract— In this article we present a signal model for classifi- for a moment and try to have a closer look at the third one.
cation.baseq on a.|OW dimensional dictionary embedded in.t(.)h'e When correlating two complete signals we are ignoring the
high dimensional signal space. We develop an alternate pregtion 4t that the information that is related to the class labeds
algorithm to find the embedding and the dictionary and finally . . .
test the classification performance of our scheme in compason not be the whole S|g_r?al but just parts_o_f it. Take as easy
to Fisher's LDA. example face recognition where our training data consist of

- ) o _ 4 images of the same girl. In the first she is smiling, in the
Key words: dictionary learning, alternate projections, dimenseconq she has a red clown nose, in the third she is wearing
sionality reduction, classification, kernel-based leagni glasses and in the fourth has a red clown nose and glasses. If
we now get a picture of a smiling girl with a red clown nose
. INTRODUCTION and glasses and want to know if she is smiling the correlation

When dealing with very high dimensional signals, likescheme will give us the wrong answer, because the similarity
images or music, we are often interested in reducing théir the eye and nose region with picture 4 is larger than the
dimension in order to process or store them more efficientlimilarity in the mouth region with picture 1. The obvious
while at the same time keeping their key properties. A goalution in this case is to concentrate on the mouth region
example from every day life is image compression,i.e. jpend the simplest way to translate the extraction of the mouth
[2]. The key property in this case are the images themselvesgion to a mathematical operation on our signals is a linear
In order to store them more efficiently we are looking fooperator, ie a multiplication with @ x d matrix A. If we now
a basis or dictionary which allows us to represent them ase the correlation scheme on images of the signals under thi
superposition of a small number of its elements so that aperator we will not only find the right solution, but can also
the end we can reduce each signal to a small number safve storage space and computational effort. Instead mfigto
coefficients. Another field where dimensionality reductisn the d x N matrix of all training signalsX we just need to
important and which we are going to investigate is classitore thep x N matrix of relevant featured” = AX. For
fication. The problem can be simply stated. Given a set efery new signal to classify we have to compute its image
N training signalsz € R? belonging toc classes and a f,c,w = AZnew, COst O(pd), and its correlation with the
new signalz,.,, find out which class the new signal belong$eaturesF™ f,,c., = (AX)*(A%Zpew ), COStO(pN), adding up
to. The probably simplest approach to solving this probleto O(p(d+ N)) operations, which is smaller than the original
is to calculate the correlation between the new signal acdst of O(dN), as soon as
the training signals and then give the new signal the same

- ) . . . dN
class label as the training signal with which the corretai® p< . (1)
maximal. If we have collected the signals in class columns d+ N
of the matrix X; and then combined these to a higx N While in our toy example it was obvious that to identify
data matrixX = (X;...X.) = (xf...27 ...zl ...27%), a smile we should concentrate on the mouth region, this is
the computational effort of this scheme amounts to calmgdat not the case in general. The only information helping us
the matrix vector produck *z,,.,, and searching the resultingchoose the operator, i.e. find out which part of the signal
correlation vector for its absolute maximum, i.e. is of thdey we should look at, is the training signals and their class
O(dN). There are however three disadvantages to this schetiabels. The strategy is to choose the operator in a way that
Itis computationally intensive, it requires a lot of stoeegpace it increases the similarity of signals in the same class and
- as bothN andd can be very large - and most importantly itdecreases the similarity between classes. In our example,
does not really work well. Let’s ignore the first two problemsven if we would not know that smiles tend to manifest




themselves in the mouth region, by looking at all the smilinglass we have a class specific unit norm feature vegtor
images we could see that they vary a lot in the eye and noBeese feature vectors live in a low-dimensional spRéeand
region, so in order to increase similarity we should ignoteave only small correlations i.€.f;, f;)| < , @ # j, meaning
these regions which at the same time would decrease they form a dictionary or frama af elements with coherence
similarity between the three smiles and the non smile. The Signals in the same class} € X. are generated by taking
objective increase/decrease similarity seems ratherevagti the class specific feature vectdy, scaling it with c¥, and
it is exactly this - the definition of similarity - that leads t mapping it with an invertible linear transforffi to the higher
different methods. Techniques based on principal componeimensional spac®?. Finally to model all the signal parts
analysis (PCA), cp. [5], choose an orthogonal projectiaat ththat contain no class specific information we add noise
minimises the scatter of all projected samples. Fishergar which is assumed to be orthogonal to the imagéelbfi.e.
Discriminant Analysis, cp [1], [3], tries to maximise thetica |(rF, Tv,|) = 0, Vv € RP.

