
Gabor Multipliers
A Self-Contained Survey

Diplomarbeit zur Erlangung
des akademischen Grades

Magistra der Naturwissenschaften

Eingereicht von

Karin Schnass

Betreut von

Prof. Dr. H. G. Feichtinger

Ausgeführt am
Institut für Mathematik der Universität Wien

Wien, 4.4.2004

Contents

German Summary vii

1 Basics of Time Frequency Analysis 1

1.1 Basic Fourier Analysis & Tools . 1

1.2 Riesz Bases and Frames . 3

1.3 Gabor Frames . 5

1.4 The Space S0 . 5

2 Gabor Multipliers 9

2.1 Definition & Basic Properties . 9

2.2 The Kohn Nirenberg Symbol (KNS) 14

2.3 The Spreading Function η . 15

2.4 Varying the Lattice . 17

2.5 (Pλ)λ∈Λ as a Riesz basis . 20

3 From L2 to CL 25

3.1 Fourier Analysis in CL . 25

3.2 Riesz Bases and Frames . 27

3.3 Gabor Frames . 29

3.3.1 The Dual Atom . 29

3.3.2 The Tight Atom . 30

3.4 Gabor Multipliers . 31

3.4.1 STFT . 31

3.4.2 Gabor Synthesis . 33

3.4.3 Synthesis of a Gabor Multiplier 33

3.4.4 (Pλ)λ∈Λ as a Riesz Basis . 37

3.4.5 The Best Approximation . 38

4 Best Approximation by Gabor Multipliers 41

4.1 Approximation in Different Systems 41

4.2 Approximation in Various Classes of Operators 45

4.2.1 Underspread Operators . 46

4.2.2 STFT-Multipliers . 50

iii

iv CONTENTS

Appendix 55

A MATLAB Files 57
A.1 stft.m . 57
A.2 gabsyn.m . 58
A.3 gabmult.m . 58
A.4 rb.m . 59
A.5 gabcoeff.m . 59
A.6 spread.m . 60
A.7 spr2mat.m . 60

Curriculum Vitae 63

List of Figures

2.1 Communication Model . 9

3.1 Approximating the Fourier Integral 26
3.2 Bad Frames . 28
3.3 The Canonical Tight Window . 30
3.4 4 Windows and their STFTs . 32
3.5 3 Lattices . 32
3.6 Application of a Gabor Multiplier 1 34
3.7 Application of a Gabor Multiplier 2 34
3.8 Multipliers for Experiment 3.2 . 36
3.9 Convergence Curves . 36
3.10 Biorthogonal Atom for Various Redundancies 38

4.1 Convergence of the Best Approximation 43
4.2 Approximation of an Underspread Operator 48
4.3 Spreading Function and Two Atoms 48
4.4 Convergence Rates (L = 120) . 49
4.5 STFT-Multipliers . 52
4.6 Digital Filter . 54

v

vi LIST OF FIGURES

Deutsche Zusammenfassung

Ziel dieser Arbeit ist es eine Einführung in das Gebiet der Gabor Multiplier zu geben.
Diese Operatoren basieren auf der Zerlegung einer Funktion mit Hilfe eines Gabor
Frames, das heißt eines Erzeugendensystems generiert durch zeitliche Verschiebung
und gleichzeitige Frequenzmodulation einer Grundfunktion (Gabor Atom) entlang
eines Gitters. Anstatt jedoch die Funktion nun mittels eines dualen Frames zu rekon-
struieren werden die Koeffizienten zuerst mit einer Gewichtsfunktion multipliziert.
Kapitel 1 gibt einen Überblick über die Grundbegriffe und ein kurze Einführung in
das Gebiet der Gabor Frames und Riesz Basen. Außerdem wird eine für den Rest
der Arbeit wichtige Funktionenklasse vorgestellt.
In zweiten Kapitel werden Gabor Multiplier definiert und auf ihre Eigenschaften
abhängig von den Bausteinen (Gitter, Atom, Gewichtsfunktion) untersucht. Dafür
werden Operatorsymbole ähnlich eines Integrationkerns eingeführt und weiters wird
auf eine alternative Interpretation eines Gabor Multipliers hingewiesen, nämlich als
unendliche Linearkombination von Rang 1 Operatoren, die wieder durch Verschieben
einer Grundfunktion entlang des Gitters entstehen. Schließlich wird ein Kriterium
angegeben unter welchen Bedingungen an das Gitter und das Gabor Atom die darauf
basierenden Rang 1 Operatoren eine Riesz Basis bilden und wie die biorthogonale
Basis aussieht.
Das dritte Kapitel beschäftigt sich mit der numerischen Realisation von Gabor Mul-
tipliern. Zuerst werden kurz Verfahren zur Berechnung von dualen und tight Frames
vorgestellt und dann Algorithmen zur effizienten Berechnung von Gabor Multipli-
ern, usw. beschrieben und entwickelt. Mit Hilfe dieser Algorithmen werden dann
die Ergebnisse von Kapitel 2 numerisch, in MATLAB, simuliert und überprüft.
Kapitel 4 greift zurück auf die Riesz Basis Eigenschaft des generierten Gabor Systems
und die dadurch entstehende Möglichkeit die Bestapproximation eines allgemeinen
Operators einfach zu berechnen. Die Unterschiede der Approximation in Systemen
mit verschiedenen Gittern und Atomen werden analytisch und numerisch untersucht
und es wird mittels numerischer Experimente versucht die optimale Abstimmung von
Gitter und Gabor Atom festzustellen.
Der zweite Teil des Kapitels beschäftigt sich mit der Frage welche Operatoren gut
durch Gabor Multiplier approximiert werden können. Es wird ein analytisches Kri-
terium angegeben und dadurch motiviert werden zwei Klassen von Operatoren, Un-
derspread Operators und STFT-Multipliers, mittels numerischer Experimente auf
ihre Approximierbarkeit untersucht. Das Hauptaugenmerk liegt dabei wieder auf
der Abstimmung von Gitter und Gabor Atom und zwar auf den Operator.
Die Arbeit schließt mit dem Anwendungsbeispiel eines Gabor Multipliers als digi-
taler, zeitvarianter Filter.

vii

viii GERMAN SUMMARY

Eine Online-Version dieser Arbeit ist auf der NuHAG Homepage unter
http://www.mat.univie.ac.at/∼nuhag/papers/thesis.html
zu finden.

Danke
allen, die mir während meines Studiums geholfen haben.

Chapter 1

Basics of Time Frequency Analysis

1.1 Basic Fourier Analysis & Tools

1. Fourier Transform:
For a function f ∈ L1(Rd) ∩L2(Rd) the Fourier transform F is defined by:

(Ff)(ω) =
∫

Rd
f(x)e−2πixωdx

F extends to a unitary operator on L2(Rd).

2. Lattice:
A lattice Λ is a (discrete) subgroup of Rd of the form Λ = AZd, where A is an
invertible, real d× d matrix. A lattice of the form Λ = aZd×bZd for a, b > 0 is
called a separable or product lattice. The dual lattice Λ⊥ to a lattice Λ = AZd

is defined as all λ⊥ ∈ Rd such that e−2πiλλ⊥ = 1 ∀λ∈Λ. It can be calculated
as Λ⊥ = (AT)−1Zd.

3. Time-Frequency-Shifts:

(a) For x, ω ∈ Rd the translation operator Tx and the modulation operator
Mω are defined by their actions on a function f as:

Txf(t) = f(t− x)

Mωf(t) = f(t) · e2πitω

Operators of the form MωTx are called time-frequency-shifts (TF-shifts),
for λ = (x, ω), MωTx is denoted by π(λ).
TF-shifts obey the commutation relation:

TxMω = e−2πixωMωTx (1.1)

Note that π∗(λ) = Tx
∗Mω

∗ = T−x M−ω = e−2πixωπ(−λ).

(b) The tensor product (π⊗π∗)(λ) of time-frequency shift operators is defined
through its action on an operator K as:

(π ⊗ π∗)(λ)K = π(λ) ◦K ◦ π∗(λ)

1

2 CHAPTER 1. BASICS OF TIME FREQUENCY ANALYSIS

(π ⊗ π∗)(λ) will be abbreviated by π2(λ). A short computation shows
that the action of π2(λ) on K corresponds to a TF-shift M(ω,−ω) T(x,x) of
the distributional kernel κ(K) of the operator:

(π2(λ)K)f(t) = π(λ)
∫

Rd
κ(K)(s, t)(π∗(λ)f)(t)dt =

= π(λ)
∫

Rd
κ(K)(s, t)f(t + x)e−2πiω(t+x)dt =

t+x=r
=

∫

Rd
κ(K)(s− x, r − x)e2πiωse−2πiωrf(r)dr =

=
∫

Rd
[M(ω,−ω) T(x,x) κ(K)](s, r)f(r)dr (1.2)

4. Λ-Fourier transform:
For a sequence c ∈ `2(Λ), Λ = AZd, the Λ-Fourier transform FΛ is defined as:

FΛc(x) = ĉ(x) = det(A)
∑

λ∈Λ

c(λ)e2πixλ

It is relatively easy to see that FΛc is a periodic function on the torus TΛ⊥ =
Rd/Λ⊥ and it holds that FΛ : `2(Λ) −→ L2(TΛ⊥) is unitary.
For more information on the Λ-Fourier transform see for instance [19]. Note
that for the case Λ = Zd the setting is simply that of Fourier series, although
unfortunately with reversed notation. In fact all results about the Λ-Fourier
transform are easy consequences of the equivalent results for Fourier series.

5. Convolution over a lattice Λ, ∗Λ:
The convolution of two sequences (c(λ))λ∈Λ, (d(λ))λ∈Λ over the lattice Λ is
defined as:

(c ∗Λ d)(µ) =
∑

λ∈Λ

c(λ)d(µ− λ)

Under the Λ-Fourier transform the convolution over Λ turns into point wise
multiplication, i.e.,

FΛ(c ∗Λ d) = FΛc · FΛd = ĉ · d̂

6. Short-Time Fourier Transform (STFT):
The short-time Fourier transform of a function f ∈ L2(Rd) with respect to a
window function g ∈ L2(Rd) is defined as:

Vgf(x, ω) =
∫

Rd
f(t)g(t− x)e2πiωtdt =

= 〈f, MωTxg〉 = (1.3)

= F(f · Txḡ)(ω) (1.4)

The STFT is a unitary mapping from L2(Rd) to L2(R2d) and so a function can
be reconstructed from its STFT. Via the inner product representation it can be
extended to a greater class of functions/distributions. So whenever g is in the
Schwartz space, i.e., g ∈ S, Vgf is well defined for all tempered distributions
f ∈ S ′. More details about the STFT can be found in [14] Chapter 3.

1.2. RIESZ BASES AND FRAMES 3

7. Wiener Amalgam Spaces:
Wiener Amalgam spaces are a large class of function/distribution spaces that
are characterized by having elements with a well controlled global and local
behaviour. As here only two types are needed, we will not give the general
definition as can be found in [4] but more straightforward ones. (Q = [0, 1]d)

W (C, `p)(Rd) = {f ∈ C(Rd) : ‖f‖p
W (C,`p) =

∑

j∈Zd

(sup
x∈j+Q

|f(x)|)p < ∞}

W (M, `p)(Rd) = {µ ∈ Cc(Rd)
′
: ‖µ‖p

W (M,`p) =
∑

j∈Zd

|µ|(j + Q)p < ∞}

Wiener Amalgam spaces obey a number of convolution relations and norm
estimates, of which however we will only need two types: (K1,2 constants)

Lp ∗W (C, `1) ⊆ W (C, `p) ‖f ∗ g‖W (C,`p) ≤ K1‖f‖p‖g‖W (C,`1) (1.5)

W (M, `p) ∗W (C, `1) ⊆ Lp ‖f ∗ g‖p ≤ K2‖f‖W (M,`p)‖g‖W (C,`1) (1.6)

8. Gelfand Triples:
A (Banach) Gelfand triple (B, H,B′) is the combination of a Hilbert space
H with a Banach space B that is continuously and densely embedded into
the Hilbert space, and its dual space B′, into which in turn the Hilbert space
is weak* continuously and densely embedded. A linear mapping between two
Gelfand triples is called bounded if it is bounded on all three levels and pre-
serves weak* convergence. Similarly a unitary Gelfand triple isomorphism is a
mapping that is isomorphic on all three levels and additionally unitary on the
Hilbert space level.
The main reason for introducing Gelfand triples is their practicability when
trying to extend definitions or properties from a Hilbert space to a greater class
of functions. As a general rule one simply has to replace all inner products
by linear functionals, i.e., 〈h, f〉 = f(h) = h(f) ∀h ∈ B,∀f ∈ B′, and by
hand waving argue that everything will be fine. Conversely it is often easier
to prove something just for B and then again by hand waving extend it to the
whole Gelfand triple. For general information on Gelfand triples see [12] and
”hand waving” is described in 7.3.3/4 in [8].

1.2 Riesz Bases and Frames

Definition 1.1 (Riesz Basis). A family of functions (gi)i∈I in a Hilbert space H
is a Riesz basis for its closed linear span if there exist constants A,B > 0 s.t. for
all sequences c ∈ `(I):

A‖c‖2 ≤ ‖∑

i∈I

cigi‖H ≤ B‖c‖2 (1.7)

A direct consequence of (1.7) is that every function f in the closed linear span
of (gi)i∈I has an expansion of the form f =

∑
i∈I cigi with uniquely determined

coefficients (ci)i∈I . These coefficients can be calculated by taking inner products

4 CHAPTER 1. BASICS OF TIME FREQUENCY ANALYSIS

with a biorthogonal basis (g̃i)i∈I , i.e., a basis such that 〈gi, g̃j〉 = δi,j holds for all
i, j ∈ I. Thus we have:

f =
∑

i∈I

〈f, g̃i〉gi

A consequence of the uniqueness of the coefficients is that assuming (g̃i)i∈I ⊆
span(gi)i∈I the biorthogonal basis is also uniquely determined.

Definition 1.2 (Frames). A family (fj)j∈J in a Hilbert space H is called a frame
if there exist constants A,B > 0 such that for all f ∈ H

A‖f‖2
H ≤ ∑

j∈J

|〈f, fj〉|2 ≤ B‖f‖2
H (1.8)

The constants A,B are called frame bounds. A frame is called tight if A=B.

For a family of functions (fj)j∈J , not necessarily but most of the times a frame,
the analysis operator C : H −→ `2 is given by

Cf = (〈f, fj〉)j∈J

and the synthesis operator D : `2 −→ H is given by

Dc =
∑

j∈J

cjfj

The combination of the analysis and synthesis operator S = DC is called the frame
operator. Note that as D and C are adjoint to each other, D = C∗, S is self-adjoint,
i.e., S = C∗C = DD∗.
Now by reformulation of the frame-condition (1.8).

〈Sf, f〉 = 〈∑
j∈J

〈f, fj〉, f〉 =
∑

j∈J

|〈f, fj〉|2

A‖f‖2 ≤ 〈Sf, f〉 ≤ B‖f‖2

we see that it is equivalent to S being bounded and positive and thus invertible,
with inverse S−1. Consequently every f ∈ H has expansions of the form:

f = S−1Sf =
∑

j∈J〈f, fj〉S−1fj

f = SS−1f =
∑

j∈J〈S−1f, fj〉fj =
∑

j∈J〈f, S−1fj〉fj

(1.9)

The family (f̃j)j∈J = (S−1fj)j∈J is again a frame with frame bounds B−1, A−1.
However it is not the only dual frame, i.e., a frame (gj)j∈J that allows an expansion
of the form: f =

∑
j∈J〈f, gj〉fj but as it yields the coefficients (〈f, f̃j〉)j∈J with

minimal ‖ · ‖2 it is called the canonical dual frame.
Tight frames are of special interest, because for them, as can be seen from (1.8), the
frame operator is a multiple of the identity operator. Therefore the dual frame is,
apart from a constant, the same as the original and expansion (1.9) takes a more
simplistic form.

f =
1

A
Sf =

1

A

∑

j∈J

〈f, fj〉fj

1.3. GABOR FRAMES 5

Starting with an arbitrary frame there exists a nice trick to get a tight frame. Since

S and thus S−1 are positive and self-adjoint, S
1
2 and S−

1
2 exist and are again positive

and self-adjoint. From the manipulations

f = S−
1
2 SS−

1
2 f = S−

1
2

∑

j∈J

〈f, S−
1
2 f〉fjfj

=
∑

j∈J

〈f, S−
1
2 fj〉S− 1

2 fj (1.10)

we get that (S−
1
2 fj)j∈J is a tight frame with frame bounds A = B = 1.

For a detailed description of the concepts outlined above see [1]. Both the concept
of a Riesz basis and a frame can be generalized to Banach spaces, see e.g. [11].

