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ABSTRACT r, € R%, S :=|A|, vary across nodes and through the noise

This paper shows introduces the smsing dictionariefor 7 In order to obtain a sufficiently general model, we will as-
p-thresholding, an algorithm to compute simultaneous gparsSUMe that the componenis (k) of the random vectar,, are
approximations of multichannel signals over redundant dici"dependent Gaussian variables of variangeThis model is

tionaries. We do both a worst case and average case recovd@f/ly generalto accommodate various practical probletres:

analyses of this algorithm and show that the latter resnlts j S@USSian assumption is one of the most widely used in signal
much weaker conditions on the dictionary, sensing dictipna processing, while mc_orporat_ln_g d|ﬁgrent vgnance;wﬂms

pair. We then do numerical simulations to confirm our theo{C Shape the synthesis coefficients, imposing statistieciyl
retical findings, showing thatthresholding is an interesting '0f €xample on ther, (k). In order to simplify the analysis
low complexity alternative to simultaneous greedy or canve W€ 2dopt a global matrix notation. We collect all signgls
relaxation algorithms for processing sparse multichasigel ~ ON the columns of thé x N matrix}” and the synthesis coef-
nals with balanced coefficients, and finally point a conrmecti ficients, on the columns of thé' x N matrix X. LetU be

to compressed sensing exploiting the additional freedom S > IV random matrix with independent standard Gaussian
designing the sensing dictionary. entries and leD be aS x S diagonal matrix whose entries

are positive real numberg,. Our model can then be written

in compact form
1. OUR PROBLEM AND AN ALGORITHM TO

SOLVE IT Y =®,X + E = ®,DU +E, 1)

Suppose we are to design a networl\dkensors monitoring WhereE is ad x N matrix collecting noise signals, on its
a common phenomenon. Each of our sensors obserdes acolumns. The problem we will face in this paper is to recover
dimensional signal,, € R?, n = 1,..., N, where the set of the joint supportA by sensing the set of signals in a very
signals obeys a strong sparsity hypothesis, ie. we willragsu simple way.
that eachy,, admits a sparse approximation over a single dic- Let us now turn to describing the reconstruction algo-
tionary ®: rithm. The observed signalg, are sent to a central process-
ing unit that tries to recover the common sparse support
Yn = Px, +ep,n=1,...,N. The problem thus boils down to estimating the joint sparse
) ) ) . support of a set of signals generated from a redundant dictio
In_orderto mo_del co_rrelanons bgtween signals, we will =fin nary ®. A number of algorithms have been proposed lately
this model by imposing that all signals share a common sparsg iointly process sparse signals, most of them based on mul-
support, I.e. tichannel generalizations of greedy algorithms [10] or-con
Yn = BTy + en, vex relaxation algorithms. A common weakness to all these
where®, is the restriction of the synthesis matdx to the  techniques is a high computational complexity. To overcome
columns listed in the set. This model is inspired by a recent this problem, we would like to resort here to one of the sim-
series of papers on distributed sensing, see [1] and refesen plest possible algorithms: thresholding. More precisety,
therein. It describes a network of sensors monitoring a sigalgorithm computes thg-norm of the correlation of the mul-
nal with a strong global component that appears at each nodéchannel signal” with the atoms);, of a sensing dictionary
Localized effects are modeled by letting synthesis coeffiisi  P:
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ship and corresponding atoms satiéfy, ;) = 1. Note that  than the noise level and the sum of cross correlations among
because of this normalisation the sensing atoms do not neatoms on the support and between the support and the re-
essarily have unit norm. We could s#t = &, but we as maining of ®. We note thatu; can be very big even for
we will see later like this we keep the possibility of optimis reasonably smalh. For example, whed = &, the quan-
ing both dictionaries in the spirit of [7] or adding additadn tity u; (¥, ®,A) + p1 (P, ®a, A/{:}) is often replaced by

requirements. its upper estimat€2S — 1)u. The rh.s in (4) is at most
DefineA g, the set of indices with the S largestp-norms.  one, so the resulting condition can only be satisfied when
The algorithm is successful if fof = A we haveAs = S < (1 + u~1)/2. In the next sections, we develop an aver-
A. Since¥*Y = ¥*®, X + U*E, the strongest-norm of  age case analysis pfthresholding and show that tiypical
projections on the set of bad atoms is recovery conditions are much less restrictive.
The first contribution of this paper is to show when the
H‘I’*KYHWO < H‘I’%(I’AXHMO + [5Ep. oo simplep-thresholding algorithm using the sensing dictionary

W will succeed in recovering the correct supparnvith high
probability. As we will see below, the sparsity constrain is
expressed in terms of tHecumulative coherencg, and is
thus much weaker than worst case conditions that are usually
expressed in terms @f;. Moreover, the recovery probability
scales exponentially with the number of channels.

