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Low complexity models of high-dimensional data lie at heart of
many efficient solutions in modern signal processing. One such model
is that of sparsity in dictionary, where every signal in the data class
at hand has a sparse expansion in a predefined basis or frame. In
mathematical terms this means that there is a set of K unit-norm
vectors φk ∈ Rd (also referred to as atoms) collected as columns in
the dictionary matrix Φ = (φ1, . . . ,φK), and that every data point
y ∈ Rd can be approximately represented as

y ≈ ΦIxI =
∑
i∈I

x(i)φi,

for an index set I of cardinality S with S � d.
One fundamental question associated with the sparse model is

how to find a suitable dictionary providing sparse representations.
When taking a learning rather than a design approach this problem
is known as dictionary learning or sparse component analysis. In
its most general form the dictionary learning can be seen as matrix
factorisation problem. Given a set of N data points in Rd, represented
by the d ×N matrix Y = (y1, . . . ,yN ), decompose into a d ×K
dictionary Φ and sparse coefficients, Y = ΦX , where X is sparse.
Since the seminal paper by Olshausen and Field, [1], a myriad of
dictionary learning algorithms have been developed and recently also
theory on the problem has started to emerge. For an overview over
dictionary learning algorithms see [2], while pointers to the main
theoretical results can be found in [3].
However one of the remaining open problems is that so far there exist
no efficient algorithms with global recovery guarantees and that even
the algorithms that are not supported by theoretical results become
computationally intractable as the signal dimension increases. In this
paper we take a step towards increasing computational efficiency of
dictionary learning and thus making it applicable to high-dimensional
data.
As starting point for our development we use the residual version of
the Iterative Thresholding and K-Means (ITKM) algorithm presented
in [4], which is supported not only by experimental validation but also
by local convergence results. Given an initialization dictionary Ψ the
algorithm iteratively performs two operations: (1) finding the sparse
support Itn of each point in the data set Y by using thresholding as

Itn = arg max
|I|=S

‖Ψ∗Iyn‖1, (1)

and (2) updating the dictionary via K residual means. For most
admissible sparsity levels which still allow for stable dictionary
recovery, the computationally most expensive operation of ITKM
is finding the sparse support Itn. This entails the calculation of the
matrix product Ψ∗Y of cost O(dKN) at each iteration. Although
this cost is quite light compared to other dictionary learning algo-
rithms such as the popular K-SVD algorithm, [5], which additionally
in each iteration requires the calculation of K leading singular
vectors, learning dictionaries for high-dimensional data can still be
prohibitively expensive.

We therefore introduce the Iterative Compressed-Thresholding and
K-Means (IcTKM) algorithm for fast dictionary learning, which has
significantly reduced computational cost and can efficiently process
large data sets. The key modification of the ITKM algorithm is based
on a fundamental dimensionality-reduction result due to Johnson and
Lindenstrauss [6]. It states that for any set X in Rd with |X | = N ,
there exists a map f : Rd → Rm with m = O

(
δ−2 logN

)
and

δ ∈ (0, 1
2
), such that for all u,v ∈ X

(1− δ) ‖u− v‖22 ≤ ‖f(u)− f(v)‖
2
2 ≤ (1 + δ) ‖u− v‖22 . (2)

Moreover probabilistic matrix constructions can efficiently realize
the low-distortion embedding f : Rd → Rm in (2). Recent
developments have focused on improving the computational costs
associated with the embedding and providing tighter bounds on the
required embedding dimension, [7], [8], [9]. In particular, matrices
with the Restricted Isometry Property (RIP), as introduced by Candès
and Tao in [10], can realize the embedding f : Rd → Rm in (2) with
high probability when their column signs are randomized [9]. In the
specific case where the RIP matrix is taken to be the partial Fourier
matrix, formed by choosing at random a subset of m rows from the
d×d discrete Fourier matrix, the computational cost associated with
embedding the data is O(d log d) and the required embedding dimen-
sion assumes the near-optimal bound m = O(δ−2 logN log4 d).

In the proposed IcTKM algorithm, we can reduce the computa-
tional costs associated with finding the sparse support Itn in (1) by
embedding the entire data set Y and the initialization dictionary Ψ
with a m×K partial Fourier matrix with randomized column signs.
Let Γ denote such a matrix; we replace the thresholding operation in
(1) with the compressed-thresholding operation, which we define as

Ictn := arg max
|I|=S

‖Ψ∗IΓ∗Γyn‖1. (3)

We proceed by showing that the computational cost associated with
compressed thresholding reduces to O

(
δ−2 logN log4(d)KN

)
as

opposed to O(dKN) of regular thresholding. Thus the embedding
distortion δ controls the performance improvement of IcTKM over
ITKM. It is then shown that the number of data points N (sample
complexity) required for IcTKM to locally identify a dictionary with
high probability is essentially the same as that of ITKM, while the
embedding distortion δ increases the best achievable error ε̃ and
reduces the convergence radius of IcTKM; However increasing the
minimally achievable error is largely negligible for high-dimensional
data, since the realistically achievable error is determined by the
sample size. The reduction of convergence radius is somewhat more
disappointing, but as we will show in our numerical experiments on
very-large data sets, in practice this does not affect the good global
convergence behaviour of IcTKM, [11].
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