1.3 Gabor Frames

A special type of frames on L2(Rd) are the Gabor or Weyl-Heisenberg frames, where
the atoms fj are shifted versions of one window function g, i.e.,

(gλ)λ∈Λ = (π(λ)g)λ∈Λ (1.11)

This adds a lot of structure. So the frame operator S commutes with TF-shifts:

T−x M−ω SMωTxf =
∑

(y,ξ)∈Λ

〈MωTxf, Mξ Ty g〉T−x M−ω Mξ Ty g =

=
∑

(y,ξ)∈Λ

〈f, e−2πi(ξ−y)x Mξ−ω Ty−x g〉e−2πi(ξ−y)x Mξ−ω Ty−x g =

=
∑

(y′,ξ′)∈Λ

〈f, Mξ′ Ty′ g〉Mξ′ Ty′ g = Sf

Consequently S−1 and S−
1
2 commute with TF-shifts and because

S−1(gλ)λ∈Λ = (S−1π(λ)g)λ∈Λ = (π(λ)S−1g)λ∈Λ = (π(λ)g̃)λ∈Λ

the dual frame S−1(gλ)λ∈Λ and in analogy the canonical tight frame S−
1
2 (gλ)λ∈Λ are

again Gabor frames.
Also the frame operator itself has now many representations. One of them will be
presented in Chapter 3, as it allows for efficient computations.
Among the remaining problems however is how to find window functions and lattices
such that (gλ)λ∈Λ constitutes a frame. This is quite delicate as there exist L2-
functions so that for no lattice Λ = aZd×bZd, a, b > 0, (gλ)λ∈Λ forms a frame,
see [14] p110. One way to avoid these complications is to introduce a new class of
functions that are especially suitable as windows.

1.4 The Space S0

We next introduce a space of test functions which will play a role similar to the
Schwartz space of rapidly decreasing functions. However while the Schwartz space,

6 CHAPTER 1. BASICS OF TIME FREQUENCY ANALYSIS

being only a Frechet space, is quite awkward to deal with this new space is technically
much more simple and in combination with L2 provides a very useful Banach Gelfand
triple for our purposes.

Definition 1.3. Let g be the normalized d-dimensional Gaussian g(x) = e−πx2
, then

the space S0(Rd) is defined as

S0(Rd) = {f ∈ S ′, ‖Vgf‖1 < ∞} (1.12)

Remark 1.1. S0 belongs to a class of function spaces called modulation spaces and in
that context is mostly denoted by M 1. They were first introduced by H. Feichtinger
and so S0 is also known as Feichtinger’s algebra. An extensive study of modulation
spaces in general can be found in [14], especially Chapters 11 and 12, and properties
of S0 are discussed in [11].

Proposition 1.1. Properties of S0

(i) S0(Rd) is a Banach space with dual space:

S′
0(Rd) = {f ∈ S ′, ‖Vgf‖∞ < ∞}

and together (S0,L
2,S′

0)(Rd) form a Gelfand triple.

(ii) By replacing the Gaussian in the definition of S0 with any other window in S
and even S0 we get an equivalent norm.

(iii) If f ∈ S0 then f, f̂ ∈ W (C, `1) and consequently f is continuous.

(iv) If f, g are in S0(Rd) then the STFT Vgf is even in W (C, `1)(R2d).

(v) The Fourier transform as well as all TF-shifts establish unitary Gelfand-Triple
isomorphisms on (S0,L

2,S′
0). In particular, S0(Rd) is isometrically invariant

under TF-shifts (and it is the smallest non-trivial Banach space with this prop-
erty).

(vi) S0(Rd)⊗ S0(Rd) ⊆ S0(R2d)

The proofs of (i-iv) need quite some theoretical background and can be found
in one of the above mentioned books (e.g. [14] Theorems 11.3.5-7, 12.1.4/11). The
proofs of (v) and (vi) are straight forward calculations that are good to get a feeling
for S0.
Proof :
(v) We will just show that S0(Rd) is isometrically invariant under TF-shifts and the
Fourier transform. So given f ∈ S0(Rd) we have:

‖f̂‖S0 =
∫

R2d
|〈f̂ , MωTxg〉|dωdx =

∫

R2d
|〈f̂ , MωTxĝ〉|dωdx =

=
∫

R2d
|〈f̂ , ̂T−ω Mx g〉|dωdx =

∫

R2d
|〈f, T−ω Mx g〉|dωdx = ‖f‖S0

1.4. THE SPACE S0 7

‖MωTxf‖S0 =
∫

R2d
|〈MωTxf, Mξ Ty g〉|dξdy =

∫

R2d
|〈f, T−x M−ω Mξ Ty g〉|dξdy =

=
∫

R2d
|〈f, Mξ−ω Ty−x g〉|dξdy =

∫

R2d
|〈f, Mξ′ Ty′ g〉|dξ′dy′ = ‖f‖S0

(vi) Note that the 2d-dimensional Gaussian is the tensor product of two d-dimensional
Gaussian. Writing ω = (ω1, ω2), x = (x1, x2), we also have MωTxg = Mω1 Tx1 g ⊗
Mω2 Tx2 g and thus:

‖f1 ⊗ f2‖S0 =
∫

R4d
|〈f1 ⊗ f2, Mω1 Tx1 g ⊗Mω2 Tx2 g〉|dω1dω2dx1dx2 =

=
∫

R4d
|〈f1, Mω1 Tx1 g〉| · |〈f2, Mω2 Tx2 g〉|dω1dω2dx1dx2 = ‖f1‖S0‖f2‖S0

As a bonus with S0 comes its dual space S′
0 that is consequently also invariant under

the Fourier transform and TF-shifts. Since S0-functions are continuous but need not
be differentiable, functions in S′

0 cannot be too ”wild”. However it still contains all
locally integrable functions and the for signal analysis important pure frequencies
e2πixω as well as their Fourier transforms the δ-distributions.

Finally there are three theorems that should justify the introduction of S0 as
they will make everything nice and easy.

Theorem 1.2. For a Gabor family (π(λ)g)λ∈Λ, Λ = aZd×bZd, denote the synthesis
operator by Dg and the analysis operator by Cg.
If g ∈ S0 then Cg and Dg are bounded for all lattice constants a, b > 0, i.e.,

Cg : (S0,L
2, S′

0) −→ (`1, `2, `∞) with ‖Cg‖OP ≤ K1‖g‖S0 and

Dg : (`1, `2, `∞) −→ (S0,L
2, S′

0) with ‖Dg‖OP ≤ K2‖g‖S0

For c ∈ (`1, `2)) the sum Dgc =
∑

λ∈Λ c(λ)π(λ)g converges unconditionally in (S0, L
2)

and for c ∈ `∞ weak* in S0
′.

(Proof in [14] Theorems 12.2.3/4)

This means essentially that whenever g ∈ S0 the resulting Gabor family has
an upper frame bound and thus is a ”Bessel sequence”. The next theorem finally
establishes the existence of Gabor frames.

Theorem 1.3. Given a window g ∈ S0 there exist lattice constants a0, b0 > 0, such
that for all lattices Λ = aZd×bZd with a < a0, b < b0 the generated Gabor family
(gλ)λ∈Λ constitutes a frame.
Additionally the frame operator S is also invertible on S0. As a consequence the

canonical dual atom g̃ = S−1g is again in S0. Further the operator S−
1
2 maps S0

into S0 and thus also the associated tight atom gt = S−
1
2 g is in S0?

(Proof in [14] Theorem 6.5.1 and [15] Theorems 9 resp. 15)

Theorem 1.4. Let B be the Banach space of bounded linear operators from S′
0(Rd) to

S0(Rd), that additionally map weak*-convergent sequences into S0-norm convergent
sequences 1. Then its dual space B′ can be naturally identified with the space of

1Actually, this is equivalent to the fact that w∗-convergent nets are mapped onto norm conver-
gent nets in S0.

8 CHAPTER 1. BASICS OF TIME FREQUENCY ANALYSIS

bounded linear operators from S0(Rd) to S′
0(Rd) the duality pairing being the natural

extension of the scalar product for Hilbert Schmidt operators.
Together with the HS-operators HS on L2(Rd) these Banach spaces form a Gelfand
triple (B,HS,B′) that is isomorphic to (S0,L

2,S′
0)(R2d), i.e.,

K ∈ (B,HS,B′) ←→ κ(K) ∈ (S0,L
2,S′

0)(R2d)

(Proof in [8] Theorems 7.4.1/2)

Because every bounded linear operator T on L2(Rd) restricts to a bounded linear
operator from S0(Rd) to S′

0(Rd) we can associate a kernel κ(T) to it. Hence ignoring
the fact that an element of S′

0(Rd) may actually be a true distribution we can think
of T as an integration operator.

Chapter 2

Gabor Multipliers

As was shown in the first chapter Gabor frames provide a method of analysing and
synthesising functions like for instance audio signals. So let’s have a look at one
possible application - wireless communication. The interesting part of the signal are

Figure 2.1: Communication Model

the spoken words but the received signal is a superposition of the voice, street noise
and all kinds of transmission effects. So in order to filter away noise and correct the
transmission irregularities it would be a good idea not to just re-synthesize with the
received coefficients but to process them first. Mathematically this process can be
described as:

f −→ G(f)f =
∑

λ∈Λ

m(λ, f)〈f, π(λ)g1〉π(λ)g2

or linearizing the dependence of G on f as:

f −→ Gf =
∑

λ∈Λ

m(λ)〈f, π(λ)g1〉π(λ)g2

This motivates the following definition and subsequent study of Gabor multipliers.
All results in this chapter can be found in a condensed version in [9] or [3].

2.1 Definition & Basic Properties

Definition 2.1 (Gabor Multiplier). Let g1, g2 be two functions in L2(Rd), Λ a
time frequency lattice for Rd and m = (m(λ))λ∈Λ a complex valued sequence on

9

10 CHAPTER 2. GABOR MULTIPLIERS

Λ. The Gabor multiplier associated to the triple (g1, g2, Λ) with multiplier or upper
symbol m is given by:

Gm(f) = Gg1,g2,Λ,m(f) =
∑

λ∈Λ

m(λ)〈f, π(λ)g1〉π(λ)g2 (2.1)

The above definition is very general and so it is necessary to check under which
conditions on the windows g1, g2, the lattice Λ and the upper symbol m the resulting
operator is well defined.
Let M denote the operator that acts on sequences c = (c(λ))λ∈Λ by point-wise
multiplication i.e., M c = (m(λ)c(λ))λ∈Λ. Now the Gabor multiplier Gg1,g2,Λ,m can
be written as a combination of three already known operators.

Gg1,g2,Λ,m = Dg2 ◦M ◦Cg1

One way to ensure that G is bounded is to assume that Cg1 , Dg2 and M are bounded.
For M this means that the multiplying sequence m should be bounded i.e., m ∈
`∞(Λ) and for Cg1 , Dg2 that g1, g2 should be Bessel atoms with respect to the lattice
Λ. This motivates the choice g1, g2 ∈ S0(Rd) and Λ = aZd×bZd with a, b > 0, a
separable lattice, as every g ∈ S0(Rd), g 6= 0, is a Bessel atom for any separable
lattice, independent of the lattice constants a, b.
The following theorem is a summary of these considerations.

Theorem 2.1. Let g1, g2 ∈ S0(Rd), Λ = aZd×bZd.

(i) If m ∈ `∞(Λ) then Gm = Gg1,g2,Λ,m defines a bounded operator on (S0,L
2,S′

0)(Rd),
with operator norm ‖Gm‖OP ≤ C‖m‖∞

(ii) If m ∈ `2(Λ) then Gm maps S′
0(Rd) into L2(Rd) and L2(Rd) into S0(Rd) i.e.,

Gm : S′
0(Rd) −→ L2(Rd), Gm : L2(Rd) −→ S0(Rd)

(iii) If m ∈ `1(Λ) then Gm maps S′
0(Rd) into S0(Rd) i.e., Gm : S′

0(Rd) −→ S0(Rd)

Proof :
Norm estimates for the pointwise product of two sequences of the form ‖cd‖p ≤
‖c‖∞‖d‖p and ‖cd‖1 = 〈|c|, |d|〉 ≤ ‖c‖2‖d‖2, |c| = |c(λ)|λ∈Λ, lead to the following
mapping properties for M:

m ∈ `∞(Λ) ⇒ M : (`1, `2, `∞) −→ (`1, `2, `∞) with ‖M ‖OP ≤ ‖m‖∞
m ∈ `2(Λ) ⇒ M : (`2, `∞) −→ (`1, `2) with ‖M ‖OP ≤ ‖m‖2

m ∈ `1(Λ) ⇒ M : `∞ −→ `1 with ‖M ‖OP ≤ ‖m‖1

The rest is a consequence of Theorem 1.2.

‖Gm‖OP = ‖Dg2 M Cg1‖OP ≤
≤ ‖Dg2‖OP‖M ‖OP‖Cg1‖OP ≤ C‖g1‖S0‖g2‖S0‖m‖(1,2,∞) < ∞

2.1. DEFINITION & BASIC PROPERTIES 11

Of course it is now possible to have a look at what happens with L2-windows
and `p-multipliers as is for instance done in Section 3 of [9]. However for our needs
the most important output is that Gabor multipliers with `∞-multipliers and S0-
windows are well behaved on L2 and that there is a certain stability in the depen-
dence on the building blocks. Namely:

Corollary 2.2. The Gabor multiplier Gg1,g2,Λ,m depends continuously on the multi-
plying sequence m, the analysis and the synthesis windows g1, g2, i.e., small changes
of the multiplier, measured in the (1, 2,∞)-norm, or of the windows, measured in
the S0-norm, cause only small changes of the Gabor multiplier, measured in the
appropriate operator norms.

Proof :
The statement is a direct consequence of the estimates in the proof of Theorem 2.1
and the triangular equation, i.e., :

‖Gm,g1,g2,Λ −Gm̃,g̃1,g̃2,Λ‖OP ≤
≤ ‖Gm−m̃,g1,g2,Λ‖OP + ‖Gm̃,g1−g̃1,g2,Λ‖OP + ‖Gm̃,g̃1,g2−g̃2,Λ‖OP ≤
≤ C1‖m− m̃‖(1,2,∞) + C2‖g1 − g̃1‖S0 + C3‖g2 − g̃2‖S0 ≤ C4ε

Remark 2.1. As a conclusion to Theorem 2.1 for the rest of the thesis it will always
be assumed that the windows g1, g2 are in S0 and that Λ is a separable lattice.
However most results are also valid for the arbitrary lattices.

An alternative and very fruitful way to look at the Gabor multiplier Gg1,g2,Λ,m is
to interpret it as a sum of rank 1 operators Pλ.

Gg1,g2,Λ,mf =
∑

λ∈Λ

m(λ)〈f, π(λ)g1〉π(λ)g2 =
∑

λ∈Λ

m(λ) [(π(λ)g1)⊗ (π(λ)g2)
∗]︸ ︷︷ ︸

Pλ

f

Gg1,g2,Λ,m =
∑

λ∈Λ

m(λ)Pλ =
∑

λ∈Λ

m(λ)π2(λ)P0 (2.2)

Exploiting this representation - the validity of the second part of (2.2) will be shown
in the proof of the following theorem - and the mapping properties of Dg for S0-
windows again leads to a nice and useful result about the distributional kernels of
Gabor multipliers.

Theorem 2.3. For two windows g1, g2 ∈ S0(Rd) and any separable lattice Λ the Ga-
bor multiplier Gg1,g2,Λ,m has distributional kernel κ(Gm) in (S0, L

2,S′
0)(R2d) when-

ever the upper symbol m is in (`1, `2, `∞).

Proof :
P0 obviously has the integration kernel κ(P0) = g = g1 ⊗ g∗2 ∈ S0(R2d). Pλ on the
other hand can be written as:

Pλ = (π(λ)g1)⊗ (π(λ)g2)
∗ = π(λ)(g1 ⊗ g∗2)π

∗(λ) = π2(λ)P0

12 CHAPTER 2. GABOR MULTIPLIERS

So remembering (1.2) its kernel κ(Pλ) is just a shifted version of κ(P0).

κ(Pλ) = M(ω,−ω) T(x,x) κ(P0)

If Λ is the original lattice Λ = aZd×bZd define Λ2 = aZ2d × bZ2d and m̃ on Λ2 by

m̃(x, x, ω,−ω) =

{
m(x, ω) = m(λ) for λ∈Λ
0 else

Clearly m̃ ∈ (`1, `2, `∞)(Λ2) whenever m ∈ (`1, `2, `∞)(Λ). Now κ(Gm) can be
written as:

κ(Gm) =
∑

λ∈Λ

m(λ)κ(Pλ) =

=
∑

(x,x,ω,−ω)∈Λ2

m̃(x, x, ω,−ω) M(ω,−ω) T(x,x) κ(P0) =

=
∑

λ2∈Λ2

m̃(λ2)π(λ2)κ(P0) = Dg,Λ2m̃

Applying Theorem 1.2 for g = g1 ⊗ g∗2 ∈ S0(R2d) and Λ2 yields that for m̃ ∈
(`1, `2, `∞)(Λ2) the kernel κ(Gm) is a function/distribution in (S0,L

2,S′
0)(R2d) and

that ‖κ(Gm)‖(S0,L2,S′0) ≤ C‖g‖S0‖m‖1,2,∞.

Remark 2.2. Actually Theorem 2.3 could have been directly deduced from Theorem
2.1 and Theorem 1.4, i.e., for m ∈ `∞ Gm maps S0 into S0 ⊂ S′

0 and therefore it has
to have an S′

0 integration kernel. The nice thing about the proof is that it simulates
the proof of Theorem 1.4 and gives the idea that Gabor multipliers are operators
that in some way live only on a diagonal. For another idea in that direction see the
proof of Theorem 4.3 in Chapter 4.
A compact formulation of Theorem 2.3 using the language of Gelfand triples is
that the mapping α from upper symbol to Gabor multiplier is bounded linear from
(`1, `2, `∞) to (B,HS,B′).