of between class scatter to within class scatter. In thecaubr
we take here the similarity and dissimilarity is defined lohse
on properties of the Gram matrix of the embedded images
features,G = F*F = X*A*AX. The Gram matrix is also
called kernel matrix and the mapping fram— Az is called

a:f = Tfl-ci»c + rf. (2)

IPlve seek the analogy of the elements in the above model with
our toy example the feature vectors correspond to the gnilin
' _ or non smiling mouth and the noise to the eyes, glasses and
the _kernel function. _Frl())m the labels we de?de_what ?haP@own) noses. Applying” can be thought of as positioning the
the ideal Gram matrix;**** should have, e.g7;5" is one if gy picture of the mouth in the correct place in the picture
z;, z; are in the same class and zero if they are not, and thgfine whole face.
we try to find the matr'XAbeSt that results in @ Gram matrix grom the model we can directly see that the low dimensional
that is closest to the desired shape in some matrix norm, embedding we are looking for is just the orthogonal progecti
AVeSt = argmin ||GP — X*A*AX||. onto the image of" concatenated with the inverse Bf since
A like this all signals in the same class are mapped back tedcal
In the special case where the norm is the Frobenius norm aretsions of the same feature vector. Assuming for the statt t
the matrixA%*** is allowed to have the same rank as the signéle scaling factor is constant over all signals and classes,
matrix, we can reformulate the problem as minimisation ovef = c, this leads to a Gram matri€ = X*A*AX of rank
symmetric, semi-definite positive matric&S which can later p with the following shape. Blocks;; = X} A*AX; storing
be factorised into a produdt’ = A*A. inner products between embedded signals in the same class
K't —arg  min [[GY — X*KX| 5 and therefore the same feature vectors are constartt to
R A0 Gii(k,1) = (Azl, Azly = (cfi, cfi) = &
. . . . . .. % ) 30 i 79 7 5
Since the class of feasible matric&sis convex this optimi-
sation problem can be solved via semidefinite programminghile blocksG;; = X*A*AXj;, i # j storing inner products
see [6]. However to do dimensionality reduction we need teetween embedded signals in different classes and therefor
havep = rk(4) < rk(X). Writing the problem again as different feature vectors have entries of absolut valuellsma
minimisation over symmetric, semi-definite positive meds, p,
we get as additional constraink(K) = rk(A) < p, so the
set gf feasible matrices is no Iorgge)r conv(ex)andpsemi-definit |Gij(k, D] = [{Axf, Aaf)| = [(cficfi)l < - .
programming not f_;lpplica_ble._To solve_the problem We Propogeye rescaleA by 1/c we can formulate the problem of
to use an alternative projection algorithm, extensivelid&d  finging the right embedding as find a Gram matrix of the form
in [9], which has the additional advantage that we can easfly _ y+ 4+ 4 x with rank tk(G) < p, diagonal block entries
replace the matrbG**** by a set of matrices. In the nextequal to one and off-diagonal block entries smaller than
section we introduce our class model and the resulting notio Taking the desired dimension of the featupesnd their
of similarity and dissimilarity. From that we infer the carte | ,5ximal correlationy as input parameters we could go
properties of the embedding and subsequently discuss in h@isctly to the development of an algorithm constructing a
far they are achievable, depending on the number of clasge$responding Gram matrix. However, it will be instructiee
and d_|menS|on of the empe_degl space. Section I is usgdfﬁgt get an idea which magnitudeswe can expect depending
explain the concept of minimisation via alternate profesi , the feature dimension and the number of different classes
and customise the algorithm for our needs. In Section IV We The ideal case in terms of minimising the correlation would
show some promising results about the performance of qu . haveu = 0, meaning that the feature vectors form an
embeddings in comparison to existing schemes on the Y@lgnonormal system. The drawback in this case is that we
face database before finally drawing conclusions and p@inticannot have the dimensionality of the feature vectors, whic
out directions of ongoing further research. determines the computational cost, smaller than the nuotber
classes simply because we cannot fit more thanthonormal
Il. CLASS MODEL vectors into a space of dimensipnThus if we want to further
We want to characterise similarity and dissimilarity usingeduce the cost we have to relax our requirement from having
the Gram matrix of the embedded signals or features, a notitve inter-class correlations zero to having them small. The
based on the following class model. We assume that for evepyestion is how small. From frame theory, see [8], we know



that forc unit norm vectorsp; in RP the maximal inner product convexity of possibly both sets, however, results in mucheno