where the(p, co)-norm of a matriX|M||,, ~ is defined as the
maximum of thev-norms of its rows. Conversely, the smallest
p-norm of projections on the set of good atoms reads

min [[41Y |, > min [¢; @a X, — €5 E]p.cc-
and the algorithm will thus succeed as soon as
3. AVERAGE CASE ANALYSISOF

P,oo 2 P-THRESHOLDING

min [ @ X, — [ @58, X|

poo > WAE]
+ H‘I’%EHp.,oo- .
To state the central theoretical result for the average wase

need to define a probabilistic PSNR and dynamic range, re-

2. WORST CASE BEHAVIOUR OF member we had” = ®, DU + FE whereD = diag(«;),
P-THRESHOLDING

sexo . ¥EElpoo + [PRE]p

The recovery condition (2) can be checked based on simple PSNR, := maxicn [ou] ;
characteristics of the multichannel signals and the dietio . ieA It
ies. To capture the requirements on the dictionary pair we B = M
adapt the definition of the standard cumulative cohererice [9 max;e |o|
11g (T, &, A) := sup |1l Theorem 1. As_sume that the noisg level and the Qynamic
1gA range are sufficiently small (respectively large), thatosay
1/q -
Tl (Z el . @ #=@TN) <uminl@ivi- R-PSNR/G(N). ()
1A \ieA

) ) i whereC,(N) is a constant depending only grand the num-
As for properties of the signal we need to define the p-PeaBer of channelsV. Then, under signal model (1), the prob-

SNR and the dynamic range,: ability that p-thresholding fails to recover the indices of the
atoms inA does not exceed

PSNR, = 1% Ep,co + [CAE|p,o0
1 X [1p,00 ’ P(p — thresholding faily < K - exp (—A,(N)y?)
o minea X, |
’ XTpoo with

where we denote withX (i)[|, = (30, |, (i)[7)!/? thep- _ F-miniea ”(I’{*\d’i”? — PSNR,/Cp(N) — p2(®, ¥, A)
norm of thei-th row of X. Following the analysis in [3], it is R-minjep [ ®3¢il2 + p2(2, ¥, A)
easy to check that the following condition implies (2):

=2

andA,(N) is a constant depending grand growing with the
i (¥, ®,A) +sup i (Pa, ®a, A/{i}) number of channeld’, e.gA, (N) = N/m, Ay(N) ~ N/2.
ieA (4)

< R, — PSNR,. The proof of this result is somewhat lengthy and relies
heavily on measure concentration inequalities. The istete
The success of-thresholding is thus governed by the con-reader will find all details in [4]. This result has unique fea
dition that the dynamic range of the signal should be biggetures compared to more classical worst case analysis., First



the condition on the dictionary pair is expressed in terms of 5. SENSING DICTIONARY DESIGN

the cumulative coherence of order 2 which is much smaller

than that of order one. For example assuming that there is rfds we have seen in the last section the succesglofesholding
noise and that the variancaes are constant the r.h.s in (5) is is largely determined by the order 2 cross-correlation betw
larger than one. If additionallfg = ®, an upper estimate of the original and the sensing dictionary. Thus in order ta-opt
po(®, ¥, A) is /S and we see that typically thresholding mise the performance of the algorithm we should choose the
can be successful even whérr ;=2 >> p~1. Second, due sensing dictionary that minimises the order 2 cross coirela
to typicality, we see that the probability of failure quigkdi-  tion, ie.

minishes as the number of channel grows, suggesting that we W,y = arg min o (@, ¥).

should useV ~ log K channels in practice. These findings v

are confirmed by simulation results as we show in the nexthe same optimisation problem arises when studying the av-
section. erage performance of the simple thresholding algorithrjin [

which we refer to for more details.

Instead we will point out an interesting connection between

compressed sensing and sensing dictionaries of low rank. We

4. EXPERIMENTAL RESULTS introduced our signal model with the example of having to

design a network ofV sensors monitoring a common phe-
In this section we compare our theoretical findings with simu nomenon, where each of the sensors sends his observation
lations of the performance of 2-thresholding with= ®. As  to a common processing unit, which then finds the common
dictionary we chose a combination of the Dirac and Fouriesupport, which we were interested in. The disadvantage in
basis,® = (1,4, F4), in dimensiond = 1024, which has co- this scheme is that every sensor needs to obtain and send the
herence: = 1/+/d. For each number of channel§, vary-  whole signal, which is both time and energy consuming. So
ing from 1 to 128, and support size, varying from 1 to 1024if we are already close to performance break-down for the
in steps of 16, we created 180 signals by choosing a sugiven number channels and support size there is nothing we
port A uniformly at random and independent Gaussian coefean do. However assume that we have a lot of channels or
ficients with variances; = 1 and calculated the percentage very small support size and that the dictionary is very well
of thresholding being able to recover the full support. Thebehaved, ie. it is easy to find a very good sensing dictionary.
results can be seen in Figure 1. In this case we could try to find a sensing dictionary which

still gives reasonable cross-coherence but of rank mucerow

than the dimensionality of the signals.