From now on the focus will be mainly on Gabor multipliers as operators on the
Hilbert space level L2(Rd).

Theorem 2.4. Let g1, g2 ∈ S0(Rd):

(i) If g1 = g2 = g and m is real-valued then Gg,Λ,m is self-adjoint on L2(Rd).

(ii) If m ∈ c0(Λ) then Gg1,g2,Λ,m is compact on L2(Rd).

(iii) If m ∈ `2(Λ) then Gg1,g2,Λ,m is a Hilbert Schmidt operator on L2(Rd).

(iv) If m ∈ `1(Λ) then Gg1,g2,Λ,m is a trace class operator on L2(Rd).

Proof :

2.1. DEFINITION & BASIC PROPERTIES 13

(i) Let’s calculate G∗
m first, write π(λ)g = gλ:

〈G∗
mf, h〉 = 〈f, Gmh〉 = 〈f,

∑

λ∈Λ

m(λ)〈h, gλ〉gλ〉 =
∑

λ∈Λ

m(λ)〈h, gλ〉〈f, gλ〉 =

=
∑

λ∈Λ

m(λ)〈f, gλ〉〈gλ, h〉 = 〈∑
λ∈Λ

m(λ)〈f, gλ〉gλ, h〉

G∗
mf =

∑

λ∈Λ

m(λ)〈f, gλ〉gλ

Now it is easy to see that when m is real-valued Gm is self adjoint.

(ii) since the finite sequences are dense in c0(Λ) choose a finite sequence mε s.t.
‖m−mε‖∞ ≤ ε. Now by

‖Gm −Gmε‖OP = ‖Gm−mε‖OP ≤ C‖m−mε‖∞ ≤ Cε

Gm is the limit of finite rank operators and thus compact.

(iii) by Theorem 2.3 for m ∈ `2(Λ) Gm has an integration kernel in L2(Rd) and
thus is Hilbert Schmidt.

(iv) since Gm =
∑

λ∈Λ m(λ)Pλ and

‖Gm‖OP ≤
∑

λ∈Λ

|m(λ)|‖Pλ‖OP ≤ C‖m‖1

Gm is an absolutely convergent sum of rank 1 operators and thus trace class.

Remark 2.3. The fact that Gm is self-adjoint whenever g1 = g2 = g and m is real-
valued is especially interesting for the finite dimensional case. Then Gm corresponds
to a self-adjoint matrix and thus makes computations easier.
(iii) also has some important implications. The Hilbert Schmidt operators again
form a Hilbert space and there the concepts of orthogonal projections and thus best
approximation (by Gabor multipliers) are well defined (see Chapter 4).
Keeping this idea in mind it is good to know that by Theorem 2.3 Gabor multipliers
also depends continuously on their building blocks with respect to the HS-norm,
i.e.,

‖Gm‖HS = ‖κ(Gm)‖2 ≤ C‖g1‖S0‖g2‖S0‖m‖2

As a consequence Corollary 2.2 including the proof remains valid if we replace the
operator by the Hilbert Schmidt norm.

The explorations so far concerned the influence of the upper symbol m and the
windows g1, g2 on the properties of a Gabor multiplier, but not of the lattice Λ. The
only thing that is known is that together with S0-windows any separable lattice will
do fine.
There are two main questions about the influence of the lattice: First concerning the

14 CHAPTER 2. GABOR MULTIPLIERS

continuity, how do small changes of the lattice constants affect the Gabor multiplier
and later for the approximation of arbitrary operators, how does the density or shape
of the lattice affect the approximation qualities of a Gabor system.
Before answering either of these questions it is necessary to introduce two new classes
of symbols especially suited to characterise a Gabor multiplier.

2.2 The Kohn Nirenberg Symbol (KNS)

Definition 2.2. The Kohn Nirenberg Symbol σ(K) of an operator K with distribu-
tional kernel κ(K) is the function or distribution on R2d defined by:

σ(K)(x, ξ) :=
∫

Rd
κ(K)(x, x− t)e−2πiξtdt

Theorem 2.5. (Properties of the KNS)

(i) The mapping α : κ(K) 7−→ σ(K) is a unitary Gelfand triple isomorphism on
(S0,L

2,S′
0)(R2d).

(ii) (Shift covariance) The action of π2(λ) on K corresponds to a translation Tλ

of the KNS σ(K), i.e.,
σ(π2(λ)(K)) = Tλσ(K) (2.3)

Proof :

(i) For a rigorous proof see 7.5.1 in [8]. First of all on the S0-level the KNS is
well defined because the integral is absolutely convergent. Decomposing α as
α = F2 ◦ T, where:

(T f)(x, t) = f(x, x− t) and

(F2f)(x, ξ) =
∫

Rd
f(x, t)e−2πiξtdt

we also see that α leaves S0 invariant - the calculations are similar to those
in the proof of Proposition 1.1 - and that its natural extension to L2 as a
combination of unitary operators is again unitary, i.e., α−1 = α∗ = T∗F∗

2 .
Therefore the kernel can be recovered from the KNS by:

κ(K)(x, t) = T∗F∗
2σ(K)(x, t) =

∫

Rd
σ(K)(x, ξ)e2πiξ(x−t)dξ

(ii) From Chapter 1 (1.2) we know that for λ = (x, ω):

κ(π2(λ)K)(y, t) = κ(K)(y − x, t− x)e2πiω(y−t)

Calculating happily away we get:

σ(π2(λ)K)(y, ξ) =
∫

Rd
κ(π2(λ)K)(y, y − t)e−2πiξtdt =

=
∫

Rd
κ(K)(y − x, y − t− x)e2πiω(y−(y−t))e−2πiξtdt =

=
∫

Rd
κ(K)(y − x, y − x− t)e−2πit(ξ−ω)dt =

= σ(K)(y − x, ξ − ω) = T(x,ω) σ(K)(y, ξ)

2.3. THE SPREADING FUNCTION η 15

To get an idea what a KNS may look like, let us calculate it for one of our ”pet
operators”, the rank 1 operator P.

Example 2.1 (KNS of the rank 1 operator P = f ⊗ g∗).

σ(P)(x, ξ) =
∫

Rd
f(x)g(x− t)e−2πiξtdt =

= f(x)
∫

Rd
g(z)e2πiξ(z−x)dz =

= f(x)e−2πiξx
∫

Rd
g(z)e−2πiξzdz =

= e−2πiξxf(x)ĝ(ξ)

The next proposition yields an important characterization of the KNS of a Gabor-
multiplier, i.e., as a weighted sum of translates of one window function.

Proposition 2.6. The KNS of a Gabor multiplier Gm is given by a convolution
over Λ between the upper symbol m and the KNS of P0 = g1 ⊗ g∗2.

Proof : writing z = (x, ξ):

σ(Gm)(x, ξ) =
∫

Rd
κ(Gm)(x, x− t)e−2πiξtdt =

=
∫

Rd

∑

λ∈Λ

m(λ)κ(π2(λ)P0)(x, x− t)e−2πiξtdt =

=
∑

λ∈Λ

m(λ)
∫

Rd
κ(π2(λ)P0)(x, x− t)e−2πiξtdt =

=
∑

λ∈Λ

m(λ)σ(π2(λ)P0)(x, ξ) =

=
∑

λ∈Λ

m(λ)Tλσ(P0)(x, ξ) = (2.4)

=
∑

λ∈Λ

m(λ)σ(P0)(z − λ) =

= m ∗Λ σ(P0)(z) (2.5)

2.3 The Spreading Function η

Definition 2.3. The spreading function η(K) of an operator K with distributional
kernel κ(K) is the function/distribution on R2d defined by

η(K)(t, ν) =
∫

Rd
κ(K)(x, x− t)e−2πixνdx (2.6)

Proposition 2.7. (Properties of the spreading function)

(i) The mapping α from kernel to spreading function is a unitary Gelfand triple
isomorphism on (S0,L

2,S′
0)(Rd) with inverse:

κ(K)(t, x) =
∫

Rd
η(K)(t− x, ν)e2πitνdν

16 CHAPTER 2. GABOR MULTIPLIERS

(ii) The operator K can be recovered from its spreading function by

K =
∫

R2d
η(K)(t, ν) Mν Tt dtdν (2.7)

Proof :
(i) The idea is the same as for the KNS. A rigorous proof as well as a proof for (ii)
can again be found in Section 6 in [8].
We decompose α into the two unitary operators:

T f(t, x) = f(x, x− t) T∗ f(t, x) = f(t− x, t)

F2f(t, ν) =
∫

Rd
f(t, x)e2πixνdx

Now the integration kernel can be reconstructed by:

κ(K)(t, x) = T∗F∗η(K)(t, x) =

= T∗
∫

Rd
η(K)(t, ν)e2πixνdν =

∫

Rd
η(K)(t− x, ν)e2πitνdν

Remark 2.4. From (2.7) we can quickly calculate the spreading function of the TF-
shift-operator π(λ), i.e.,

π(λ) = MωTx =
∫

R2d
δ(ω,x) Mν Tt dtdν ⇒ η(π(λ)) = δλ

The fact that the spreading symbols of TF-shifts are just the δ-distributions does not
only demonstrate why it will be a useful tool for the analysis of Gabor-multipliers
but is actually a uniquely determining property for the Gelfand triple isomorphism
from operator to spreading symbol.

Again to get a feeling for the spreading function and for later purposes it is
instructive to calculate the spreading function for the rank 1 operator P = gλ⊗gλ′

∗.

Example 2.2 (spreading function of P = gλ ⊗ gλ′
∗).

η(P)(t, ν) =
∫

Rd
gλ(x)gλ′(x− t)e−2πixνdx = 〈gλ, Mν Tt gλ′〉 =

= 〈MωTxg, Mω′ Tx′ Mν Tt gλ′〉 =

= e2πiϕ〈g, Mν+ω′−ω Tt+x′−x g〉 = (ϕ = x(ω − ω′ − ν) + tν)

= e2πiϕVgg(ν + ω′ − ω, t + x′ − x)

Finally equipped with the KNS we are ready to investigate the influence of the
lattice Λ on a Gabor multiplier.

2.4. VARYING THE LATTICE 17

2.4 Varying the Lattice

One technical problem arising by varying the lattice is that multipliers on different
lattices have to be compared. Therefore the multiplier needs to be defined on the
full time-frequency plane Rd× R̂d in a way that the samples on any separable lattice
Λk = akZd×bkZd yield a suitable upper symbol. There are two main considerations.
First since Gabor multipliers are in HS, the space of Hilbert Schmidt operators,
the upper symbols mk = (m(nak, lbk))(n,l)∈Z2d have to be square summable for all
k ∈ N and second m(nak, lbk) should converge to m(na0, lb0) for k → ∞ and all
(n, l) ∈ Z2d. Together this suggests to choose the multiplier m ∈ W (C, `2).
Finally we have all the necessary tools to state and proof the promised theorem
about the continuous dependence on the lattice.

Theorem 2.8. Let g1, g2 ∈ S0 and m ∈ W (C, `2) be given. Furthermore let
(ak, bk) be a sequence of lattice constants such that (ak, bk) → (a0, b0), for some pair
of positive lattice constants (a0, b0). Write Gk for the Gabor multiplier with analysis
window g1, synthesis window g2, using the time-frequency lattice Λk = akZd × bkZd

and corresponding multiplier sequence mk = (m(nak, lbk))(n,l)∈Z2d, i.e.,

Gk(f) =
∑

(n,l)∈Z2d

m(nak, lbk)〈f, Mlbk
Tnak

g1〉Mlbk
Tnak

g2 (2.8)

Then the Gk converge to G0 in the Hilbert-Schmidt norm.

Proof : (compare [6])
The proof is quite lengthy and better ignored by all who do not enjoy analytic esti-
mates.
To show that Gk → G0 in the HS-norm we need to show that their operator kernels
or equivalently their KNSs (see Theorem 2.5(i)) converge in L2(R2d). So remember-
ing (2.4) the KNS of a Gabor multiplier can be written as

σ(Gk) =
∑

(n,l)∈Z2d

m(nak, lbk) T(nak,lbk) σ(P0) with P0 = g1 ⊗ g∗2

Thus the aim is to proof that for k →∞

‖ ∑

(n,l)∈Z2d

m(nak, lbk) T(nak,lbk) σ(P0)−m(na0, lb0) T(na0,lb0) σ(P0)‖L2(R2d) → 0

Now the idea is to split the sum over (n, l) ∈ Z2d into two sums. One over a
finite set F , where the weight of the multiplier sequence is concentrated but each of
the summands converges nicely, and one over the rest, F ′ = Z2d/F , that does not
contribute much, i.e.,

‖ ∑

(n,l)∈Z2d

. . . ‖L2 ≤ ‖ ∑

(n,l)∈F

. . . ‖L2 + ‖ ∑

(n,l)∈F ′
. . . ‖L2 (2.9)

18 CHAPTER 2. GABOR MULTIPLIERS

To choose the set F we first reformulate the KNS of Gk again. If we define the
measure µk :=

∑
(n,l)∈Z2d m(nak, lbk)δ(nak,lbk) we can write:

σ(Gk)(x, ξ) =
∑

(n,l)∈Z2d

σ(P0)(x− nak, ξ − lbk) ·m(nak, lbk) =

=
∫

R2d
σ(P0)(x− x′, ξ − ξ′)dµk(x

′, ξ′) =

= µk ∗ σ(P0)(x, ξ)

and if we split µk into µk = µk|F + µk|F ′ we can write the infinite sum in (2.9) as

∑

(n,l)∈F ′
. . . = µk|F ′ ∗ σ(P0)− µ0|F ′ ∗ σ(P0)

Since the compactly supported functions are dense in W (C, `2) for any ε′ > 0 we
can choose a compactly supported plateau function p with values p(x) ∈ [0, 1] such
that ‖m − mp‖W (C,`2) < ε′. Then F := Z2d ∩ supp p is finite and there holds the
point-wise estimate |(1− χsupp p)m(x)| ≤ |(1− p)m(x)|.
Now wlog assuming that the density of the lattices is bounded above, for instance
ak > a0

2
> 0, bk > b0

2
> 0, we can estimate the W (M, `2)-norm of

µk|F ′ =
∑

(n,l)∈F ′ m(nak, lbk)δ(nak,lbk). (write Q = [0, 1]2d)

‖µk|F ′‖2
W (M,`2) =

∑

j∈Z2d

|µk|F ′|2(j + Q) ≤

≤ ∑

j∈Z2d

sup
x∈j+Q

|(1− χsupp p)m(x)|2 ·#2{(na0

2
, lb0

2
) ∈ j + Q} ≤

≤ ∑

j∈Z2d

sup
x∈j+Q

|(1− p)m(x)|2 · C2
1 ≤

≤ C2
1‖(1− p)m‖2

W (C,`2) ≤ C2
1ε
′2

Finally using the convolution relation for Wiener amalgams of the form W (M, `2)(R2d)∗
W (C, `1)(R2d) ⊆ W (C, `2)(R2d) we can estimate the norm of the infinite sum by:

‖ ∑

(n,l)∈F ′
. . . ‖L2 ≤ ‖µk|F ∗ σ(P0)‖W (C,`2) + ‖µ0|F ′ ∗ σ(P0)‖W (C,`2) ≤

≤ (‖µk|F‖W (M,`2) + ‖µ0|F ′‖W (M,`2)) · ‖σ(P0)‖W (C,`1) ≤
≤ 2C1ε

′ · ‖σ(P)‖S0 ≤
ε

2
(2.10)

To estimate the finite part of the sum in (2.9) observe that m(nak, lbk) →
m(na0, lb0) for all (n, l) ∈ F . Also since σ(P0) ∈ S0 ⊆ L2 we have that ‖Tδσ(P0)−
σ(P0)‖L2 ≤ ε′ for ‖δ‖ ≤ δ0. Thus we can find a k0 ∈ N such that for all k > k0 and
all (n, l) ∈ F :

‖(nak, lbk)− (na0, lb0)‖ ≤ δ0 and |m(nak, lbk)−m(na0, lb0)| ≤ ε′

Now writing λk = (nak, lbk), λ0 = (na0, lb0) we can estimate each term of the finite

2.4. VARYING THE LATTICE 19

sum by:

‖m(λk) Tλk
σ(P0)−m(λ0) Tλ0 σ(P0)‖L2 ≤

≤ ‖m(λk) Tλk
σ(P0)−m(λ0) Tλk

σ(P0)‖L2 +

‖m(λ0) Tλk
σ(P0)−m(λ0) Tλ0 σ(P0)‖L2 ≤

≤ |m(λk)−m(λ0)| · ‖σ(P0)‖L2 + |m(λ0)| · ‖Tλk−λ0 σ(P0)− σ(P0)‖L2 ≤
≤ ε′ · ‖κ(P0)‖S0 + ‖m‖W (C,`2) · ε′ ≤ C3ε

′ ≤ ε

2 ·#F
(2.11)

Summarizing the estimates (2.10) and (2.11) we see that for k > k0:

‖σ(Gk)− σ(G0)‖L2 ≤ #F · ε

2 ·#F
+

ε

2
≤ ε

Similar results about convergence in other operator classes are discussed in [9]
and [6] . The reason for choosing the HS version here is that in combination with
Remark 2.3 the theorem guarantees complete stability for Gabor multipliers in HS,
which will be reassuring to know when trying to do best approximation in that op-
erator class.

