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ABSTRACT

This paper shows introduces the usesensing dictionariesfor
p-thresholding, an algorithm to compute simultaneous sparse
approximations of multichannel signals over redundant dic-
tionaries. We do both a worst case and average case recovery
analyses of this algorithm and show that the latter results in
much weaker conditions on the dictionary, sensing dictionary
pair. We then do numerical simulations to confirm our theo-
retical findings, showing thatp-thresholding is an interesting
low complexity alternative to simultaneous greedy or convex
relaxation algorithms for processing sparse multichannelsig-
nals with balanced coefficients, and finally point a connection
to compressed sensing exploiting the additional freedom in
designing the sensing dictionary.

1. OUR PROBLEM AND AN ALGORITHM TO
SOLVE IT

Suppose we are to design a network ofN sensors monitoring
a common phenomenon. Each of our sensors observes ad-
dimensional signalyn ∈ R

d, n = 1, ..., N , where the set of
signals obeys a strong sparsity hypothesis, ie. we will assume
that eachyn admits a sparse approximation over a single dic-
tionaryΦ:

yn = Φxn + en, n = 1, ..., N.

In order to model correlations between signals, we will refine
this model by imposing that all signals share a common sparse
support, i.e.

yn = ΦΛxn + en,

whereΦΛ is the restriction of the synthesis matrixΦ to the
columns listed in the setΛ. This model is inspired by a recent
series of papers on distributed sensing, see [1] and references
therein. It describes a network of sensors monitoring a sig-
nal with a strong global component that appears at each node.
Localized effects are modeled by letting synthesis coefficients
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xn ∈ R
S , S := |Λ|, vary across nodes and through the noise

en. In order to obtain a sufficiently general model, we will as-
sume that the componentsxn(k) of the random vectorxn are
independent Gaussian variables of varianceαk. This model is
fairly general to accommodate various practical problems:the
Gaussian assumption is one of the most widely used in signal
processing, while incorporating different variances allows us
to shape the synthesis coefficients, imposing statistical decay
for example on thexn(k). In order to simplify the analysis
we adopt a global matrix notation. We collect all signalsyn

on the columns of thed×N matrixY and the synthesis coef-
ficientsxn on the columns of theS ×N matrixX . LetU be
aS ×N random matrix with independent standard Gaussian
entries and letD be aS × S diagonal matrix whose entries
are positive real numbersαk. Our model can then be written
in compact form

Y = ΦΛX + E = ΦΛDU + E, (1)

whereE is ad ×N matrix collecting noise signalsen on its
columns. The problem we will face in this paper is to recover
the joint supportΛ by sensing the set of signals in a very
simple way.

Let us now turn to describing the reconstruction algo-
rithm. The observed signalsyn are sent to a central process-
ing unit that tries to recover the common sparse supportΛ.
The problem thus boils down to estimating the joint sparse
support of a set of signals generated from a redundant dictio-
naryΦ. A number of algorithms have been proposed lately
to jointly process sparse signals, most of them based on mul-
tichannel generalizations of greedy algorithms [10] or con-
vex relaxation algorithms. A common weakness to all these
techniques is a high computational complexity. To overcome
this problem, we would like to resort here to one of the sim-
plest possible algorithms: thresholding. More precisely,our
algorithm computes thep-norm of the correlation of the mul-
tichannel signalY with the atomsψk of a sensing dictionary
Ψ:

‖ψ⋆
kY ‖p

p :=

N
∑

n=1

|〈ψk, yn〉|p.

The sensing dictionaryΨ has the same cardinality asΦ, so
the atoms in both dictionaries are in a one-to-one relation-



ship and corresponding atoms satisfy〈ψi, ϕi〉 = 1. Note that
because of this normalisation the sensing atoms do not nec-
essarily have unit norm. We could setΨ ≡ Φ, but we as
we will see later like this we keep the possibility of optimis-
ing both dictionaries in the spirit of [7] or adding additional
requirements.

