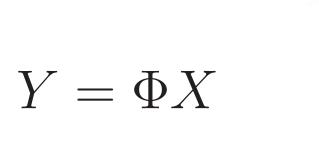


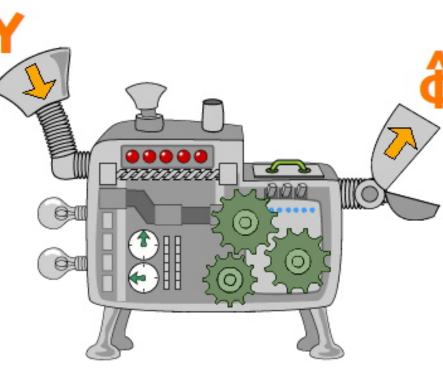
IDENTIFICATION OF OVERCOMPLETE DICTIONARIES

Karin Schnass kschnass@uniss.it

WHAT DO WE WANT TO DO?

We have finally found intelligent life and now want to identify a dictionary Φ from the received sparse signals, $Y = \Phi X$.





 $\hat{\Phi} \simeq \Phi?$

We could use

ER-SpUD [7] - but we think the dictionary is overcomplete... **K-SVD** [1, 5] - but we think that the dictionary is non-tight... ℓ_1 -minimisation [3, 2, 4] - but this might take a while...

A RESPONSE MAXIMISATION PRINCIPLE

The reason why K-SVD might have trouble recovering non-tight frames is that for random sparse signals $\Phi_I x_I$ and an ε -perturbation Ψ the average of the largest squared response behaves like

$$\frac{1}{2}\left(1 - \frac{\varepsilon^2}{2} + c(\Psi)\right)^2 + \frac{1}{2}\left(1 - \frac{\varepsilon^2}{2} - c(\Psi)\right)^2 = 1 - \varepsilon^2 + \frac{\varepsilon^4}{4} + c(\Psi)^2.$$

The term $c(\Psi)$ is constant over all dictionaries if (and only if ???) Φ is tight and therefore there is a local maximum at Φ . But since the average of the largest *absolute* response should behave like

$$\frac{1}{2} \left| 1 - \frac{\varepsilon^2}{2} + c(\Psi) \right| + \frac{1}{2} \left| 1 - \frac{\varepsilon^2}{2} - c(\Psi) \right| = 1 - \frac{\varepsilon^2}{2}$$

why not simply maximise the absolute norm of the S-largest responses,

$$(P_{R1}) \qquad \max_{\Psi \in \mathcal{D}} \sum_{n} \max_{|I|=S} \|\Psi_I^{\star} y_n\|_1.$$

A DEFINITION

A probability measure ν on the unit sphere $S^{K-1} \subset \mathbb{R}^K$ is called symmetric if for all measurable sets $\mathcal{X} \subseteq S^{K-1}$, for all sign sequences $\sigma \in \{-1,1\}^K$ and all permutations p we have

$\nu(\sigma \mathcal{X}) = \nu(\mathcal{X}),$	where	$\sigma \mathcal{X} := \{ (\sigma_1 x_1, \dots, \sigma_K x_K) :$
$\nu(p(\mathcal{X})) = \nu(\mathcal{X}),$	where	$p(\mathcal{X}) := \{(x_{p(1)}, \dots, x_{p(K)})\}$

...or think of something new [6].

 $\overline{2}$

(1)

 $x \in \mathcal{X}$ (2) $: x \in \mathcal{X} \} (3)$

THE SIGNAL MODEL

We assume that our signals are generated as

 $y_n = \frac{\Phi x_n + r_n}{\sqrt{1 + \|r_n\|_2^2}}$

where the coefficients x_n are drawn from a symmetric probability distribution ν on the unit sphere and $r_n = (r_n(1) \dots r_n(d))$ is a centred random subgaussian noise-vectors with parameter ρ , i.e. the $r_n(i)$ are independent and we have $\mathbb{E}[\exp(tr_n(i))] \leq \exp(t^2\rho^2/2)$.