Corollary 2.9. Let gk, g̃k be two sequences of atoms converging in S0 to g0, g̃0, mk

a sequence of functions converging in W (C, `2) to m0 and (ak, bk) a sequence of
lattice constants converging to (a0, b0). Then the Gabor multipliers Gk

Gk(f) = Gmk,gk,g̃k,Λk
f =

∑

(n,l)∈Z2d

mk(nak, lbk)〈f, Mlbk
Tnak

gk〉Mlbk
Tnak

g̃k

converge to G0 in the HS-norm.

Proof :
Applying the triangular equation yields:

‖Gm0,g0,g̃0,Λ0 −Gmk,gk,g̃k,Λk
‖HS ≤

≤ ‖Gm0,g0,g̃0,Λ0 −Gm0,g0,g̃0,Λk︸ ︷︷ ︸
≤ ε (by Theorem 2.8)

‖HS + ‖Gm0,g0,g̃0,Λk
−Gmk,gk,g̃k,Λk︸ ︷︷ ︸

≤ ε (by Remark 2.3)

‖HS

After having established the continuous dependence of a Gabor multiplier on all
its building blocks it would be interesting to have a look at the reversed situation.
So given a Gabor multiplier Gm can the upper symbol m be reconstructed assuming
that it is known which lattice and windows have been used. This problem leads to the
next questions. Which operators can be accurately represented by a Gabor multiplier
and how can we approximate any given linear operator by a Gabor multiplier?
The key to the answering these questions is to think of Gm as an infinite linear
combination of the projection operators (Pλ)λ∈Λ, compare (2.2). From this point of
view GM2, the space of all Gabor multipliers with `2-multiplier can be interpreted
as the closed linear span of (Pλ)λ∈Λ in HS, the space of Hilbert Schmidt operators,
and so studying the family (Pλ)λ∈Λ should yield information about GM2.

20 CHAPTER 2. GABOR MULTIPLIERS

2.5 (Pλ)λ∈Λ as a Riesz basis

The idea that (Pλ)λ∈Λ should be a Riesz basis is suggested by the aim to be able to
reconstruct the upper symbol m from the linear combination Gm =

∑
λ∈Λ m(λ)Pλ or

in other words to have unique coefficients m(λ). So let’s assume for a moment that
(Pλ)λ∈Λ is a Riesz basis. Consequently there exists a biorthogonal basis (Qλ)λ∈Λ,
that allows us to determine the coefficients m(λ) just by taking inner products with
it. Also it is now easy to calculate the orthogonal projection of a general Hilbert-
Schmidt operator K onto GM2, i.e., KP =

∑
λ∈Λ〈K, Qλ〉Pλ, which is at the same

time the best approximation of K by a Gabor multiplier.
However it remains to be investigated if a family (Pλ)λ∈Λ can be a Riesz basis in HS
and if yes under which additional conditions on the windows and the lattice. The
answer to this question is given by the following theorem.

Theorem 2.10. Suppose that for g ∈ S0, (g, Λ) generates a Gabor frame for L2(Rd).
Then the family of projection operators (Pλ = gλ ⊗ gλ

∗)λ∈Λ is a Riesz basis for its
closed linear span within the Hilbert space HS of all Hilbert-Schmidt operators on
L2(Rd) if and only if the Λ-Fourier transform of (|Vgg(λ)|2)λ∈Λ is free of zeros.

Proof :
By definition (Pλ)λ∈Λ is a Riesz basis if there exist constants A,B > 0 such that for
all c ∈ `2(Λ):

A‖c‖2
2 ≤ ‖ ∑

λ∈Λ

c(λ)Pλ‖2
HS ≤ B‖c‖2

2 (2.12)

By Remark 2.3, c ' m, the upper Riesz bound always exists and satisfies B ≤
C‖g‖S0 for g ∈ S0.
To check the lower bound we first rewrite the inner expression of (2.12):

‖ ∑

λ∈Λ

c(λ)Pλ‖2
HS =

∑

λ∈Λ

∑

λ′∈Λ

c(λ)c(λ′)〈Pλ, Pλ′〉HS

and calculate 〈Pλ, Pλ′〉HS .

〈Pλ, Pλ′〉HS = 〈gλ ⊗ gλ
∗, gλ′ ⊗ g∗λ′〉L2(R2d) = 〈gλ, gλ′〉L2(Rd)〈gλ

∗, g∗λ′〉L2(Rd) =

= |〈π(λ)g, π(λ′)g〉|2 = |〈g, π∗(λ)π(λ′)g〉|2 =

= |〈g, e2πix(ω′−ω)π(λ′ − λ)g〉|2 = |〈g, π(λ′ − λ)g〉|2 =

= |Vgg(λ′ − λ)|2

Writing γ = (|Vgg(λ)|2)λ∈Λ there holds:

‖ ∑

λ∈Λ

c(λ)Pλ‖2
HS =

∑

λ∈Λ

c(λ)
∑

λ′∈Λ

c(λ′)γ(λ′ − λ) =

=
∑

λ′∈Λ

c(λ′)(c ∗Λ γ)(λ′) =

= 〈c ∗Λ γ, c〉`2(Λ) =

= 〈ĉ · γ̂, ĉ〉L2(T
Λ⊥)

2.5. (Pλ)λ∈Λ AS A RIESZ BASIS 21

Now it is easy to see that the first part of (2.12) is equivalent to

A
∫

T
Λ⊥
|ĉ(x)|2dx ≤

∫

T
Λ⊥

γ̂(x)|ĉ(x)|2dx ∀ĉ ∈ L2(TΛ⊥)

and that can only hold if γ̂ ≥ A > 0 on TΛ⊥ . This is equivalent to being free of zeros
because γ̂ is continuous, i.e., Vgg is in W (C, `1) and because ‖(|Vgg|2)‖W (C,`1) ≤
‖Vgg‖∞ · ‖Vgg‖W (C,`1) so is |Vgg|2. Consequently γ ∈ `1(Λ) and so its Λ-Fourier
transform is absolutely convergent and thus continuous.

Corollary 2.11. Under the assumptions in Theorem 2.10 the mapping α from
multiplying sequence m to Gabor multiplier Gm is invertible between `2(Λ) and
GM2 ⊆ HS.

In order to explicitly write down the inverse of the mapping α and to see if the
invertibility is also possible on the level of `1 and `∞ it is necessary to find out more
about the biorthogonal system (Qλ)λ∈Λ.

Lemma 2.12. Let (Pλ)λ∈Λ be a Riesz basis in HS. Then the uniquely determined
biorthogonal basis (Qλ)λ∈Λ ⊆ span(Pλ)λ∈Λ is again of the form Qλ = π2(λ)Q0.

Proof :
The idea is to show that (π2(λ)Q0)λ∈Λ is a biorthogonal system. Then assuming
that Q0 ∈ span(Pλ)λ∈Λ it has to be the uniquely determined one.

〈π2(λ)Q0, Pλ′〉HS = 〈Tλ σ(Q0), Tλ′ σ(P0)〉L2 =

= 〈σ(Q0), Tλ′−λ σ(P0)〉L2 =

= 〈Q0, Pλ′−λ〉HS = δ0,λ′−λ = δλ,λ′

Lemma 2.13. The operator Q0 generating the biorthogonal basis is given by its KNS
as

σ(Q0) = FΛ
−1

(1

FΛ(|Vgg|Λ |2)
)
∗Λ σ(P0) (2.13)

Proof :
Since Q0 is in the closed linear span of (Pλ)λ∈Λ it can be written as Q0 =

∑
λ∈Λ c(λ)Pλ

with uniquely determined coefficient sequence c ∈ `2(Λ). By biorthogonality there
holds 〈Q0, Pλ〉 = δ0,λ and so:

δ0,λ = 〈∑

λ′∈Λ

c(λ′)Pλ′ , Pλ〉 =
∑

λ′∈Λ

c(λ′)〈Pλ′ , Pλ〉 =

=
∑

λ′∈Λ

c(λ′)|Vgg(λ− λ′)|2 = c ∗Λ |Vgg|Λ|2(λ)

or δ0 = c ∗Λ |Vgg|Λ |2 (2.14)

22 CHAPTER 2. GABOR MULTIPLIERS

Applying the Λ-Fourier transform to (2.14) yields:

1 ≡ FΛc · FΛ(|Vgg|Λ |2)
c = FΛ

−1
(1

FΛ(|Vgg|Λ |2)
)

Now (2.13) is a consequence of Theorem 2.5, that the KNS of a Gabor multiplier is
given by a Λ-convolution of the multiplier and σ(P0).

Remark 2.5. In the above argument was only assumed that c ∈ `2(Λ). In [5] however
is shown that in fact c is even in `1(Λ). The main argument is that f = FΛ(|Vgg|Λ|2)
is a continuous function (compare Theorem 2.10). As it is bounded away from zero
by the Wiener-Levy theorem its inverse again has an absolutely convergent Fourier
series and so c ∈ `1.
Now as a consequence of c ∈ `1 and Theorem 2.3 Q0 again has an integration kernel
in S0.

Before further exploiting the S0-property of Q0 note that Q0 is only almost as
”nice” as P0, i.e., if the generating Gabor system (gλ)λ∈Λ is a redundant frame Q0

cannot be a rank 1 operator like P0.
Assume there exist γ1, γ2 ∈ S0(Rd) such that Q0 = γ1 ⊗ γ∗2 , then:

δλ,λ′ = 〈Pλ, Qλ′〉 = 〈π2(λ)g ⊗ g∗, π2(λ
′)γ1 ⊗ γ∗2〉 =

= 〈π(λ)g ⊗ (π(λ)g)∗, π(λ′)γ1 ⊗ (π(λ′)γ2)
∗〉 =

= 〈π(λ)g, π(λ′)γ1〉〈π(λ)g, π(λ′)γ2〉 =

= 〈π(λ)g, π(λ′)(〈π(λ)g, π(λ′)γ2〉γ1)〉
Therefore 〈π(λ)g, π(λ′)γ2〉γ1 is a biorthogonal system to (gλ)λ∈Λ, which means that
it is a Riesz basis and thus cannot be redundant.

Coming back to the statement of Corollary 2.11 it is now possible to explicitly
write down how to reconstruct the multiplying sequence for a Gabor multiplier
Gm ∈ GM2, i.e.,

m = (m(λ))λ∈Λ = (〈Gm, Qλ〉)λ∈Λ (2.15)

However since κ(Qλ) ∈ S0(R2d) the mapping β : T → (〈T, Qλ〉)λ∈Λ can by duality
be extended to all operators with kernel in S′

0(R2d) and especially to all linear
operators on L2. Applying β to T we get a bounded sequence mT with ‖mT‖∞ ≤
C‖κ(T)‖S′0 ≤ C̃‖T ‖OP , and thus by Theorem 2.1 the Gabor multiplier GmT

is well
defined.
Similarly starting with an operator T with S0-kernel the sequence mT will be in `1.

‖mT‖1 =
∑

λ∈Λ

|〈κ(T), κ(Qλ)〉| =
∑

λ∈Λ

eiϕ(λ)〈κ(T), κ(Qλ)〉 =

= 〈κ(T),
∑

λ∈Λ

eiϕ(λ)κ(Qλ)〉 ≤ ‖κ(T)‖S0 · ‖
∑

λ∈Λ

eiϕ(λ)κ(Qλ)‖S′0 < ∞

Using the language of Gelfand triples these facts can be summarized in the following
Corollary.

2.5. (Pλ)λ∈Λ AS A RIESZ BASIS 23

Corollary 2.14. (i) β is a surjective bounded linear mapping from (B,HS,B′) to
(`1, `2, `∞)(Λ).

(ii) If the space of all Gabor multipliers with `(1,2,∞)-multiplier is denoted by GM(1,2,∞)

then the mapping from multiplier to Gabor multiplier is bounded invertible be-
tween (`1, `2, `∞) and (GM1,GM2,GM∞) ⊆ (B,HS,B′).

Proof :
ii) is a consequence of Remark 2.2 and the fact that restricted to (GM1,GM2,GM∞)
β is just the inverse of the mapping α.

A more applicable consequence of the rather abstract considerations above is
that in order to represent the identity operator by a Gabor multiplier we need to
use a tight atom g and have m ≡ c.

m(λ) = 〈κ(Id), κ(Qλ)〉(S′0,S0) = 〈σ(Id), σ(Qλ)〉(S′0,S0) =

= 〈1, Tλ σ(Q0)〉(S′0,S0) = 〈1, σ(Q0)〉(S′0,S0) = m(0)

So we have f = Idf =
∑

λ∈Λ m(0)〈f, gλ〉gλ and thus (gλ)λ∈Λ has to be a tight frame.

Remark 2.6. Of course to represent the identity it is also possible to take g and its
dual g̃ but in that case we do not know when P0 = g⊗ g̃∗ generates a Riesz basis or
how Q0 looks like.

Now that all details about Q0 have been established everything is in place to
state the theorem about best approximation of general linear operators by Gabor
multipliers.

Theorem 2.15. Let (g, Λ) be a Gabor system that generates a Riesz basis (Pλ)λ∈Λ

and let (Qλ)λ∈Λ be the biorthogonal basis. Then the best approximation of a Hilbert
Schmidt operator K by a Gabor multiplier based on (g, Λ) is given by:

PG(K) =
∑

λ∈Λ

〈K, Qλ〉HSPλ =
∑

λ∈Λ

〈K, Pλ〉HSQλ (2.16)

Proof :
Since (Pλ)λ∈Λ is a Riesz basis (2.16) describes the orthogonal projection from HS
onto GM2 and thus the best approximation.

Remark 2.7. (i) The combination of Corollary 2.14 and Theorem 2.1 shows that
PG can actually be extended to a bounded mapping from (B,HS,B′) to
(GM1,GM2,GM∞). Hence if we interpret orthogonal projection liberally any
bounded linear operator on L2(Rd) can be ”best” approximated by a Gabor
multiplier.

(ii) Note that the coefficients of the second expansion in (2.16) can be rewritten
as

〈K, Pλ〉HS =
∫

R2d
κ(K)(x, y)gλ(x)gλ(y)dxdy = 〈Kgλ, gλ〉L2 (2.17)

24 CHAPTER 2. GABOR MULTIPLIERS

〈Kgλ, gλ〉 can be calculated for any operator without knowing about its kernel
and is know as lower symbol σL(K). Since on the space of all Gabor multipliers
PG restricts to the identity Theorem 2.15 just says that a Gabor multiplier
and consequently the upper symbol m can be reconstructed from its lower
symbol. The mapping from σL to m is given by the inverse of the Gram
matrix 〈Pλ, Pλ′〉λ,λ′ of the system (Pλ)λ∈Λ.

The interesting questions arising now that there are formulas for the best ap-
proximation are: Which operators are well represented by a Gabor multiplier and
how crucial is the choice of the approximating system (g, Λ)?

However answers to both questions will be postponed to Chapter 4 because
any kind of result in abstract terms would not be very satisfactory if no numerical
example was provided. Therefore the next chapter is dedicated to the development
of analogue theory for vectors of finite length instead of S0-functions and to the
numerical verification of the continuous results.

Chapter 3

From L2 to CL

As already mentioned the aim of this chapter is to adapt all previous results and
definitions to the ”facts of real life”. All calculations have to be done using comput-
ers, which unfortunately cannot deal with with continuous signals like L2-functions
but only with discrete signals of finite length, i.e., elements of CL.
The structure of this chapter will follow mainly that of Chapters 1 and 2, looking
at theory from a numerical point of view and developing a tool box of MATLAB
files to underline the continuous results with numerical experiments. One techni-
cal detail that should be mentioned is that in this presentation all indices will start
with 0. MATLAB however starts counting with 1 which may lead to confusion when
comparing the explanation of the algorithms, all based on NuHAG code, with the
m-files in the Appendix.

3.1 Fourier Analysis in CL

An important thing at the beginning is to find suitable discrete substitutes for the
(Λ)-Fourier transform and TF-shifts because unlike later for frames and bases the
continuous definitions make little or no sense in the discrete setting. One way to
the discrete definition would be to generalize all the concepts of Fourier analysis to
arbitrary groups and then have a look at what this means for the special case CL.
The beauty of this approach, as can be found in [19], is that it shows how Fourier
series, the (Λ-)Fourier transform, etc are basically all aspects of the same theory.
It is however quite unsatisfying from an applied mathematician’s point of view,
who wants to be sure that the discrete calculations, done on the computer, actually
simulate the continuous case. So the ”on foot” approach taken here is simply to try
and approximate the continuous formulas and see where this leads.
Recall the definition of the Fourier transform for a function in L1(R):

f̂(ω) =
∫

R
f(x)e−2πixωdx (3.1)

Lets approximate the integral in (3.1) by a Riemann sum with L data points, com-
pare Figure (3.1).

25

26 CHAPTER 3. FROM L2 TO CL

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

Figure 3.1: Approximating the Fourier Integral

f̂(ω) ≈ f̃(ω) =
L−1∑

k=0

f(
bk

L
)e−2πi bk

L
ω · b

L
(3.2)

The question arising now is for which values of ω f̃(ω) should be calculated. A look
at (3.2) shows that f̃ is periodic with period L

b
, i.e., f̃(ω + L

b
) = f̃(ω). Together

with the consideration that, since the input consisted of L data points so should the
output, this suggests choosing the values j

L
· L

b
= j

b
for j = 0 . . . L− 1 and so:

f̃(
j

b
) =

b

L

L−1∑

k=0

f(
bk

L
)e−2πi jk

L

Finally after some cosmetic normalisations this leads to the following definition:

Definition 3.1 (discrete Fourier transform - FFT). For a signal f ∈ CL the
Fourier transform f̂ is defined as

f̂(j) =
L−1∑

k=0

f(k)e−2πi jk
L (3.3)

Remark 3.1. (i) Because of the many efficient and fast algorithms for calculating
the discrete Fourier transform it is also called Fast-Fourier-Transform (FFT).