DefineΛS , the set of indicesk with theS largestp-norms.
The algorithm is successful if forS = ♯Λ we haveΛS =
Λ. SinceΨ⋆Y = Ψ⋆ΦΛX + Ψ⋆E, the strongestp-norm of
projections on the setΛ of bad atoms is

‖Ψ⋆
Λ
Y ‖p,∞ ≤ ‖Ψ⋆

Λ
ΦΛX‖p,∞ + ‖Ψ⋆

Λ
E‖p,∞,

where the(p,∞)-norm of a matrix‖M‖p,∞ is defined as the
maximum of thep-norms of its rows. Conversely, the smallest
p-norm of projections on the set of good atoms reads

min
i∈Λ

‖ψ⋆
i Y ‖p ≥ min

i∈Λ
‖ψ⋆

i ΦΛX‖p − ‖Ψ⋆
ΛE‖p,∞.

and the algorithm will thus succeed as soon as

min
i∈Λ

‖ψ⋆
i ΦΛX‖p − ‖Ψ⋆

Λ
ΦΛX‖p,∞ >‖Ψ⋆

ΛE‖p,∞

+ ‖Ψ⋆
Λ
E‖p,∞.

(2)

2. WORST CASE BEHAVIOUR OF
P -THRESHOLDING

The recovery condition (2) can be checked based on simple
characteristics of the multichannel signals and the dictionar-
ies. To capture the requirements on the dictionary pair we
adapt the definition of the standard cumulative coherence [9]:

µq(Ψ,Φ,Λ) := sup
l/∈Λ

‖Φ⋆
Λψl‖q

= sup
l/∈Λ

(

∑

i∈Λ

|〈ψl, ϕi〉|q
)1/q

. (3)

As for properties of the signal we need to define the p-Peak
SNR and the dynamic rangeRp:

PSNRp :=
‖Ψ⋆

Λ
E‖p,∞ + ‖Ψ⋆

ΛE‖p,∞

‖X‖p,∞
,

Rp :=
mini∈Λ ‖X(i)‖p

‖X‖p,∞
,

where we denote with‖X(i)‖p = (
∑N

n=1 |xn(i)|p)1/p thep-
norm of thei-th row ofX . Following the analysis in [3], it is
easy to check that the following condition implies (2):

µ1(Ψ,Φ,Λ) + sup
i∈Λ

µ1(ΨΛ,ΦΛ,Λ/{i})

< Rp − PSNRp.
(4)

The success ofp-thresholding is thus governed by the con-
dition that the dynamic range of the signal should be bigger

than the noise level and the sum of cross correlations among
atoms on the support and between the support and the re-
maining of Φ. We note thatµ1 can be very big even for
reasonably smallΛ. For example, whenΨ = Φ, the quan-
tity µ1(Ψ,Φ,Λ) + µ1(ΨΛ,ΦΛ,Λ/{i}) is often replaced by
its upper estimate(2S − 1)µ. The r.h.s in (4) is at most
one, so the resulting condition can only be satisfied when
S < (1 + µ−1)/2. In the next sections, we develop an aver-
age case analysis ofp-thresholding and show that thetypical
recovery conditions are much less restrictive.

The first contribution of this paper is to show when the
simplep-thresholding algorithm using the sensing dictionary
Ψ will succeed in recovering the correct supportΛ with high
probability. As we will see below, the sparsity constrain is
expressed in terms of the2-cumulative coherenceµ2 and is
thus much weaker than worst case conditions that are usually
expressed in terms ofµ1. Moreover, the recovery probability
scales exponentially with the number of channels.

3. AVERAGE CASE ANALYSIS OF
P -THRESHOLDING

To state the central theoretical result for the average casewe
need to define a probabilistic PSNR and dynamic range, re-
member we hadY = ΦΛDU + E whereD = diag(αi),

PSNRp :=
‖Ψ⋆

Λ
E‖p,∞ + ‖Ψ⋆

ΛE‖p,∞

maxi∈Λ |αi|
,

R :=
mini∈Λ |αi|
maxi∈Λ |αi|

.