i

W, = argmin rank(¥).
po(®,¥)<c

o
©
T

o
o

The advantage of such a low rank sensing dictionary is that
we can reduce the size of the signal that every sensor has to
pass on. So assume thBithas rank; and thus has a reduced
singular value decomposition of the form

recovery rate

(=}
kS
T

I
N
T

o
T

‘ : . T=U % V* (6)
10 10 _ 10 10 dxd dxq qxK
support size

where bothlJ, V' have orthonormal columns. Multiplying the
Fig. 1. Comparison of Recovery Rates for Different Supportsignals by®* in the algorithm amounts to first multiplying by
Sizes and Number of Channels. >*U* and then by/. However if we do the first multiplica-

tion not at the fusion center but at the sensors only a sighal o

sizeq instead ofd has to be send on. In order to get a feelin
As reference we also calculated how many out of 200 ran; g 9 9

. . i or how much reduction is possible, let's adopt an alteueati
domly chosen _s_upports of a given size sapsfy the Wor§t Cas\ﬁewpoint. By multiplying with>*I'* we get signalsZ that
recovery conditioru (A) + sup;ea p1(A/{i}) < 1. This are sparse in the dictionady! := X*U*®, ie
is indicated by the dash dotted line and can be seen to drop '

rapidly once the theoretical limjt\| = 16 is reached. Since Z=YU® X+ U'E=®' X+ FE

" . A
p = 1/+/d the average recovery conditign(A) < 1, in-
dicated by the dashed line, is always satisfied. We can seehich we want to reconstruct using the sensing dictionary
that as predicted by Theorem 1 with an increasing number o#? := V*. Since the dictionaries hav& atoms in dimen-
channels we get closer to the average case bound, whichs®n ¢ the cumulative coherence will be of the magnitude
actually attained onc#’ = 128. (P, W1 S) = /S/q. If we insert this estimate into the



formula for~ from Theorem 1, assuming = 1, E = 0 for
simplicity. We can estimate that this kind of compressed 1-

thresholding fails by (1]

N

™

. . 1—-+/5/q
P(1—thresholding fail$ < K-exp —

( $ (1 + \/S/q>
Further simplifying the above formula we get as rule of thumb

on how compressed we can sense our signals depending of2]
their expected sparsity, dictionary size and number of €¢han

nels )
1 wlog(e/K)
>S5z ————
7= (2 N
For a more detailed exposition and an algorithm to calculate
low rank sensing matrices we refer to [8]. 4]

(3]

6. CONCLUSIONS

Thresholding is a computationally inexpensive algoritton f
simultaneous sparse signal approximation. We have showrjs]
that, in a probabilistic multichannel setting, it sharesdjoe-
covery properties with much more complex alternatives such
as greedy algorithms and convex relaxation algorithms. The
worst case recovery condition is reminiscent of Tropp’s re- [6
covery condition, see [9], but the typical behaviour is éast
driven by a much less restrictive condition and improveswit
the numbers of channels. This is clearly confirmed by ourm
simulation results.

It has to be noted that the results obtained in this paper do
not scale dowrto a single channel. Indeed, our average case
results rely heavily on typicality across channels. Ontheo  [8]
hand, single channel average case results have been abtaine
for the simple thresholding algorithm in [6] and confirm that
the 2-coherence is a characteristic performance measure.

One of the main drawbacks of thresholding is that its per- [
formance relies heavily on the assumption that the signal co
efficients are well balanced, in addition to the Gaussianehod
Orthogonal Matching Pursuit is a natural candidate fordeal[ 1
ing with signals that do not have balanced coefficients. Pre-
liminary results [4] indicate that its typical performarioea
multi-channel probabilistic setup is also driven by mucésle
restrictive conditions on the dictionary than the worstecas
ones. Last but not least, since the characterization of what
drives the average performance of thresholding involves th
mutual coherence of order 2 between a sensing dictionary and
a synthesis dictionary, an interesting new perspectivaas t
design of a sensing dictionary to optimize the recoverygrerf
mance for a given signal model. Another interesting quastio
would be to study how practical thresholding can be in the
framework of Compressed Sensing [2]. It has been proved
in [5] that thresholding can be used a recovery algorithm in
this setting and its lower computational complexity (as eom
pared with OMP) might be useful in particular applications.
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