(ii) Sometimes the discrete Fourier transform can be found with an additional fac-
tor 1

L
or 1√

L
. The advantage of the definition given here is that it is consistent

with the way the FFT is implemented in MATLAB (b=fft(a)). The draw-
back is that it is no longer a unitary operator, as it would be with the factor
1√
L
. Therefore the inverse Fourier transform (MATLAB b=ifft(a)) is given

by:

f̌(j) =
1

L

L−1∑

k=0

f(k)e2πi jk
L

(iii) Because the n-dimensional Fourier transform can be decomposed into n one-
dimensional Fourier transforms in each component Definition (3.1) also settles
this case. Still for n=2 MATLAB provides the function fft2.

3.2. RIESZ BASES AND FRAMES 27

The definition of the FFT now helps motivating the right definitions of the
discrete TF-shifts. At first glance the problem with the translation operator Tn is
that, in analogy to Tx, setting

Tn f(k) = f(k − n)

there might be values for f(−1) but not for f(L− 1). However Definition 3.1 shows
that the discretisation introduced an L-periodicity, i.e., theoretically f̂ could be
calculated for all j ∈ Z and the resulting sequence would be L-periodic. Indeed
thinking of f as a periodic sequence in Z or ZL solves the problem of too many yet
not enough values.
The right definition of the modulation operator Mm is motivated by looking at the

equivalent of the term e−2πixω in (3.3), i.e., e−2πi jk
L . So:

Definition 3.2 (discrete TF-shifts).

Tn f(k) = f((k − n)modL)

Mm f(k) = f(k) · e2πi mk
L

Remark 3.2. For the rest of this chapter, unless further specified, all sums are con-
sidered to be modulo L.

3.2 Riesz Bases and Frames

Both the definition of a Riesz basis and a frame given in Chapter 1 are valid for
general Hilbert spaces, so there is not need to make any adjustments. However it is
still worth looking at both from a linear algebra point of view.
Recalling Definition 1.1 a Riesz basis {f1 . . . fn} should span CL and satisfy:

A‖c‖2 ≤ ‖
n∑

k=1

ckfk‖2 ≤ B‖c‖2

This is equivalent to {f1 . . . fn} being a collection of linearly independent vectors or
if the span is the whole of CL to being a basis.
Frames turn out to be a little bit more exciting. Let’s rewrite the frame condition
for an (obviously finite) set of functions {f1 . . . fn}.

A‖f‖2
2 ≤

n∑

k=1

|〈f, fk〉|2 ≤ B‖f‖2
2

n∑

k=1

|〈f, fk〉|2 =
n∑

k=1

|f ∗kf |2 =

= ‖(f ∗1 f, . . . , f ∗nf)‖2
2 = ‖ (f ∗1 , . . . , f ∗n)︸ ︷︷ ︸

n×L-matrix C

f‖2
2 = ‖Cf‖2

2

A‖f‖2
2 ≤ ‖Cf‖2

2 ≤ B‖f‖2
2 (3.4)

28 CHAPTER 3. FROM L2 TO CL

The first consequence of (3.4) is that n has to be larger than L because otherwise
Cf = 0 for

f = (0, . . . , 0, 1︸︷︷︸
n+1

, . . . , 1) 6= 0

Further since Cf = 0 ⇔ f = 0 the matrix C, that corresponds to the coefficient
mapping, has to have full rank, i.e., rk(C) = L. Therefore in CL a frame is any
generating system.
Another conclusion that can be drawn from C having full rank is that the L × L-
matrix S = C∗C, corresponding to the frame operator, has full rank and thus is
invertible, as would be expected in analogy to the continuous case.
For numerical computations the frame bounds have an interesting relevance to the
condition number κ2(S) of S:

κ2(S) = κ2(C
∗C) =

largest singular value(S)

smallest singular value(S)
=

(lsv(C)

ssv(C)

)2 ≤ B

A

Tight frames, where the frame operator is a multiple of the identity matrix, ob-
viously have condition number κ2(S) = 1. Consequently the closer a frame is to
being tight, the smaller is the condition number and thus the inversion of the frame
operator, the calculation of the dual frame and the frame expansion are more stable.
Naively there are two main reasons for a frame being ”bad”. Either the lower frame
bound A is small, because one ”direction” in CL is under-represented, or the upper
bound B is large, because one direction is over-represented.

-

6

¡
¡

¡ª

³³³³³) A
A
AU

¢
¢
¢
¢
¢
¢̧

¡
¡

¡
¡

¡
¡µ

´
´

´
´́3

³³³³³1

B large

-

6

¡
¡

¡ª

£
£
£
££±

¶
¶

¶
¶

¶
¶7

PPPPPi
³³³³³)

HH
HH

HHj

A small

Figure 3.2: Bad Frames

Both cases have direct consequences for Gabor frames. See Table 3.1 later.
Something else that is interesting for numerical calculations is the redundancy,
red = n

L
, that measures the percentage of frame elements which could theoreti-

cally be discarded. To keep computational cost low it is obviously desirable to keep
the redundancy as close to one as possible. However, as will also become clear later,
there is a trade off between the redundancy of a Gabor frame on one hand and the
stability of inverting the frame operator as well as the approximation qualities of
the generated Riesz basis on the other hand.

3.3. GABOR FRAMES 29

3.3 Gabor Frames

The last ingredient we need for the study of Gabor frames in CL is the concept of
a lattice. In the continuous case a lattice was a subgroup of the cartesian product
of the time with the frequency domain of our signals, i.e., Rd × R̂d. This also holds
for the discrete setting. There the time and the frequency domain are both ZL and
a subgroup of ZL × ẐL has the form aZL × bẐL, where a,b are both divisors of L.
Now if we set N = L

a
and M = L

b
we see that a discrete Gabor frame is a set of the

form:
(gn,m)n,m = {MmbTnag, m = 0 . . .M − 1, n = 0 . . . N − 1} (3.5)

From the previous section we know that a necessary condition for (gn,m)n,m being a
frame is that it has at least L elements or equivalently that the redundancy red ≥ 1.
So we need to choose our lattice constants a,b such that

1 ≤ red =
n

L
=

N ·M
L

=
L
a
· L

b

L
=

L

ab
(3.6)

To find out what else should be taken into account for the choice of lattice con-
stants, we will calculate dual and tight frames for three differently scaled Gaussians
on varying lattices and then compare the condition number of the frame operator.

3.3.1 The Dual Atom

To compute the dual frame we need to solve Sg̃ = g for the frame operator S. If we
calculate the single entries Sj,k we see that S has a special structure.

S = C∗C =
∑
n,m

gn,m · g∗n,m (3.7)

Sj,k =
∑
n,m

gn,m(j)gn,m(k) =

=
∑
n,m

e
2πimbj

L g(j − na)e
−2πimbk

L g(k − na) =

=
N−1∑

n=0

M−1∑

m=0

e
2πimb(j−k)

L g(j − na)g(k − na)

The inner sum
∑M−1

m=0

(
e

2πib(j−k)
L

)m
is zero unless |j− k| is a multiple of M and so we

can write S in the following way, known as the Walnut representation.

Sj,k =

{
M ·∑N−1

n=0 g(j − na)g(k − na) (j − k)modM = 0
0 else

(3.8)

From 3.8 we can see that S is a sparse matrix, i.e., only on every Mth (side) diago-
nal there are non zero entries. This suggests to use the conjugate gradient method
(cgm), an iterative algorithm that basically needs only one matrix vector product in
each step, for solving Sg̃ = g. For details about cgm see [13]. A ready to implement
algorithm can be found in [20], Theorem 8.6.1, where also details on how to use the
a-periodicity of the diagonals and possible other structure are described.

30 CHAPTER 3. FROM L2 TO CL

3.3.2 The Tight Atom

In Section 2.4 we have seen that Gabor multipliers based on tight frames are of
special importance. From (1.10) we know that whenever (π(λ)g)λ∈Λ is a frame

(π(λ)S−
1
2 g)λ∈Λ is a tight frame. Unfortunately however calculating the square root

of the matrix S is much too costly. So here we will present an iterative algorithm
that is discussed in detail in [16]. Starting with an atom g0 choose a function ϕ
that is positive and analytic on an open neigbourhood of [A,B] ⊇ σ(S0) and set
g1 = ϕ(S0)g0. Now since ϕ(S0) and S0 commute with each other and all TF-shifts
we have:

S1f =
∑

λ∈Λ

〈f, π(λ)ϕ(S0)g〉π(λ)ϕ(S0)g =

= ϕ(S0)
∑

λ∈Λ

〈ϕ(S0)f, π(λ)g〉π(λ)g = ϕ(S0)S0ϕ(S0)f = ϕ2(S0)S0f

By the spectral mapping theorem (π(λ)g1)λ∈Λ is again a frame with frame bounds:

A1 = min σ(S1) ≥ min
s∈[A,B]

ϕ2(s)s > 0

B1 = max σ(S1) ≤ max
s∈[A,B]

ϕ2(s)s < ∞

Additionally it has the same associated tight atom as the original frame.

S
− 1

2
1 g1 =

(
ϕ2(S0)S0

)− 1
2 ϕ(S0)g = S

− 1
2

0 g0

The idea now is to find a simple (sequence of) functions ϕk that shrink the spectrum,
so that repeating the process and setting gk+1 = ϕk(Sk)gk we have Bk+1

Ak+1
< Bk

Ak
. Thus

gk+1 generates a tighter frame than gk and if we can achieve Bk

Ak
→ 1 the gk converge

to a/the tight atom.

¡
¡

¡
¡

¡¡

¡
¡

¡
¡r r r

r@
@

@

¢
¢
¢

©©©©©©

tight windows

gk

‖gk‖
g̃k

‖g̃k‖
gk+1

gt

Figure 3.3: The Canonical Tight Window

For choosing ϕk note that the canonical dual g̃ minimizes ‖ g
‖g‖ − γ

‖γ‖‖ among all

duals γ and the associated tight atom gt minimizes ‖g − h‖ among all normalized
tight windows h. So as illustrated by Figure (3.3) for:

gk+1 =
1

2

(gk

‖gk‖ +
g̃k

‖g̃k‖
)

(3.9)

3.4. GABOR MULTIPLIERS 31

gk+1 should be closer to gt than gk and so formally we can set ϕk(S) = 1
2
(1
‖gk‖Id +

1
‖g̃k‖S

−1). In [16] is shown that recursion (3.9) always converges quadratically. How-
ever it is quite costly because in each step a dual atom has to be calculated. For g
already close to being tight ϕk(S) = 1

2
(1
‖gk‖Id + 1

‖Sgk‖S) also gives quadratic conver-

gence and so its best to use (3.9) only for the early steps.

Since it is not really the subject of the thesis there are no m-files for the above
algorithms in the appendix. A good source for code is for instance [18] and should
all else fail use gd=g/S for the dual and gt = g*sqrtm(inv(S)) for the tight atom.

Coming back to the original problem of choosing the lattice constants Table 3.1
shows redundancy and condition number for various Gabor frames.

The conclusions that can be drawn from that are that although the critical
case redundancy 1 should be avoided, redundancy between 1 and 2 already gives
satisfactory results. Also it seems best to choose lattice constants that reflect the
shape of the STFT of the atom. The reason for that is that for e.g. a = 6, b = 16 and
the dilated Gaussian the frequency directions are under-represented, as illustrated by
Figure 3.2. Similarly the condition number for the system (g, a, 8) does not improve
by changing a from 12 to 1 because the time directions just become over-represented
compared to the frequency directions.
So even though situations later may call for higher redundancy or extreme lattices
it is good to keep the above guidelines in mind.

3.4 Gabor Multipliers

At the beginning of Chapter 2 Gabor multipliers were motivated as reconstructions
of a signal with processed coefficients. Indeed when applying a Gabor multiplier
to a signal a more efficient way than constructing the matrix and doing the matrix
vector product is to sample the signal via the STFT, do a pointwise multiplication
of the coefficients with the multiplier matrix and then do the reconstruction. Taking
things step by step let’s start with the implementation of the STFT.

3.4.1 STFT

Most of the formulas in Chapter 2 do not require the values of the STFT on the
whole time-frequency plane, which would correspond to a=b=1 in the discrete case
but only on a sublattice.

Vgf(x, ω) = F(f · Txḡ)(ω) ⇔ STFT g(f)(na,mb) = (f̂ Tna ḡ)(mb) (3.10)

So to save computational effort it is a good idea not to blindly implement the
discretized version (3.10) of the STFT but to use the ”folding” trick. Writing y =

32 CHAPTER 3. FROM L2 TO CL

−50 0 50
0

0.1

0.2

0.3

0.4

gw

−50 0 50
0

0.1

0.2

0.3

0.4

g

−50 0 50
0

0.1

0.2

0.3

0.4

gn

−50 0 50

−0.2

−0.1

0

0.1

0.2

f

STFT(gw,gw)

−50 0 50

−50

0

50

STFT(g,g)

−50 0 50

−50

0

50

STFT(gn,gn)

−50 0 50

−50

0

50

STFT(f,g)

−50 0 50

−50

0

50

Figure 3.4: 4 Windows and their STFTs

a=18, b=6

−50 0 50

−50

0

50

a=12, b=9

−50 0 50

−50

0

50

a=6, b=16

−50 0 50

−50

0

50

Figure 3.5: 3 Lattices

Condition number κ2(S)
Red. (a/b) gw g gn f

1 (12/12) singular singular singular 19916
1 (9/16) 36053 137 42 8195

1.3 (12/9) 6.2 2.5 56 438
1.3 (18/6) 2.0 17 20125 5590
1.5 (12/8) 4.1 2.4 56 136
1.5 (6/16) 2174 8.1 1.8 142
2 (9/8) 4.1 1.4 6.2 91
3 (6/8) 4.1 1.1 1.6 158
18 (1/8) 4.1 1.1 1.0 1.6

Table 3.1:

3.4. GABOR MULTIPLIERS 33

f · Tna ḡ for shortage, STFT g(f)(na,mb) takes the form ŷ(mb) and we have:

ŷ(mb) =
L−1∑

k=0

y(k)e−2πi kmb
L =

=
M−1∑

j=0

b−1∑

k=0

y(j + kM)e−2πi
(j+kM)m

M =
(
yf (j) =

b−1∑

k=0

y(j + kM)
)

=
M−1∑

j=0

yf (j)e
−2πi jm

M = ŷf (m)

3.4.2 Gabor Synthesis

Since taking the STFT of a signal is just the coefficient mapping f → Cf =: d
in disguise the reconstruction of f corresponding to the adjoint mapping d → C∗d
should be realizable with the same amount of effort. Let C = (C0 . . . CN−1) be the
coefficient matrix.

f(k) =
∑
n,m

C(n,m)gn,m(k) =

=
∑
n,m

C(n,m)g(k − na)e2πi kmb
L =

=
N−1∑

n=0

g(k − na)
M−1∑

m=0

C(n,m)e2πi kmb
M =

=
N−1∑

n=0

g(k − na)Čn(k/modM) = 〈gk, C̃
k/modM 〉

where C̃ := (Č0 . . . ČN−1) = (C̃0 . . . C̃M−1).

For some purposes, not the least to have a look at them, it may still be necessary
to calculate the actual Gabor multiplier matrices.

3.4.3 Synthesis of a Gabor Multiplier

If C = (C0 . . . CN−1) is the matrix that stores the upper symbol, the entries of the
Gabor multiplier have the following form:

Gm(j, k) =
∑
n,m

C(n,m)gn,m(j)ḡn,m(k) =

=
∑
n,m

g(j − na)e2πi jmb
L ḡ(k − na)e−2πi kmb

L =

=
N−1∑

n=0

g(j − na)ḡ(k − na)
M−1∑

m=0

C(n,m)e−2πi k−j
M =

=
N−1∑

n=0

gn(j)ḡn(k)Ĉn(k − j/modM)

34 CHAPTER 3. FROM L2 TO CL

Gabor multiplier

20 40 60 80 100120140

20

40

60

80

100

120

140

0 50 100 150
−5

0

5
Signal f

Re
Im

0 50 100 150
−0.2

0

0.2
Modified Signal Gmf

Signal − abs(STFT)

−50 0 50

−50

0

50

Upper Symbol

−5 0 5

−10

−5

0

5

10

Modified Signal

−50 0 50

−50

0

50

Figure 3.6: Application of a Gabor Multiplier 1

Gabor multiplier

20 40 60 80 100120140

20

40

60

80

100

120

140

0 50 100 150
−5

0

5
Signal f

Re
Im

0 50 100 150
−5

0

5
Modified Signal Gmf

Signal − abs(STFT)

−50 0 50

−50

0

50

Upper Symbol

−5 0 5

−5

0

5

Modified Signal

−50 0 50

−50

0

50

Figure 3.7: Application of a Gabor Multiplier 2

3.4. GABOR MULTIPLIERS 35

If C̃n denotes the matrix with entries C̃n(j, k) = Ĉn(k−j/modM) Gm can be written
as:

Gm =
N−1∑

n=0

(gn ⊗ g∗n) ·pw C̃n =
N−1∑

n=0

Pn ·pw C̃n (3.11)

With the routines derived from the above considerations it is now possible to sim-
ulate the convergence properties for Gabor multipliers in Corollary 2.2 and Theorem
2.8.