Theorem 1. Assume that the noise level and the dynamic
range are sufficiently small (respectively large), that is to say

µ2(Φ,Ψ,Λ) < min
i∈Λ

‖Φ⋆
Λψi‖2 ·R− PSNRp/Cp(N). (5)

whereCp(N) is a constant depending only onp and the num-
ber of channelsN . Then, under signal model (1), the prob-
ability that p-thresholding fails to recover the indices of the
atoms inΛ does not exceed

P(p− thresholding fails) ≤ K · exp
(

−Ap(N)γ2
)

with

γ =
R · mini∈Λ ‖Φ⋆

Λψi‖2 − PSNRp/Cp(N) − µ2(Φ,Ψ,Λ)

R · mini∈Λ ‖Φ⋆
Λψi‖2 + µ2(Φ,Ψ,Λ)

.

andAp(N) is a constant depending onp and growing with the
number of channelsN , e.gA1(N) = N/π ,A2(N) ∼ N/2.

The proof of this result is somewhat lengthy and relies
heavily on measure concentration inequalities. The interested
reader will find all details in [4]. This result has unique fea-
tures compared to more classical worst case analysis. First,



the condition on the dictionary pair is expressed in terms of
the cumulative coherence of order 2 which is much smaller
than that of order one. For example assuming that there is no
noise and that the variancesαi are constant the r.h.s in (5) is
larger than one. If additionallyΨ = Φ, an upper estimate of
µ2(Φ,Ψ,Λ) is µ

√
S and we see that typically thresholding

can be successful even whenS ≈ µ−2 ≫ µ−1. Second, due
to typicality, we see that the probability of failure quickly di-
minishes as the number of channel grows, suggesting that we
should useN ∼ logK channels in practice. These findings
are confirmed by simulation results as we show in the next
section.

4. EXPERIMENTAL RESULTS

In this section we compare our theoretical findings with simu-
lations of the performance of 2-thresholding withΨ = Φ. As
dictionary we chose a combination of the Dirac and Fourier
basis,Φ = (Id,Fd), in dimensiond = 1024, which has co-
herenceµ = 1/

√
d. For each number of channelsN , vary-

ing from 1 to 128, and support size, varying from 1 to 1024
in steps of 16, we created 180 signals by choosing a sup-
port Λ uniformly at random and independent Gaussian coef-
ficients with variancesαi = 1 and calculated the percentage
of thresholding being able to recover the full support. The
results can be seen in Figure 1.
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Fig. 1. Comparison of Recovery Rates for Different Support
Sizes and Number of Channels.

As reference we also calculated how many out of 200 ran-
domly chosen supports of a given size satisfy the worst case
recovery conditionµ1(λ) + supi∈Λ µ1(Λ/{i}) < 1. This
is indicated by the dash dotted line and can be seen to drop
rapidly once the theoretical limit|Λ| = 16 is reached. Since
µ = 1/

√
d the average recovery conditionµ2(Λ) < 1, in-

dicated by the dashed line, is always satisfied. We can see
that as predicted by Theorem 1 with an increasing number of
channels we get closer to the average case bound, which is
actually attained onceN = 128.

5. SENSING DICTIONARY DESIGN

As we have seen in the last section the success ofp-thresholding
is largely determined by the order 2 cross-correlation between
the original and the sensing dictionary. Thus in order to opti-
mise the performance of the algorithm we should choose the
sensing dictionary that minimises the order 2 cross correla-
tion, ie.

Ψopt = arg min
Ψ

µ2(Φ,Ψ).

The same optimisation problem arises when studying the av-
erage performance of the simple thresholding algorithm in [6],
which we refer to for more details.
Instead we will point out an interesting connection between
compressed sensing and sensing dictionaries of low rank. We
introduced our signal model with the example of having to
design a network ofN sensors monitoring a common phe-
nomenon, where each of the sensors sends his observation
to a common processing unit, which then finds the common
support, which we were interested in. The disadvantage in
this scheme is that every sensor needs to obtain and send the
whole signal, which is both time and energy consuming. So
if we are already close to performance break-down for the
given number channels and support size there is nothing we
can do. However assume that we have a lot of channels or
very small support size and that the dictionary is very well
behaved, ie. it is easy to find a very good sensing dictionary.
In this case we could try to find a sensing dictionary which
still gives reasonable cross-coherence but of rank much lower
than the dimensionality of the signals.

