
Sequential Learning of Analysis Operators
Michael Sandbichler and Karin Schnass

Department of Mathematics, University of Innsbruck
Technikerstraße 13, A-6020 Innsbruck

Email: {michael.sandbichler, karin.schnass}@uibk.ac.at

I. INTRODUCTION

Many tasks in high dimension signal processing, such as denoising
or reconstruction from incomplete information, can be efficiently
solved if the data at hand is known to have intrinsic low dimension.
One popular model with intrinsic low dimension is the union of
subspace model, where every signal is assumed to lie in one of
the low dimensional linear subspaces. However, as the number of
subspaces increases, the model becomes more and more cumbersome
to use unless the subspaces can be parametrised. Two examples of
large unions of parametrised subspaces, that have been successfully
employed, are sparsity in a dictionary and cosparsity in an analysis
operator. In the sparse model the subspaces correspond to the linear
span of just a few normalised columns from a K×d dictionary matrix,
Φ = (φ1 . . . φK) with ‖φk‖2 = 1, meaning any data point y can
be approximately represented as superposition of S � d dictionary
elements, y ≈

∑S
j=1 φijxij . In the cosparse model the subspaces

correspond to the orthogonal complement of the span of some
normalised rows from a d×K analysis operator Ω = (ω?1 . . . ω

?
K)?

with ‖ωk‖2 = 1, meaning any data point y is orthogonal to `
analysers, meaning the vector Ωy has ` zero entries.
However, before being able to exploit these models for a given
data class it is necessary to identify the parametrising dictionary or
analysis operator. This can be done either via a theoretical analysis
or a learning approach. While dictionary learning is by now an
established field, see [1] for an introductory survey, results in analysis
operator learning are still relatively scarse, [2], [3], [4], [5], [6], [7]. In
this work we will contribute to the development of the field by taking
an optimisation approach, which will lead to an online algorithm for
learning analysis operators

II. THE TARGET FUNCTION

Suppose we are given a batch of signals y1, . . . , yN ∈ Rd which
are `-cosparse with respect to some (unknown) operator Ω ∈ RK×d.
Our goal is to learn the operator Ω from the data.
Define A = {Γ ∈ RK×d : ‖γk‖2 = 1}, where γk denotes the k-
th row of Γ and X` = {(x1, x2, . . . , xN ) ∈ RK×N : |supp(xn)| =
K − `}. If we collect the given data y1 . . . , yN in a matrix Y =
(y1, . . . , yN ) ∈ Rd×N , then the unknown operator Ω should satisfy
‖ΩY −X‖F = 0 for some X ∈ X` since every column xn can be
used to zero out all non-zero entries in Ωyn. This suggests to find Ω
via the following opimisation program,

Ω̂ = argmin
Γ∈A

min
X∈X`

‖ΓY −X‖2F . (1)

This can be rewritten as

Ω̂ = argmin
Γ∈A

N∑
n=1

min
J⊂[K] : |J|=`

‖ΓJyn‖22, (2)

where ΓJ denotes the submatrix of Γ consisting only of the rows of
Γ indexed by J . So in order to find an estimate for Ω, we need to
minimize the function fN over A, where

fN (Γ) =

N∑
n=1

min
J⊂[K] : |J|=`

‖ΓJyn‖22. (3)

III. THE ISAOL ALGORITHM

Our next step consists in finding an efficient way to minimize the
target function given in equation (3). In the spirit of online learning,
we will employ a stochastic gradient descent algorithm in order to
achieve this goal.

The derivative of fN with respect to some row γk of Γ is given
by

∂fN
∂γk

(Γ) = γk
∑

n : k∈Jn

2yny
?
n︸ ︷︷ ︸

=:Ak(Γ)

, (4)

where Jn = argmin|J|=` ‖ΓJyn‖22. Using this expression we now
perform a semi-implicit gradient step followed by a projection onto
the unit sphere for each of the rows of Γ, i.e. γ̄k = γk−αγ̄kAk(Γ).
Setting α = 1, yields the Implicit Sequential Analysis Operator
Learning (ISAOL) algorithm:

ISAOL(Γ,`,Y ) - (one iteration)

• For all n ∈ [N ]

– Find Jn = argmin|J|=` ‖ΓJyn‖22
– For all k ∈ Jn update Ak = Ak + yny

?
n

• Set γ̄k = γk (I +Ak)−1

• Output Γ̄ = ( γ̄1
‖γ̄1‖2

, . . . , γ̄K
‖γ̄K‖2

)?

Note that this algorithm is sequential with respect to the data yn,
since every data point is used to perform the update of the matrices
Ak, but not needed anymore later in the algorithm.
Figure 2 shows the result of performing analysis operator learning
with the ISAOL algorithm for image patches taken from Figure 1.

IV. CONCLUSION

We presented a new sequential algorithm for learning analysis
operators in an online setting along with some numerical experiments
showing the performance of the algorithm in various situations. The
problem of multiple recovery of the same rows can for example be
tackled by introducing a replacement strategy, [8].
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Fig. 1. The image, from which our analysis operator was learned.

Fig. 2. The recovered analysis operator for Fabio. We took the cosparsity
parameter to be ` = 57.

REFERENCES

[1] R. Rubinstein, A. Bruckstein, and M. Elad, “Dictionaries for sparse
representation modeling,” Proceedings of the IEEE, vol. 98, no. 6, pp.
1045–1057, 2010.

[2] S. Nam, M. E. Davies, M. Elad, and R. Gribonval, “The cosparse analysis
model and algorithms,” Applied and Computational Harmonic Analysis,
vol. 34, no. 1, pp. 30–56, 2013.

[3] M. Yaghoobi, S. Nam, R. Gribonval, and M. E. Davies, “Analysis operator
learning for overcomplete cosparse representations,” in Signal Processing
Conference, 2011 19th European. IEEE, 2011, pp. 1470–1474.

[4] ——, “Constrained overcomplete analysis operator learning for cosparse
signal modelling,” IEEE Transactions on Signal Processing, vol. 61, no. 9,
pp. 2341–2355, 2013.

[5] S. Hawe, M. Kleinsteuber, and K. Diepold, “Analysis operator learning
and its application to image reconstruction,” IEEE Transactions on Image
Processing, vol. 22, no. 6, pp. 2138–2150, 2013.

[6] R. Rubinstein, T. Peleg, and M. Elad, “Analysis k-svd: a dictionary-
learning algorithm for the analysis sparse model,” IEEE Transactions on
Signal Processing, vol. 61, no. 3, pp. 661–677, 2013.

[7] R. Giryes, S. Nam, M. Elad, R. Gribonval, and M. E. Davies, “Greedy-
like algorithms for the cosparse analysis model,” Linear Algebra and its
Applications, vol. 441, pp. 22–60, 2014.

[8] M. Sandbichler and K. Schnass, “Sequential learning of analysis opera-
tors,” in preparation, 2016.