Experiment 3.1 (Dependence on the Multiplier and Windows). In the experiment the
window g, a normalized Gaussian of length 144, and a randomly generated multiplier
on the lattice Λ = 9Z144 ⊗ 12Z144 were perturbed with a normally distributed noise
of relative size ε in the Euklidean norm, i.e., :

‖gε − g‖2 = ε‖g‖2 and ‖mε −m‖2 = ε‖m‖2

Then the Gabor multipliers based on the original and the jittered building blocks,
g̃ε denotes the dual window for gε, were compared. The error was calculated as the
Hilbert Schmidt (Frobenius) norm of G−Gε divided by the HS-norm of G.

Gg,m,Λ Gg,g̃,m,Λ

ε-noise g m g, m g, g̃ g, g̃, m
1.0000 1.6357 0.9686 2.5087 1.4576 2.1649
0.1000 0.1415 0.0999 0.1711 0.1425 0.1780
0.0100 0.0140 0.0098 0.0170 0.0144 0.0174
0.0010 0.0014 0.0010 0.0017 0.0015 0.0018
10−14 1.40 · 10−14 9.82 · 10−15 1.70 · 10−14 1.49 · 10−14 1.78 · 10−14

Table 3.2: Results of Experiment 3.1

As can be seen in Table 3.2 the error depends linearly, with relatively small
constants, on the magnitude of the jitter, which is as good as predicted by Corollary
2.2.

Experiment 3.2 (Dependence on the Lattice). The window used was again a normal-
ized Gaussian (this time of length 120). However since the continuous theory makes
use of a multiplier in W (C, `2), m, defined on the full TF-plane, was chosen to be
smooth. To be able to compare the Gabor multipliers based on different lattices it
was also necessary to scale them with the redundancy of the lattice.

error = ‖a0b0
L

Ga0,b0 − akbk

L
Gak,bk

‖HS
/
‖a0b0

L
Ga0,b0‖HS

The results are displayed in Table 3.3 and Figure 3.9. There the difference of the
Gabor multipliers is plotted against the scaled Euklidean norm of the difference of
the lattice constants, 1/L‖(a0, b0)−(ak, bk)‖2, where a negative sign indicates higher
redundancy of (ak, bk) than that of (a0, b0).

Again the results confirm the findings of the underlying theorem (i.e., 2.8). An
unexpected though not bad effect is that as the lattice constants ak, bk go to a0, b0

36 CHAPTER 3. FROM L2 TO CL

m1

−60 −40 −20 0 20 40

−60

−40

−20

0

20

40

m2

−60 −40 −20 0 20 40

−60

−40

−20

0

20

40

Figure 3.8: Multipliers for Experiment 3.2

a0 = b0 = 2
a/b 6/6 5/6 5/5 4/5 4/4 3/4 3/3 2/3
m1 0.0164 0.0134 0.0048 0.0046 0.0019 0.0020 0.0008 0.0007
m2 0.0871 0.0739 0.0451 0.0361 0.0192 0.0153 0.0074 0.0062

a0 = b0 = 5
a/b 3/3 3/4 4/4 4/5 5/6 6/6 6/8 8/8
m1 0.0051 0.0064 0.0063 0.0019 0.0159 0.0187 0.0898 0.1221
m2 0.0463 0.0503 0.0498 0.0277 0.0838 0.1045 0.1984 0.2442

Table 3.3: Results of Experiment 3.2

0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

a0=b0=2

m1
m2

−0.4 −0.2 0 0.2 0.4
0

0.02

0.04

0.06

0.08

0.1
a0=b0=5

m1
m2

Figure 3.9: Convergence Curves

3.4. GABOR MULTIPLIERS 37

from below the difference in the corresponding Gabor multipliers starts out much
less than for convergence from above but remains almost constant till the final
improvement. The same curve shape even results from a less smooth multiplier
where the samples vary more heavily.

3.4.4 (Pλ)λ∈Λ as a Riesz Basis

From Theorem 2.10 we know that the system (g, a, b) will generate a Riesz basis
if the Λ-Fourier transform of (|Vgg(λ)|2)λ∈Λ is bounded away from zero. Trans-
lating that into the discrete we therefore have to check if for the matrix Sn,m =
STFT g(g)(na,mb), as defined above, there holds:

min
n,m

|fft2(S)n,m| > c > 0

Remembering on the other hand that a Riesz basis is just a linearly independent
set of vectors this should be no problem as long as the number of vectors (M · N)
compared to the dimension of the space (L× L) is not too large.
Therefore the question we try to answer with the next experiment is up to which re-
dundancy will a system (g, a, b) be likely to generate a Riesz basis provided that both
the atom and the lattice constants are chosen reasonably nice (compare Experiment
4.3)?

Experiment 3.3 (Riesz Basis Property). The simple idea is to find out the limiting
redundancy for which systems consisting of a normalized Gaussian and a more or
less quadratic lattice will still generate a Riesz basis.

Table 3.4: Results of Experiment 3.3
L limiting (a/b) Redundancy

120 (2/3) 20
144 (2/4) 18
360 (4/4) 22.25
720 (6/6) 20
1080 (6/9) 20

The rule that can be deduced from Table 3.3 is that systems with redundancy
up to 20 will generate a Riesz basis.
Looking at the generating atom of the biorthogonal basis Q0, Figure 3.10, illustrates
the break down of the Riesz basis property. So for low redundancy there is still
enough room in the space of all L×L-matrices for (Pλ)λ∈Λ to be almost orthogonal
and thus the shape of Q0 still strongly resembles that of P0. As the redundancy
however increases the space becomes more ”crowded” and in order to generate the
biorthogonal basis Q0 has to take account of an ever larger number of operators and
hence becomes more and more de-fragmented.

38 CHAPTER 3. FROM L2 TO CL

P
0

−50 0 50

−60

−40

−20

0

20

40

Q
0
, a=b=10

−50 0 50

−60

−40

−20

0

20

40

Q
0
, a=b=6

−50 0 50

−60

−40

−20

0

20

40

Q
0
, a=b=3

−50 0 50

−60

−40

−20

0

20

40

Figure 3.10: Biorthogonal Atom for Various Redundancies

3.4.5 The Best Approximation

Compare [7]. From Theorem 2.15 we have two formulas for the best approximation
of an operator.

Kapp =
∑

λ∈Λ

〈K, Pλ〉Qλ =
∑

λ∈Λ

〈K, Qλ〉Pλ

The problem with them however is that they either require a sum over or inner
products with the elements Qλ of the biorthogonal basis that does not consist of rank-
1-operators like (Pλ)λ∈Λ. Fortunately there is a way to avoid any ”direct contact”
with (Qλ)λ∈Λ. Writing c(λ) = 〈K, Pλ〉 and mQ for the upper symbol of Q0 we see
that the KNS of Kapp has the form:

σ(Kapp) =
∑

λ∈Λ

c(λ) Tλ σ(Q0) = c ∗Λ σ(Q0) =

= c ∗Λ (mQ ∗Λ σ(P0)) = (c ∗Λ mQ) ∗Λ σ(P0)

On the other hand σ(Kapp) = mapp ∗Λ σ(P0) and so by comparison mapp = c ∗Λ

mQ. Finally applying the Λ-Fourier transform (a 2-dim. FFT) and plugging in the
formula for the upper symbol mQ of Q0 gives: (γ = |Vgg|Λ|2)

m̂app = ĉ · m̂Q = ĉ/γ̂

For the calculation of the lower symbol c(λ) = 〈K, Pλ〉 again a folding trick similar
to the one for the STFT can be used.

3.4. GABOR MULTIPLIERS 39

C(n,m) = 〈K, gn,m ⊗ g∗n,m〉 = 〈Kgn,m, gn,m〉 =

=
L−1∑

j,k=0

K(j, k)g(k − na)e2πi kmb
L ḡ(k − na)e−2πi jmb

L =

=
L−1∑

j,k=0

K(j, k)g(k − na)ḡ(k − na)︸ ︷︷ ︸
Bn(j,k)

e−2πi
(j−k)m

M =

=
M−1∑

j,k=0

e−2πi
(j−k)m

M

b−1∑

j′,k′=0

Bn(j + Mj′, k + Mk′)

︸ ︷︷ ︸
B′nf(j,k)

=

=
M−1∑

j,k=0

B′
n(j, k)e−2πi

(j−k)m
M =

=
M−1∑

l=0

e−2πi lm
M

∑

l=j−k/modM

B′
n(j, k)

︸ ︷︷ ︸
B′′n(l)

=

=
M−1∑

l=0

B′′
n(l)e−2πi lm

M = B̂′′
n(m)

Finally equipped with the algorithms developed from the above considerations we
can turn to the further investigation of approximating operators by Gabor multipli-
ers.

40 CHAPTER 3. FROM L2 TO CL

Chapter 4

Best Approximation by Gabor
Multipliers

As promised at the end of Chapter 2 this chapter will deal with the questions which
operators are well represented by a Gabor multiplier and how crucial is the choice
of the approximating system (g, Λ)?
Answers to the latter question will come first - on the one hand in the form of an
estimate of the difference between the approximations of a general operator K in
two close systems and on the other hand by explicitly calculating the approximation
of a Gabor multiplier Gm,g1,Λ1 in a system (g2, Λ2).

4.1 Approximation in Different Systems

In view of all convergence theorems in Chapter 2 it is only natural to ask if also the
best approximation of an operator K depends continuously on the generating system
(g, Λ). The answer at least for quadratic lattices is given by the next theorem.

Theorem 4.1. Let gk be a sequence of tight atoms on the quadratic lattices Λk =
akZ2d such that gk → g0 in S0, ak → a0 and each system (gk, Λk) generates a Riesz
basis. Then the best approximations PGk(K) of a general Hilbert Schmidt operator
K converge to PG0(K) in the HS-norm.

Proof :
To get an idea for the proof it is helpful to rewrite PGk(K) as:

PGk(K) =
∑

n∈Z2d

〈K, π2(nak)Qk︸ ︷︷ ︸
mk(nak)

〉Pk = Gmk,gk,Λk
(4.1)

The above notation suggests to try and use Corollary 2.9. So what has to be shown
is the the multipliers mk can be interpreted as the samples on Λk of a sequence of
function m̃k on R2d, that converge in W (C, `2).
Now defining ψ(x) := σ(K)(−x), ‖ψ‖2 = ‖K‖HS there holds:

mk(nak) = 〈K, π2(nak)Qk〉 = 〈σ(K), Tnak
σ(Qk)〉 =

=
∫

R2d
ψ(−x)σ(Qk)(x− nak)dx =

(
ψ ∗ σ(Qk)

)
(−nak) =: m̃k(nak)

41

42 CHAPTER 4. BEST APPROXIMATION BY GABOR MULTIPLIERS

The rest of the proof is a consequence of relatively heavy machinery from theory for
spline type Riesz bases, Theorem 7.2 in [10], saying that small changes of the P0

will only result in small changes of Q0, i.e., if ‖σ(Pk)− σ(P0)‖W (C,`1) ≤ C‖σ(Pk)−
σ(P0)‖S0 ≤ C ′‖gk − g0‖S0 ≤ ε′ then ‖σ(Qk) − σ(Q0)‖W (C,`1) ≤ ε. Together with a
convolution relation for amalgam spaces of the form ‖f∗g‖W (C,`2) ≤ ‖f‖2‖g‖W (C,`1),
compare (1.5), this yields the desired estimate.

‖m̃k − m̃0‖W (C,`2) ≤ ‖ψ ∗
(
σ(Qk)− σ(Q0)

)
‖W (C,`2) ≤

≤ ‖ψ‖2 · ‖σ(Qk)− σ(Q0)‖W (C,`1) ≤ ‖K‖HS · ε

Because there is no reason - other than that the theorem used is only valid for
the quadratic case - why convergence should hold only for quadratic lattices in the
obligatory numerical simulation the limiting system will make use of a rectangular
lattice.

Experiment 4.1 (Convergence of the Best Approximation). For 3 operators the ap-
proximations in systems with lattice constants going to (a0/b0) = (4/5) and a Gaus-
sian of length 120 were compared. The results are displayed in Table 4.1 and Figure
4.1. The interesting observation to be made is that the better an operator is repre-
sented by a Gabor multiplier - recovery in the system (g, 4, 5) is 12.9% for K1, 45.3%
for K2 and 90.4% for K3 - the more the convergence curve resembles that in Exper-
iment 3.2. So for a/b going to a0/b0 from below the variance of the approximations
is small even for large difference of the lattice constants but only slowly decreasing.
Just perturbing the atom (compare Experiment 3.1) again gives linear convergence
independently of the quality of the approximation.

a/b 2/3 3/3 3/4 4/4 5/5 5/6 6/6 6/8
K1 0.6277 0.4619 0.3573 0.2187 0.2025 0.3063 0.3535 0.4793
K2 0.2405 0.1845 0.1456 0.1076 0.1152 0.2020 0.2462 0.3898
K3 0.0946 0.0944 0.0903 0.0849 0.0971 0.1853 0.2294 0.3851

Table 4.1: Results of Experiment 4.1

While the last theorem shows that best approximations depend continuously on
the underlying systems (gk, Λk) and thus promises a certain stability for numerical
calculation it gives no information about the difference in approximation quality of
two entirely unrelated systems. This however is especially important for the discrete
case where the shape of the atom and most of all the lattice constants have a direct
influence on computational cost.
One way to compare two completely different systems is to calculate how well a
Gabor multiplier based on the system (g, Λ) can be approximated within the system
(g̃, Λ̃). For a start let’s have a look at what happens by only changing the atom.

Lemma 4.2. The difference between a Gabor multiplier Gm,g,Λ and its best approx-
imation Gapp in the system (g̃, Λ) is given by a convolution over Λ of the multiplier
m and the difference between P0 and its best approximation Papp in (g̃, Λ), i.e.,

‖Gm,g,Λ −Gapp‖HS ≤ C‖m‖2 · ‖σ(P0)− σ(Papp)‖S0 (4.2)

4.1. APPROXIMATION IN DIFFERENT SYSTEMS 43

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

Varying the Lattice

K1
K2
K3

Varying the Atom
ε-noise Difference of
of g Approximation
0.5 0.4824
0.1 0.1455
0.01 0.0201
0.001 0.0020

Figure 4.1: Convergence of the Best Approximation

Proof : Let p̃ denote the upper symbol of Papp. Then the upper symbol mapp of
Gapp in the system (g̃, Λ) can be calculated as:

mapp(λ
′) = 〈Gm,g,Λ, Q̃λ′〉 =

=
∑

λ∈Λ

m(λ)〈Pλ, Q̃λ′〉 =

=
∑

λ∈Λ

m(λ)〈P0, Q̃λ′−λ〉 =

=
∑

λ∈Λ

m(λ)p̃(λ′ − λ) = m ∗Λ p̃(λ′)

Therefore the KNS of Gapp has the form:

σ(Gapp) = mapp ∗Λ σ(P̃0) = m ∗Λ p̃ ∗Λ σ(P̃0) = m ∗Λ σ(Papp)

Since P0 has an S0-integration kernel so has its best approximation Papp and we can
apply the same trick as in Theorem 2.8, i.e., we interpret the Λ-convolution with m
as a normal convolution with the measure µ =

∑
λ∈Λ m(λ)δλ, where ‖µ‖W (M,`2) can

be estimated as: (Q = [0, 1]2d and C = maxj∈Z2d #{λ ∈ j + Q} < ∞)

‖µ‖2
W (M,`2) =

∑

j∈Z2d

(
|µ|(j + Q)

)2
=

∑

j∈Z2d

(∑

λ∈j+Q

|m(λ)|
)2 ≤

≤ ∑

j∈Z2d

C2 max
λ∈j+Q

|m(λ)|2 ≤ C2
∑

j∈Z2d

∑

λ∈j+Q

|m(λ)|2 ≤ C2‖m‖2
2

Therefore using the convolution relation (1.6) we get:

‖Gm,g,Λ −Gapp‖HS = ‖σ(Gm,g,Λ)− σ(Gapp)‖2 =

= ‖µ ∗
(
σ(P0)− σ(Papp)

)
‖2 ≤

≤ C ′‖m‖2 · ‖σ(P0)− σ(Papp)‖S0

44 CHAPTER 4. BEST APPROXIMATION BY GABOR MULTIPLIERS

Experiment 4.2 (Optimal Atom for a Given Lattice). The aim of the experiment was
to determine the best atom for a given lattice and in the course of doing that verify
to what extent estimate (4.2) gives an applicable criterion. So for a given lattice Λ
the (average) approximation quality of P1

0 and ten Gabor multipliers with random
(r), respectively smooth (s) upper symbol in (g2, Λ) were compared to the reversed
situation. The Atoms g1, g2 were a normalized and a compressed Gaussian of size
144 (compare Figure 3.4).