Ψopt = argmin
µ2(Φ,Ψ)<c

rank(Ψ).

The advantage of such a low rank sensing dictionary is that
we can reduce the size of the signal that every sensor has to
pass on. So assume thatΨ has rankq and thus has a reduced
singular value decomposition of the form

Ψ = U
d×d

· Σ
d×q

· V ⋆

q×K
(6)

where bothU, V have orthonormal columns. Multiplying the
signals byΨ⋆ in the algorithm amounts to first multiplying by
Σ⋆U⋆ and then byV . However if we do the first multiplica-
tion not at the fusion center but at the sensors only a signal of
sizeq instead ofd has to be send on. In order to get a feeling
for how much reduction is possible, let’s adopt an alternative
viewpoint. By multiplying withΣ⋆U⋆ we get signalsZ that
are sparse in the dictionaryΦq := Σ⋆U⋆Φ, ie

Z = Σ⋆U⋆ΦΛX + Σ⋆U⋆E = Φ
p
ΛX + Ẽ

which we want to reconstruct using the sensing dictionary
Ψq := V ⋆. Since the dictionaries haveK atoms in dimen-
sion q the cumulative coherence will be of the magnitude
µ2(Φ

q,Ψq, S) =
√

S/q. If we insert this estimate into the



formula forγ from Theorem 1, assuminḡR = 1, E = 0 for
simplicity. We can estimate that this kind of compressed 1-
thresholding fails by

P(1−thresholding fails) ≤ K·exp



−N
π

(

1 −
√

S/q

1 +
√

S/q

)2


 .

Further simplifying the above formula we get as rule of thumb
on how compressed we can sense our signals depending on
their expected sparsity, dictionary size and number of chan-
nels

q ≥ S

(

1

2
− π log(ǫ/K)

N

)2

For a more detailed exposition and an algorithm to calculate
low rank sensing matrices we refer to [8].

6. CONCLUSIONS

Thresholding is a computationally inexpensive algorithm for
simultaneous sparse signal approximation. We have shown
that, in a probabilistic multichannel setting, it shares good re-
covery properties with much more complex alternatives such
as greedy algorithms and convex relaxation algorithms. The
worst case recovery condition is reminiscent of Tropp’s re-
covery condition, see [9], but the typical behaviour is instead
driven by a much less restrictive condition and improves with
the numbers of channels. This is clearly confirmed by our
simulation results.

It has to be noted that the results obtained in this paper do
not scale downto a single channel. Indeed, our average case
results rely heavily on typicality across channels. On the other
hand, single channel average case results have been obtained
for the simple thresholding algorithm in [6] and confirm that
the 2-coherence is a characteristic performance measure.

One of the main drawbacks of thresholding is that its per-
formance relies heavily on the assumption that the signal co-
efficients are well balanced, in addition to the Gaussian model.
Orthogonal Matching Pursuit is a natural candidate for deal-
ing with signals that do not have balanced coefficients. Pre-
liminary results [4] indicate that its typical performancein a
multi-channel probabilistic setup is also driven by much less
restrictive conditions on the dictionary than the worst case
ones. Last but not least, since the characterization of what
drives the average performance of thresholding involves the
mutual coherence of order 2 between a sensing dictionary and
a synthesis dictionary, an interesting new perspective is the
design of a sensing dictionary to optimize the recovery perfor-
mance for a given signal model. Another interesting question
would be to study how practical thresholding can be in the
framework of Compressed Sensing [2]. It has been proved
in [5] that thresholding can be used a recovery algorithm in
this setting and its lower computational complexity (as com-
pared with OMP) might be useful in particular applications.
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