can be lower bounded as complex behaviour, i.e. instead of converging the algarith
c—p just creates a sequencd®, G*) with at least one accumulation
max (i, )] > D=1 e (3)  point. We will not discuss all the possible difficulties hénat

refer to the inspiring paper [9], where all details, proofgla
This lower bound is met with equality if and only if thepackground information can be found and wherein the authors
frame is tight and equiangular, meaning that not only th&nclude that alternate projection is a valid strategy édviag
maximal inner product but all of them have to be equalfQ. the posed problem.
Frames attaining the bound are called Grassmannian Framg$iet's start investigating the two minimisation probleffise
The problem with Grassmannian frames is that they are quffgst problem, given a matrix: find
elusive and do not exist for all combinationscdndp, which .
makes it unlikely that our features can be modelled as one. arg Hﬁelglﬂ G- Hl|Fp (7)
On the other hand we know that it is not hard to construct )
dictionariesR? with a lot of elements and keep the maximaf® €3Sy _to solve since we can choose_ every component
correlation, i.e. the coherence, smaller than/p, cp [4]. H...(k,1) in every blockH;; independently, i.e.
As we want to find a collection of feature vectors forming an g, (k1) = 1,
incoherent dictionary or frame we can also view the problem . . .,
in the context of dic);ionary learning. Finding the emlge@din Hij(k, 1) = mindp, |Gy (k, DI} - sign(Ge; (k, 1), § # 5.
is equivalent to finding a subspace of our signal space andBear in mind that if G is Hermitian alsoH will be
a dictionary of feature vectors, such that restricted t@ thHermitian. The second problem, given a matkxfind
subspace every signal has the ultimate sparse approximatio . . A%
AzF = ficF. What sets the problem apart from regular argrkr&l)ngp”X A’AX — Hl|r (8)
dictionary learning and thus makes it much easier is thE

K hich dict I t has t imate whi ! more intricate and so in order to keep the flow of the
we Know which dictionary element has o approximate whig aper we will postpone its solution to the appendix. Note

S|gna_l through the Iab_els. . . L that in case the number of training signals per class is
Keeping these theoretical considerations in mind we now tur

o the devel tof laorithm f tructi ki unbalanced the above problem should be replaced by its
0 the development ot an aigorithm for constructing our ees! reweighted version, i.e. using matlab notation multiple th

Gram matrix. expression inside the norm from the left and the right by
Q = diag(ones(1,n1)/n1,...,ones(1,n.)/n.). The analysis
IIl. L EARNING A L OW-RANK EMBEDDING VIA remains the same when replacifigby X and H by QHQ.

ALTERNATE PROJECTIONS Let us now turn to investigate how the proposed scheme
We want to learn an embedding A such that we get a Grgwmerforms in practice.
matrix G = X*A*AX with rank rk(G) < p, diagonal block
entries equal to one and off-diagonal block entries smtiken IV. NUMERICAL SIMULATIONS & COMPARISON

pi- So if we define the two sets of matrices We tested the dictionary based class model and the arising
algorithm on the Yale Face Datab&sevhich contains 165
H,:={H: H;kl) =1, @) grayscale images of 15 individuals. There are 11 images per
|Hij(k, 1) < p,i#j} subject, one per different facial expression or configorati
G, ={G: G=X*"A*"AX, rk(A) < p} (5) center-light, w/glasses, happy, left-light, w/no glassesmal,
right-light, sad, sleepy, surprised, and wink. To test tagqr-
and equip the space of alNV x N matrices with the mance and compare it to Fisher's LDA, cp. [1], we centred and
Frobenius norm we can write the problem as normalised all images and employed the leave one out syrateg
. Taking every image in turn we used all the others to calculate
win |G = Hilp st G € Gy, H € Hy. () the embedding, gave the image the label of the training image
One line of attack is to use an alternate projection methdtiwas most correlated with under the embedding and counted
i.e. we fix a maximal number of iterations and maybe sonf®w often this gave us the correct label. In case of the Fisher
additional stopping criterion, initialis&° = X*X and then embedding we used the relative correlatiﬁﬁ%. This