Lattice Approximation in (g1, Λ) Approximation in (g2, Λ)
(a/b) P2

0 G2
r G2

s P1
0 G1

r G1
s

(8/8) 0.3337 0.3309 0.3309 0.3708 0.3681 0.3658
(4/16) 0.3745 0.3735 0.4168 0.3460 0.3448 0.4167
(4/4) 0.1175 0.1162 0.0156 0.0517 0.0509 0.0153
(2/8) 0.1041 0.1033 0.0433 0.1637 0.1643 0.0434

Table 4.2: Results of Experiment 4.2

As the results in Table 4.1 show the approximation quality for Gabor multipliers
with random upper symbols is almost the same as for P0 while for smooth multipliers
it is actually less for high redundancy but more for low redundancy.
In general the approximation quality is more or less the same and so rather a measure
for the difference of the systems and thus a sign to carefully decide which one to
use than an indicator of the better one. Still for high redundancy the atom whose
STFT reflects the shape of the lattice gives better performance, while surprisingly
for low redundancy the situation is reversed.

The analogue comparison of two systems with different lattices cannot be reduced
to the difference of the central building block P1

0 and its approximation in the other
system. In [3] an explicit formula for the best approximation of a Gabor multiplier
Gm,g1,Λ1 in the system (g2, Λ2) can be found. As it however does not give much
insight we will just do numerical experiments instead.

Experiment 4.3 (Optimal Lattice for a Given Atom). The basic situation was the
same as in the last experiment but this time the atom, g1 or g2, was fixed and the
average approximation of ten Gabor multipliers GΛ1 with random/smooth upper
symbol in the system with Λ2 compared.

Atom G(4/16) in (8/8) G(8,8) in (4/16) G(2/8) in (4/4) G(4/4) in (2/8)
g1 0.3001/0.0826 0.6431/0.5238 0.0167/0.0000 0.3042/0.0610
g2 0.3883/0.1451 0.6366/0.3671 0.2123/0.0193 0.0443/0.0006

Table 4.3: Results of Experiment 4.3

This time the results in Table 4.1 clearly show that - independently of the re-
dundancy or smoothness of the multiplier - the system with the lattice adapted to
the shape to the STFT gives the better performance. So for the next section where
suitable other operators are approximated by Gabor multipliers we will keep the
guideline to harmonize atom and lattice in mind.

4.2. APPROXIMATION IN VARIOUS CLASSES OF OPERATORS 45

4.2 Approximation in Various Classes of Opera-

tors

In the previous section the difference of the best approximation of an operator in
various systems was discussed. The really interesting question however concerns the
difference between the operator and its approximation, because an estimate of that
would also answer the question which operators can be well approximated by Gabor
multipliers.
A look at the KNS of a Gabor multiplier

σ(Gm) =
∑

λ∈Λ

m(λ)Tλσ(P0) (4.3)

shows that as σ(P0) is in S0 it has to be a rather smooth function, i.e., even if σ(Gm)
is only in S′

0 it will not be ”wild” in the sense of the delta function, but only in the
sense of not being integrable on Rd, like the constant 1 or the pure frequencies e2πikx.
So a heuristic conclusion is that operators with smooth KNS are well approximated
by Gabor multipliers. The problem however is that ”smoothness” is not only a
rather vague but certainly also hard to check for. To get a more tangible criterion
it is helpful to determine how much of the operator is lost in the approximation.

Theorem 4.3. If (g, Λ) generates a tight Gabor Frame in L2(Rd) then the rank 1
operators (gλ ⊗ gλ′

∗)λ,λ′ form a tight frame in HS.

Proof :
The basic idea is that for any operator K and any f ∈ L2 both f and Kf have a
Gabor expansion.

Kf = K
∑

λ∈Λ

〈f, gλ〉gλ =
∑

λ∈Λ

〈f, gλ〉Kgλ =

=
∑

λ∈Λ

〈f, gλ〉
∑

λ′∈Λ

〈Kgλ, gλ′〉gλ′ =

=
∑

λ∈Λ

∑

λ′∈Λ

〈Kgλ, gλ′〉gλ′〈f, gλ〉 =

=
(∑

λ∈Λ

∑

λ′∈Λ

〈κ(K), gλ′ ⊗ gλ
∗〉gλ′ ⊗ gλ

∗)f (4.4)

Since

(gλ ⊗ gλ′
∗)(t, y) = e2πitω′g(t− x′) · e2πiyωg(y − x) = M(ω′,−ω) T(x′,x)(g ⊗ g∗)(t, y)

the convergence of the double sum in (4.4) is once again a consequence of Theorem
1.2 for g0 = g ⊗ g∗ and Λ = aZ2d × bZ2d.

A consequence of the above theorem is that all the information about an operator
is incorporated in the coefficient matrix 〈K, gλ⊗ gλ′

∗〉λ,λ′ , whose diagonal is just the
lower symbol σL(PG(K)) of the operator K. Therefore the best approximation by
a Gabor multiplier corresponds to the optimal reconstruction of the operator using
the information on the diagonal but ignoring all off diagonal entries and the quality

46 CHAPTER 4. BEST APPROXIMATION BY GABOR MULTIPLIERS

of that is obviously the better the smaller this lost information was to begin with.
So far of course this is still not an applicable criterion because it makes no sense to
calculate side entries just in order to discard them with a good conscience. However
there exists a nice estimate for them involving the spreading function η(K).

Lemma 4.4.
|〈K, gλ′ ⊗ gλ

∗〉| ≤
(
|η(K)| ∗ |Vgg|

)
(λ′ − λ) (4.5)

Proof : (Compare [17], 10.3.1)
The proof uses the trick that:

|〈K, gλ′ ⊗ gλ
∗〉| = |〈K, gλ′ ⊗ gλ

∗〉| =
= |〈K∗, gλ ⊗ gλ′

∗〉| = |〈η(K∗), η(gλ ⊗ gλ′
∗)〉|

From (2.7) it is relatively easy (as opposed to the messy direct way) to calculate
η(K∗).

K∗ =
(∫

R2d
η(K)(t, ν) Mν Tt dtdν

)∗
=

∫

R2d
η(K)(t, ν) T∗

t M∗
ν dtdν =

=
∫

R2d
η(K)(t, ν) M−ν T−t e

−2πiνtdtdν =
∫

R2d
e−2πiνtη(K)(−t,−ν)︸ ︷︷ ︸

η(K∗)

Mν Tt dtdν

Using the formula for η(gλ ⊗ gλ′
∗) from Experiment (2.2) we finally get:

|〈K, gλ′ ⊗ gλ
∗〉| ≤ |

∫

R2d
e−2πiνtη(K)(−t,−ν)e−2πiϕVgg(ν + ω′ − ω, t + x′ − x)dtdν ≤

≤
∫

R2d
|η(K)(−t,−ν)||Vgg(ν + ω′ − ω, t + x′ − x)|dtdν ≤

≤
(
|η(K)| ∗ |Vgg|

)
(λ′ − λ)

The practical conclusion that can be drawn from Lemma 4.5 is that if the spread-
ing function of an operator is concentrated around zero the lost information in the
off-diagonal coefficients is relatively small. Therefore a class of operators that should
be well approximated by Gabor multipliers are the so called underspread operators.

4.2.1 Underspread Operators

An operator K is called underspread if the (essential) support of its spreading func-
tion is contained in a rectangle centered around zero, i.e.,

supp(η(K)) ⊆ Q(t0, ν0) = [−t0
2

,
t0
2

]× [−ν0

2
,
ν0

2
]

such that t0ν0 < 1.
Underspread operators were defined by W. Kozek in [17], where details including
their approximability by Gabor multipliers can be found.
Before we can do a numerical experiment to see how well the approximation works

4.2. APPROXIMATION IN VARIOUS CLASSES OF OPERATORS 47

it is necessary to reformulate the underspread property for matrices. An L × L-
matrix corresponds to the approximation of the integration kernel of an operator
by a Riemannian sum with increment 1√

L
on an

√
L × √L square. Therefore it is

underspread if its spreading matrix (see A.6) is non zero only on a t0×ν0 submatrix
centered around zero with

t0√
L
· ν0√

L
< 1 ⇔ t0 · ν0 < L

Experiment 4.4 (Approximation of an Underspread Operator). For the experiment
L was chosen to be 144. To get an underspread operator a spreading matrix with
a 7× 7 complex non zero center was randomly generated and retransformed to the
operator matrix K (see A.7). Then K was approximated in different systems where
the atom was always a normalized Gaussian. The results of the experiment are
displayed in Table 4.4. Figure 4.2 shows the operator, its spreading function and
two approximations.

Table 4.4: Results of Experiment 4.4
a b Redundancy Error
9 9 1.7778 0.1844
8 8 2.25 0.0976
6 6 4 0.0086
4 4 9 6.6233e-006
9 8 2 0.1469
6 12 2 0.3542

While the experiment confirms that underspread operators can be well approx-
imated it also shows that one has to be careful. So looking at the results we see
that the approximation quality is strongly influenced by the choice of the lattice,
i.e., for redundancy 2 either about 85% or only 57% recovery. However the bad per-
formance of the system (g, 6, 12) is not completely unexspected. After all we have
seen in the last section that the STFT of the atom should reflect the shape of the
lattice. Nevertheless the main reason is that not only atom and lattice should be
harmonized but they should also be adapted to the operator, i.e., the shape of the
spreading function. The rule given in [17] for the optimal lattice (and consequently
atom) is to have:

a

b
' t0

ν0

Experiment 4.5 (Adapting the System). This time the matrix to be approximated
had a spreading support of size 4 × 16. Then approximations in different systems,
consisting of all combinations of a rectangular or a quadratic lattice with either a
normalized (g1) or a squeezed gaussian (g2), were compared, see Figure 4.3.

The results in Table 4.5 show that as expected for low redundancy the best
performance is gained from the all harmonized system, i.e., (g2, 4, 16). For high re-
dundancy however there is almost no difference between the two systems where atom
and lattice are synchronized, i.e., (g1, 4, 4) and (g2, 2, 8). So an important conclusion

48 CHAPTER 4. BEST APPROXIMATION BY GABOR MULTIPLIERS

underspread operator K

20 40 60 80 100 120 140

20

40

60

80

100

120

140

spreading function

−50 0 50

−60

−40

−20

0

20

40

60

spreading function detail

−5 0 5

−5

0

5

K−Kapp, a=b=9

20 40 60 80 100 120 140

20

40

60

80

100

120

140

spreading function of K−Kapp

−5 0 5

−5

0

5

Kapp, a=b=9

20 40 60 80 100 120 140

20

40

60

80

100

120

140

K−Kapp, a=b=4

20 40 60 80 100 120 140

20

40

60

80

100

120

140

spreading function of K−Kapp

−5 0 5

−5

0

5

Kapp, a=b=4

20 40 60 80 100 120 140

20

40

60

80

100

120

140

Figure 4.2: Approximation of an Underspread Operator

STFT(g1,g1)

−50 0 50

−60

−40

−20

0

20

40

60

spreading function (detail)

−10 −5 0 5 10

−10

−5

0

5

10

STFT(g2,g2)

−50 0 50

−60

−40

−20

0

20

40

60

Figure 4.3: Spreading Function and Two Atoms

4.2. APPROXIMATION IN VARIOUS CLASSES OF OPERATORS 49

Table 4.5: Results of Experiment 4.5
(g, a, b) g1 g2

(8/8) 0.2363 0.5043
(4/16) 0.5280 0.1597

(g, a, b) g1 g2

(4/4) 0.0001 0.0344
(2/8) 0.0516 0.0001

that can be drawn is that it is much better to adjust the lattice to the atom than
have only one of them adapted to the spreading support.

The aim of the final experiment with underspread operators is to find out some
guidelines for the choice of redundancy depending on the spreading function and
desired approximation quality and to determine how far we can go, i.e., see if it is
also possible to approximate overspread matrices where t0 · ν0 ≥ L.

Experiment 4.6. For the experiment operators of different size (L) and with varying
shape of the spreading support (t0, ν0) were generated as in Experiment 4.4. Then
was determined for which redundancy - always using a well adapted system - the
recovery was more than 90%.

As an excerpt of the results in Table 4.6 shows more than 90% recovery is not
only possible even for operators that are overspread to a degree of 25 to 30, but
in some way they behave even better than truly underspread operators. So while
all operators with t0ν0 < 1 require redundancy between 2 and 4 for the desired
approximation quality the necessary redundancy for overspread operators, especially
when t0ν0 > 4, seems related to the size of the spreading function by:

a <
L

ν0

and b <
L

t0
(4.6)

A combination of (4.6) with the rule for the limiting redundancy for which a system
will still generate a Riesz basis (see Experiment 3.3) yields that stable approximation
is possible for operators that are overspread to a degree of 20.

L

ab
< 20

4.6
=⇒ t0ν0

L
< 20

2 4 6 8 10 12 14 16 18 20
−12

−10

−8

−6

−4

−2

0

Redundancy

lo
g(

E
rr

or
)

6x6
16x16
24x24
32x32

Figure 4.4: Convergence Rates (L = 120)

50 CHAPTER 4. BEST APPROXIMATION BY GABOR MULTIPLIERS

L = 120
t0 × ν0

t0ν0

L
(a/b) red error (L

ν0
/ L

t0
)

3× 3 0.075 (6/6) 3.33 0.0124 (40/40)
4× 12 0.4 (4/12) 2.5 0.0791 (10/30)
11× 11 1.0 (6/6) 3.33 0.0540 (10.9/10.9)
16× 16 2.1 (5/5) 4.8 0.0417 (7.5/7.5)
19× 19 3.0 (5/5) 4.8 0.0807 (6.3/6.3)
24× 24 4.8 (4/4) 7.5 0.0301 (5/5)
15× 45 5.6 (2/6) 10 0.0049 (2.7/8)
38× 38 12.0 (3/3) 13.33 0.0929 (3.2/3.2)
52× 52 20.8 (2/2)∗ 30 0.0015 (2.3/2.3)
30× 100 25 (1/3)∗ 40 0.0176 (1.2/4)
60× 60 30 (1/1)∗ 120 0.1406 (2/2)

L = 360
t0 × ν0

t0ν0

L
(a/b) red error (L

ν0
/ L

t0
)

15× 15 0.6 (12/12) 2.5 0.0999 (24/24)
5× 15 0.2 (6/18) 3.33 0.0165 (24/72)
25× 25 1.7 (10/10) 3.6 0.0882 (14.4/14.4)
33× 33 3.0 (8/8) 5.625 0.0358 (10.9/10.9)
25× 75 5.2 (4/12) 7.5 0.0440 (4.8/14.4)
65× 65 11.7 (5/5) 14.4 0.0227 (5.5/5.5)
84× 84 19.6 (4/4) 22.5 0.0184 (4.3/4.3)

100× 100 27.8 (3/3)∗ 40 0.0838 (3.6/3.6)
101× 101 28.3 (3/3)∗ 40 0.1206 (3.6/3.6)

∗ no Riesz basis but algorithm still works

Table 4.6: Results of Experiment 4.6

As Figure 4.4 shows redundancy for which 90% recovery is achieved is also some
kind of turning point. So while especially for highly overspread operators the conver-
gence starts out linear at best it becomes exponential after the critical redundancy.

4.2.2 STFT-Multipliers

Definition 4.1 (STFT-Multiplier). For a window g ∈ S0 and a symbol m the
STFT multiplier SMm is given by:

SMm(f) = V∗g (m · Vg(f)) (4.7)

or in the weak sense on L2(Rd):

SMm(f) =
∫

R2d
m(λ)〈f, π(λ)g〉π(λ)gdλ (4.8)

If m ∈ L2(R2d) then the resulting operator SMm is a Hilbert-Schmidt operator.

4.2. APPROXIMATION IN VARIOUS CLASSES OF OPERATORS 51

Random Symbol m1
(a/b) Redundancy Original Atom Tight Atom Calculation Time
(9/12) 1.3333 0.6370 0.6252 0.9010s
(8/8) 2.25 0.4313 0.4287 1.0320s
(6/6) 4 0.2013 0.2012 1.3920s
(4/4) 9 0.0214 0.0214 2.3340s
(3/3) 16 0.0014 0.0014 3.4750s

Calculation Time for STFT-Multiplier: 6.8300s

Smooth Symbol m2
(a/b) Red. Orig. Atom Tight Atom Time Sampled Symbol Time
(9/12) 1.3333 0.5259 0.5095 0.9220s 0.9682 0.3800s
(8/8) 2.25 0.2743 0.2683 1.0720s 0.5124 0.4500s
(6/6) 4 0.0909 0.0908 1.4320s 0.1704 0.6010s
(4/4) 9 0.0030 0.0030 2.3440s 0.0074 0.9610s
(3/3) 16 2.9196e-005 2.9196e-005 3.4350s 9.1819e-005 1.3520s

Calculation Time for STFT-Multiplier: 6.8600s

Very Smooth Symbol m3
(a/b) Red. Orig. Atom Tight Atom Time Sampled Symbol Time
(9/12) 1.3333 0.3222 0.1309 0.9120s 0.3413 0.4000s
(9/9) 1.7778 0.1424 0.0603 0.9210s 0.1440 0.3910s
(8/8) 2.25 0.0712 0.0334 1.0620s 0.0714 0.4410s
(6/6) 4 0.0053 0.0033 1.4220s 0.0053 0.6110s
(4/4) 9 3.2152e-006 2.7173e-006 2.4130s 3.2152e-006 0.9620s

Calculation Time for STFT-Multiplier: 6.8500s

Table 4.7: Results of Experiment 4.7

Comparing (4.8) to (2.1) we see that STFT-multipliers are the continuous equiv-
alent of Gabor multipliers. In fact under certain smoothness and decay conditions
on the symbol STFT-multipliers can be seen as the limiting case of Gabor multipli-
ers, i.e., if (ak, bk) are a sequence of lattice constants going to (0, 0) then the Gabor
multipliers Gk

m with window g and upper symbols ((akbk)
−1m(akl, bkn))n,l on the

lattices Λk = akZd× bkZd converge to the STFT-multiplier SMm. See [9] for details
and a proof.
It is therefore not farfetched to try to approximate STFT-multipliers also with ar-
bitrary symbols by Gabor multipliers. In the discrete case STFT-multipliers are
actually just Gabor multipliers with a = b = 1. As they are thus based on systems
with maximal redundancy they are very costly to calculate and so it is of course
desirable to approximate them by real, i.e., much less redundant, Gabor multipliers.

Experiment 4.7 (Approximation of STFT-Multipliers). In the experiment three STFT-
multipliers resulting from symbols of varying smoothness and a normalized Gaussian
as window were approximated. In one series of systems the Gabor-atom was the same
as for the STFT-multiplier. In the other the tight atom for the given lattice was
used because for a = b = 1 the starting atom also has the tightness property. In the

52 CHAPTER 4. BEST APPROXIMATION BY GABOR MULTIPLIERS

m1

−50 0 50

−60

−40

−20

0

20

40

60

Symbols
 m2

−50 0 50

−60

−40

−20

0

20

40

60

m3

−50 0 50

−60

−40

−20

0

20

40

60

20 40 60 80 100 120 140

20

40

60

80

100

120

140

STFT−Multipliers

20 40 60 80 100 120 140

20

40

60

80

100

120

140
20 40 60 80 100 120 140

20

40

60

80

100

120

140

−10 0 10

−15

−10

−5

0

5

10

15

Spreading Functions (detail)

−10 0 10

−15

−10

−5

0

5

10

15

−10 0 10

−15

−10

−5

0

5

10

15

Figure 4.5: STFT-Multipliers

4.2. APPROXIMATION IN VARIOUS CLASSES OF OPERATORS 53

case of a smooth symbol (m2,m3) also the Gabor multiplier resulting from sampling
the symbol on the lattice was calculated. The measure for the error was again the
relative error in the Frobenius norm.

The results in Table 4.7 show that even STFT-multipliers with random symbols
can be approximated using a system with sufficiently large redundancy. Taking a
look at Figure 4.5 this is not surprising as they seem to be a subclass of the under-
spread or ”slightly overspread” operators. Note that again the required redundancy
for more than 90 % recovery can be read off the spreading function. The calculation
time for that approximation is less than half of that for the STFT-multiplier.
For the moderately smooth symbol (m2) the approximation naturally works much
better. Though there is not much difference between the original and the tight atom
there is a distinctive improvement by using the best approximation instead of just
the sampled multiplier. In the case of the very smooth symbol (m3) the approxi-
mation in the system with the original window does not give a smaller error than
the Gabor multiplier with sampled symbol anymore. The tight system however still
yields a refinement especially for low redundancies.

Thinking back to the motivation of Gabor multipliers, i.e., efficient filtering of
a signal, let’s see how well Gabor multipliers approximate STFT-multipliers with
0/1-masks.

Experiment 4.8 (Digital Filters). In analogy to the last experiment we approximate
STFT-multipliers with 0/1-masks, i.e., digital filters. As the results in Table 4.8 show
the best approximations especially using a tight system gibe a large improvement
over just calculating the Gabor multiplier with the sampled mask. More than 90%
recovery is already gained with redundancy 1.7778 for the simple square mask and
2.25 for the more complicated band mask. Thus Gabor multipliers can be very
effectively used as time-variant filters.

Square Mask
(a/b) Sampled Mask Orig. Atom Tight Atom
(9/12) 0.3577 0.3009 0.1090
(9/9) 0.2151 0.1461 0.0803
(8/8) 0.1905 0.0938 0.0690
(6/6) 0.1996 0.0294 0.0290
(4/4) 0.0407 0.0009 0.0009

Band Mask
(a/b) Sampled Mask Orig. Atom Tight Atom
(9/12) 0.5330 0.3828 0.2481
(9/9) 0.2797 0.1700 0.1125
(8/8) 0.3119 0.1181 0.0991
(6/6) 0.1940 0.0290 0.0286
(4/4) 0.1227 0.0023 0.0023

Table 4.8: Results of Experiment 4.8

54 CHAPTER 4. BEST APPROXIMATION BY GABOR MULTIPLIERS

Square Mask

−50 0 50

−60

−40

−20

0

20

40

60

Coefficients, a=b=6

−10 −5 0 5 10

−10

−5

0

5

10

Band Mask

−50 0 50

−60

−40

−20

0

20

40

60

Coefficients, a=b=6

−10 −5 0 5 10

−10

−5

0

5

10

Signal

−50 0 50

−60

−40

−20

0

20

40

60

Filtered Signal

−50 0 50

−60

−40

−20

0

20

40

60

−80 −60 −40 −20 0 20 40 60 80
−5

0

5

10
Signal

real
imag.

−80 −60 −40 −20 0 20 40 60 80
−4

−2

0

2

4
Filtered Signal

Figure 4.6: Digital Filter

4.2. APPROXIMATION IN VARIOUS CLASSES OF OPERATORS 55

Figure 4.6 shows the action of the best approximation of the STFT-multiplier
with the band mask in the system made up by a Gaussian and a = b = 6. The
signal in Figure 4.6 is a superposition of three frequencies e2πikx, k = ±1,±26,±48.
With the help of the Gabor multiplier first the low and high then the middle and
then again the low and high frequencies are successfully filtered out.

Two other classes of operators that one could try to approximate are the inverse
and the iteration of a given Gabor multiplier. However both types of operators can
again be viewed as a special subclass of the sightly overspread operators, see [7]
respectively [3] for examples.
More information about Gabor multipliers in general but especially about their
eigenvalue distribution and eigenvectors can be found in [9] und [3].

56 CHAPTER 4. BEST APPROXIMATION BY GABOR MULTIPLIERS

Appendix A

MATLAB Files

All m-files are based on NuHAG files by H. G. Feichtinger or M. Hampejs. Signals
are assumed to be row vectors and matrices act on them by multiplication from the
right. Additional respectively alternative code to adapt for column vectors and left
multiplication is marked by ’%’.

A.1 stft.m
% stftka.m - calculates the STFT of a signal over a lattice

% with lattice constants a (time) and b (frequency).

%

% Input : f = signal (rowvector of length L)

% g = window (rowvector of length L)

% a,b = time,frequency lattice constants

%

% Output : MxN-matrix S(m+1,n+1) = STFTg(f)(na,mb)

% = <f,Mmb Tna g>

%

% Usage : stft(f,g,a,b) or

% stft(f,g) (a = 1 = b default values)

function stft = stft(f,g,a,b);

if nargin < 4;

a = 1;

b = 1;

end;

L = length(f);

N=L/a;

M=L/b;

stft1 = zeros(M,N); % stft1 = zeros(N,M)

gg = [conj(g),conj(g)]; % gg=[conj(g);conj(g)]

for n = 0 : N-1;

gna = gg((L+1-n*a) : (2*L - n*a)); % na-shifted version of g

y= f.*gna;

if b > 1;

y = fold(y,b);

end;

stft1(:,n+1) = fft(y).’; % stft1(n+1,:)=fft(y).’

end;

stft = stft1;

%%

function yf = fold(y,b);

M=length(y)/b;

u = zeros(M,b);

u(:) = y;

yf = sum(u.’); % yf = sum(u.’).’

%%%

57

58 APPENDIX A. MATLAB FILES

A.2 gabsyn.m
% gabsynka.m - synthesizes a vector from the coefficient matrix C

% and time frequency shifts of the atom g

%

% Input : C = MxN coefficient matrix

% C(m+1,n+1) corresponds to

% M(mb)T(na)g n=0...N-1, m=0...M-1

% g = atom

%

% Output : row-vector f

%

% Usage : gabsyn(C,g)

function f = gabsyn(C,g);

L=length(g);

[M,N]=size(C); % [N,M]=size(C)

a=L/N; b=L/M;

f=zeros(1,L); % f=zeros(L,1)

Ch=L*ifft(C); % Ch=L*ifft(C.’)

Chstack=repmat(Ch,b,1);

gg=[g,g]; % gg=[g;g]

for k = 1 : L;

gk = gg((L+k) : -a : k+a);

f(k)= Chstack(k,:)*gk.’; % f(k)=Chstack(k,:)*gk

end;

A.3 gabmult.m
% gabmultka.m - calculates the matrix corresponding to the Gabor multiplier

% with multiplier C and windows g1,g2

%

% Input : C = multiplier on lattice, MxN matrix

% g1 = analysis window, row vector of length L

% g2 = synthesis window, row vector of length L

%

% Output : LxL matrix Gm (acts on row vectors)

%

% Usage : gabmult(m,g1,g2)

% or gabmult(m,g) (g1=g2=g)

function Gm = gabmult(C,g1,g2)

if nargin == 2;

g2=g1;

end;

L = length(g1);

[M,N]=size(C); % [N,M]=size(C)

a=L/N; b=L/M;

gg1=[g1,g1]; % gg1=[g1;g1]

gg2=[g2,g2]; % gg2=[g2;g2]

gabm=zeros(L,L); for n=0:N-1;

g1n=gg1((L+1-n*a) : (2*L-n*a));

g2n=gg2((L+1-n*a) : (2*L-n*a));

gn=g1n’*g2n; % gn = g2n*g1n’

cn=fft(C(:,n+1)); % cn = fft(C(n+1,:))

cn=[cn;cn]; % cn = [cn,cn]

Cn=zeros(M,M);

for m=0:M-1

Cn(:,m+1)=cn(M+1-m : 2*M-m); % Cn(m+1,:)= ...

end

Cn = repmat(Cn,b,b);

gabm=gabm+gn.*Cn;

end Gm=gabm;

A.4. RB.M 59

A.4 rb.m
% rb.m - checks if (g,a,b) generates a Riesz basis

%

% Input : g atom

% a,b time/frequency gap

%

% Usage : rb(g,a,b)

%

function rb(g,a,b)

mQ=abs(stftka(g,g,a,b)).^2;

ftmQ=fft2(mQ);

if min(min(ftmQ)) < 100*eps

disp(’is no Riesz basis’);

else

disp(’is a Riesz basis’);

end;

A.5 gabcoeff.m
% gappcoeff.m - calculates the upper symbol of the best approximation of

% a general quadratic matrix K by a Gabor multiplier

%

% Input : K quadratic matrix

% g atom

% a,b time/frequency gap

%

% Output : MxN coefficient matrix

%

% Usage : gappcoeff(K,g,a,b) or gappcoeff(K,g)

function coeff = gappcoeff(K,g,a,b);

if nargin < 3

a=1;

b=1;

end

L=length(g);

N=L/a;

M=L/b;

C1=zeros(M,N); %C1=zeros(N,M)

gg=[g,g]; %gg=[g;g]

for n=0:N-1

gn=gg(L+1-n*a : 2*L -n*a);

gn=gn’*gn; %gn=gn*gn.’

Bn=K.*gn;

if b>1

Bn=fold(Bn,M);

end

Bn=[Bn,Bn]; %Bn=[Bn;Bn]

Bnf=zeros(1,M); %Bnf=zeros(M,1)

for l=1:M

Bnf=Bnf+Bn(l,l:l+M-1); %Bnf=Bnf+Bn(l:l+M-1,l)

end

C1(:,n+1)=fft(Bnf).’; %C1(n+1,:)=fft(Bnf).’

end

mQ=abs(stftka(g,g,a,b)).^2;

if min(min(fft2(mQ))) < 10*eps

disp(’(g,a,b) no Riesz basis’);

break;

else

coeff=ifft2(fft2(C1)./(fft2(mQ)));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function cfold=fold(C,d);

L=length(C);

Cf=zeros(d,L);

for j =1:d:L

Cf=Cf+C(j:j+d-1,:);

end

Cff=zeros(d,d);

for k=1:d:L

Cff=Cff+Cf(:,k:k+d-1);

end

cfold=Cff;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

60 APPENDIX A. MATLAB FILES

A.6 spread.m
% spread.m - calculates the spreading function of an operator/matrix

% that acts on row vectors by multiplication from the right

%

% Input : K quadratic matrix

%

% Output : quadratic matrix

%

% Usage : spread(K)

function spread=spread(K)

%K=K.’

L=size(K);

K=[K;K];

sp=zeros(L);

for k=1:L

sp(k,:)=K(L+k:-1:k+1,k).’;

end

spread=sp;

spread=fft(spread);

%spread=spread.’

A.7 spr2mat.m
% spr2mat.m - calculates the matrix from its spreading function

% (matrix acts on row vectors by multiplication from the right)

%

% Input : N quadratic matrix

%

% Output : quadratic matrix

%

% Usage : spr2mat(N)

function mat=spr2mat(N)

%N=N.’

L=size(N);

N=ifft(N);

K=[N.’;N.’];

m=zeros(L);

for j=1:L

m(j,:)=K(L+j:-1:j+1,j).’;

end

mat=m.’; %mat=m

Bibliography

[1] O. Christensen. An Introduction to Frames and Riesz Bases. Birkhäuser,
Boston, 2003.

[2] J. B. Conway. A Course in Functional Analysis. Springer New York, 1990.

[3] M. Dörfler. Gabor Analysis for a Class of Signals called Music. Dissertation,
University of Vienna, 2002.

[4] H. G. Feichtinger. Wiener amalgams over Euclidean spaces and some of their
applications In K. Jarosz, editor, Proc.Conf.Function spaces volume 136 of
Lect.Notes in Math pages 123-137. Edwardsville, IL, 1991.

[5] H. G. Feichtinger. Gabor multipliers and spline-type spaces over lca groups.
In D. X. Zhou, editor, Wavelet Analysis: Twenty Years’ Developments. World
Scientific Press, Singapore, 2002.

[6] H. G. Feichtinger. Gabor multipliers with varying lattices. Proc. SPIE Conf.,
August 2003.

[7] H. G. Feichtinger, M. Hampejs and G. Kracher. Approximation of matrices
by Gabor multipliers. IEEE Sign. Proc. Letters, 2004.

[8] H. G. Feichtinger and W. Kozek. Operator quantization on lca groups. In
H.G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms:
Theory and Applications. Birkhäuser, Boston, 1998. Chap. 7.

[9] H. G. Feichtinger and K. Nowak. A first survey of Gabor multipliers. In H.G.
Feichtinger and T. Strohmer, editors, Advances in Gabor Analysis. Birkhäuser,
Boston, 2002.

[10] H. G. Feichtinger und T. Werther. Robustness of minimal norm interpolation
in Sobolev algebras. In J. J. Benedetto and A. Zayed, editors, Sampling,
Wavelets and Tomography. Birkhäuser, Boston, 2002.

[11] H. G. Feichtinger and G. Zimmermann. A Banach space of test functions for
Gabor analysis. In H.G. Feichtinger and T. Strohmer, editors, Gabor Analysis
and Algorithms: Theory and Applications. Birkhäuser, Boston, 1998. Chap. 3.

[12] I. M. Gelfand and N. J. Wilenkin. Generalized Functions vol.4: Some Appli-
cations of Harmonic Analysis. Rigged Hilbert Spaces. Academic Press, New
York, 1964.

61

62 BIBLIOGRAPHY

[13] G. H. Golub and C. F. Van Loan. Matrix Computations, 3rd edition. The
Johns Hopkins University Press, Baltimore, 1996.

[14] K. Gröchenig. Foundations of Time-Frequency Analysis. Applied and Numer-
ical Harmonic Analysis. Birkhäuser, Boston, 2001.

[15] K. Gröchenig and G. Leinert. Wiener’s Lemma for Twisted Convolution and
Gabor Frames. J. Amer. Math. Soc. 17, 1-18, 2004.

[16] A. J. E. M. Janssen and T. Strohmer. Characterization and computation of
canonical tight windows for Gabor frames. J. Four. Anal. Appl.,8(1):1-28,
2002.

[17] W. Kozek. Adaption of Weyl-Heisenberg frames. In H.G. Feichtinger and
T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applica-
tions. Birkhäuser, Boston, 1998. Chap. 10.

[18] P. Prinz. Theory and algorithms for discrete 1-dimensional Gabor frames.
Masters Thesis, University of Vienna, 1996.

[19] H. Reiter. Classical Analysis and Locally Compact Abelian Groups. Oxford
University Press, 1968.

[20] T. Strohmer. Numerical algorithms for discrete Gabor expansions. In H.G.
Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory
and Applications. Birkhäuser, Boston, 1998. Chap. 8.

Curriculum Vitae

Name: Karin Schnass
Geburtstag: 3. Mai 1980
Geburtsort: Klosterneuburg
Eltern: Dr Karl und Susanne Schnass
Staatsbürgerschaft: Österreich
Email: karin.schnass@aon.at

1986-1990: Volksschule in Klosterneuburg
1990-1998: BG und BRG Klosterneuburg
Juni 1998: Matura (mit Auszeichnung)
1998-2000: Biologiestudium an der Universität Wien
1998-2004: Mathematikstudium an der Universität Wien
WS 2001: Auslandssemester an der University of Leeds (UK)

63