O lla ][]l
in each iterative step do: was done for the number of prOjectlomsvaryTng “from 5
. find a matrixH* € argmingey, [|GF! — H||r to 14. To calculate the dictionary based embedding we fixed
. find a matrixG* € arg mingeg “”Hk el the number of iterations to 500 and kept the one giving the
« check if G* is better than what we have so far and if yeginimal distance td,,, where we once chose= , /=55
store it and onceu = 1/,/p. The results are displayed in Figure 1.
After the last iteration we can extract our embedding and Note that fory = % our scheme always outperforms

the feature dictionary from the best matrix*, which by . Fisher faces. and for = y = 1/,/p all but once. For

inition i ko —
definition is of the formG ° f X*_A*AX' If both s_ets_ feature dimension® close to the number of classesthe
are convex the outlined algorithm is known as Projection

onto Convex Sets (POCS) and guaranteed to converge. Nottp://cve.yale.edu/projects/yalefaces/yalefaces.ht
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Fig. 1. Comparison of Fisher's to the dictionary based erdimgdfor two  Fig. 2. Comparison of Fisher’s embedding, the dictionargeldaembedding
choices forp and the classification vectors

improvement is not drastic but becomes more significant gs2nd™, or the one used to calculate sensing dictionaries, cp.
the feature dimension decreases. While the performancel@fand add a rank constraint, we will not detail it here but

the Fisher faces derails the dictionary based scheme tuns jgst show the test results for the leave one out strategy @n th
to be quite stable. Also we can see that it is stable in thecehoiYale Face databasg,= ,/——5~ cp Figure 2.

. . . p(c=1) =T
of the maximally allowed inter class correlation or coh@en As can be seen the classification vectors perform as well
I as the embeddingl, thus further confirming the usefulness

of our signal model.

V. DISCUSSION
In the numerical section we demonstrated the promisingtOWever remember that so far we have worked with the

performance of the embedding developed from the dictiona??sumption that for each signal the contribution of itsfemat

based signal model in combination with simple maximal cof® constant, i.e.

relation classification using all training signals. The sfign a¥ = Tfich +rF andcf = c. 9)
though is why did we use all embedded training signals for ] ) o ) )
testing? According to the model should map all training The _f|rst_ step in gene_rall_smg the model is to allow th_|s
signals in the same class to the same feature vector, Gtribution to vary. Thinking back to our toy example this

correlating with embedded signals from the same class dhotfould for instance help to identify the smile under varying
give the same result, lighting conditions. While the energy in the mouth region is

strong or weak compared to the rest of the image, the shape of
Ykt (A}, ATnew) = (fi, ATnew)- the mouth remains the same. As a consequence of giving up
the requirement that the contribution of the features istamt
the correlation of two embedded signals will depend on their
(fis AZnew) = (A" fiy Tnew) =: (Sis Tnew)s size. Thus if we want to see the underlying structure of the
feature vectors we have to consider the relative instead of
the absolute correlation of the embedded signals, i.e.td®no

. . . i e
Zs*jogelﬁtlon W'tr;l thte tcrz]lassﬁmatlto N V?Ct?ff o ‘?gl ~again with A the orthogonal projection onto the image Bf
Li- we collect these vectors In e malns = - .o, catenated with the inverse Bf we have

(s1...8:), then the basic computational effort to classify is
the multiplicationS™*xz,,..,. Since S is of sizel x ¢ but as the <AIfa AID -1
image of the feature vector matrix has only rgnk can be | Ak |2 Azl
decomposed ir)t_o dxp and ap xc matrix, e.g. _by a reduced o two signals in the same class and
QR-decompositiors = QR, giving a computational cost for . .
S*Tnew Of O(p(d+ ¢)) as opposed td®(p(d + N)), the cost (Aaf, Azj) S
. . k 1 - /L, ? 7& j
of direct correlation. | Az [|2]| Az |2
The logical next step is t_o constr_uct these clas.siﬁcati(nmre for two signals from different classes. The problem of find-
notthroughthe embedding butdlrectly bonoIgmg for alxc ing the embedding can now be formulated as findsuch
matrix § of rank p, such thatGz = 5" consists of blocks a1 the weighted Gram matrix, in matlab notatich, =
Gi = 57X with entries diag(1./|| AX |}2)X* A* AX diag(1./|| AX|.2) has rankp and
vk Gi(i k) =1, is close to the ideal shape. Again we can attack this problem
GG k)| < s i 4 via alternate projections. However preliminary result®vgh
L= ’ that in order to avoid overfitting some more care has to be
which can again be calculated via alternate projectionce&Sintaken. We need to assume a balanced common contribution
the procedure is similar to the one described above, redefafeall signals per class and th@t and in consequencé are

Manipulating the expression a bit more,

we see that we could actually classify,.,, directly from



not too badly conditioned, making the problem much moM/e now replaceX in the squared version of (11) by its SVD,
intricate and necessitating further study. . e s N 5 N

The second step in generalising the model is to allow more *'& {552 IVS*UA*AUSV" — H|p |-V, V™,
than one feature vector per class. If we collect all feature
vectors corresponding to the same class as columns in
matrix F;, we can model each signal as

d multiply the expression, whose norm we want to minimise,
rom the right withV* and from the left withV/. Doing some
matrix-juggling, which we skip for conciseness, we finally
a2 = TF;ck 4 ¥ (10) arrive at

where c¥ is a vector instead of a scalar anfi is assumed  arg kniiri |STUFA* AU, Sy — VI HV;||%
to be orthogonal to the image of all features in all classes. rk(4)<p . ) . )
To see how this multiple feature model could be useful think + 2V HVa |5 + V5 HVa | -
again of face recognition. Assume we have 2 people and §f,ce the two rightmost terms in the above expression are
ea(?r_\ one picture with glasses, one with a clown nose a”d_‘?ﬁﬁependent ofd it is equivalent to
smiling. To separate them we do not know on which region
to concentrate, as mouth, eye and nose region are equally arg min ||S{UTA*AULS, — Vi HV, ||3..
. . . rk(A)<p
important or disturbed. On the other hand if we learn one _ N
image per person without glasses, clown nose and smilehwhlésing the eigenvalue decomposition Bf HV) = WXW™,
should be reasonably (un)correlated with the training iesagwhich exists and has only real eigenvalues becatisand
we may have a problem to identify a picture of the first persdhereforeV* HV; are Hermitian, we can further simplify to
with glas§es arjd a clown nose. The_dlsturbance in the eye and arg min |[W*SIUFA* AULS, W — S|[2.
nose region will mask any information we can get from the rk(A)<p
mouth region. If we however learm thre(_a features per PErSMhr the last simplification observe that any feasible mattix
i.e. eyes, nose and mouth and sum their absolute contnrbut&% .

. . X : n be written as
we will be less affected by disturbances and able to ideutify )
person from his image even if just one feature, in this exampl 4 — Ay U* = (€}, ) <U1> = CL UF + CLUS,
the mouth, is active. = U3
While this class model seems very promising, it is obviously ) )
also more complex and will require a lot of further studyVhere rk(4) = rk(Ci) + rf(@) becauseU is unitary.
So we need to find out how exactly to model thf - Howgversmce the seconﬁﬂgU? QOes not chang.e t.he objecyve
balanced? or sparse?, how to model the inter and intra clf4action we know that the minimal argument in is not unique
correlations between features - should they form a higteror @nd that for the minimum itself we have

Grassmannian frames in analogy to the single feature model? min |[W*S{UFA* AULSiW — B2 =
Depending on our choice we need so seek the appropriate way rk(A)<p

to sum the contribution of the features, e.g. @gaorm for min  ||[W*SfCFO1$ W — 2|3 =

which ¢. Finally we need to find a way to learn the features rk(C1)<p

that is not based on the Gram matrix, which will not contain rkl(%i)g IB*B = 3|7

relevant information anymore, but that is rather similathe =F

direct learning of the classification vectors. Thus it suffices to find a matrix3 minimising the last

expression and then reconstruct a projection matrix byngett
A= BW*S~tU;z.

APPENDIX . . . .
] ) As X is a diagonal matrix alsdB*B should be diagonal,
We want to find the solution to which together with the considerations that B is positive
arg min | X*A*AX — H|p. (11) semide_finitg and of rank maximaljy leads to the problem of
rk(A)<p approximating the vectos = (o1...05) = (Z11...2ss) by

First, we can square the objective function. Then we knofvVector with maximally» non zero, positive entries.
that the Frobenius norm is invariant under multiplication min
with a unitary matrix. Therefore we can simplify the above lI6llo<b,b:>0

expression using the singular value decomposition (SVDY of The solution to this problem finally is easy to find, ie choose
and the reduced SVD, which we get by splitting the diagongl — ;. if 4, is among thep largest positive components of
matrix S into its part containing thes < min(d, N) non ; and zero otherwise. Backtracing our steps, denoting by
zero singular values, and the unitary matriéés/ into the (;, .i,) the index set of the largest positive components
parts corresponding to the non zero singular values and all if there are less thap) and writingW = (w . . . w;),

1b— all3.

remainder. we get our final projection matrix as:
— . . * - *
X= Y adv Vn Tutli .
Sl 0 ‘/1* A = S_ Ul*
( b 2) ( 0 0> <V2*) d><ls S><15 s><1N Vv Uipw:p
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