THE RESULT

Let Φ be a unit norm frame with frame constants $A \leq B$ and coherence μ and let the signals follow the model above. If there is a gap between the S and S + 1-largest coefficients $c_S(x_n)$ and $c_{S+1}(x_n)$ such that for some 0 < q < 1/4 the number of samples N, the noiselevel ρ and the coherence μ satisfy

$$\max\{\mu, \rho, N^{-q}\} < \mathcal{O}\left(\frac{c_S(x_n) - c_{S+1}(x_n)}{\sqrt{\log K}}\right), \quad a.s.$$
(5)

then except with probability

$$\exp\left(-\mathcal{O}\left(\frac{N^{1-4q}}{K^2}\right) + \mathcal{O}\left(K\right)\right)$$

there is a local maximum of (1) near Φ .

This means:

Our machine succeeds if we have a **gap** between the relevant and the irrelevant coefficients and $\mathcal{O}(K^3d)$ training signals.

THE ALGORITHM

We derive an Iterative Thresholding & K-Means algorithm (ITKM) using LaGrange multipliers. We have

$$\frac{\partial}{\partial \psi_k} \left(\sum_n \max_{|I|=S} \|\Psi_I^* y_n\|_1 \right) = \sum_{n:k\in I(\Psi,y_n)} \operatorname{sign}(\langle \psi_k, y_n \rangle) y_n^*,$$
$$\frac{\partial}{\partial \psi_k} \left(\|\psi_k\|_2^2 \right) = 2\psi_k^*, \quad \text{where} \quad I(\Psi, y_n) := \arg\max_{|I|=S} \|\Phi_I^* y_n\|_1$$

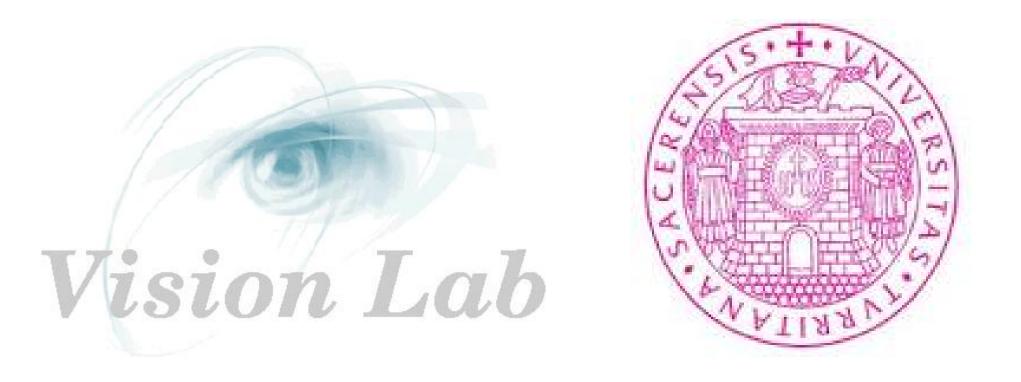
which leads to the update rule,

$$\psi_k^{new} = \lambda_k \cdot \sum_{n:k \in I(\Psi^{old}, y_n)} \operatorname{sign}(\langle \psi_k^{old}, y_n \rangle) y_n \tag{6}$$

where λ_k is a scaling parameter ensuring that $\|\psi_k^{new}\|_2 = 1$.

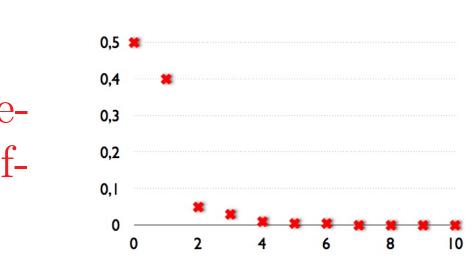
Computer Vision Laboratory University of Sassari

(4)

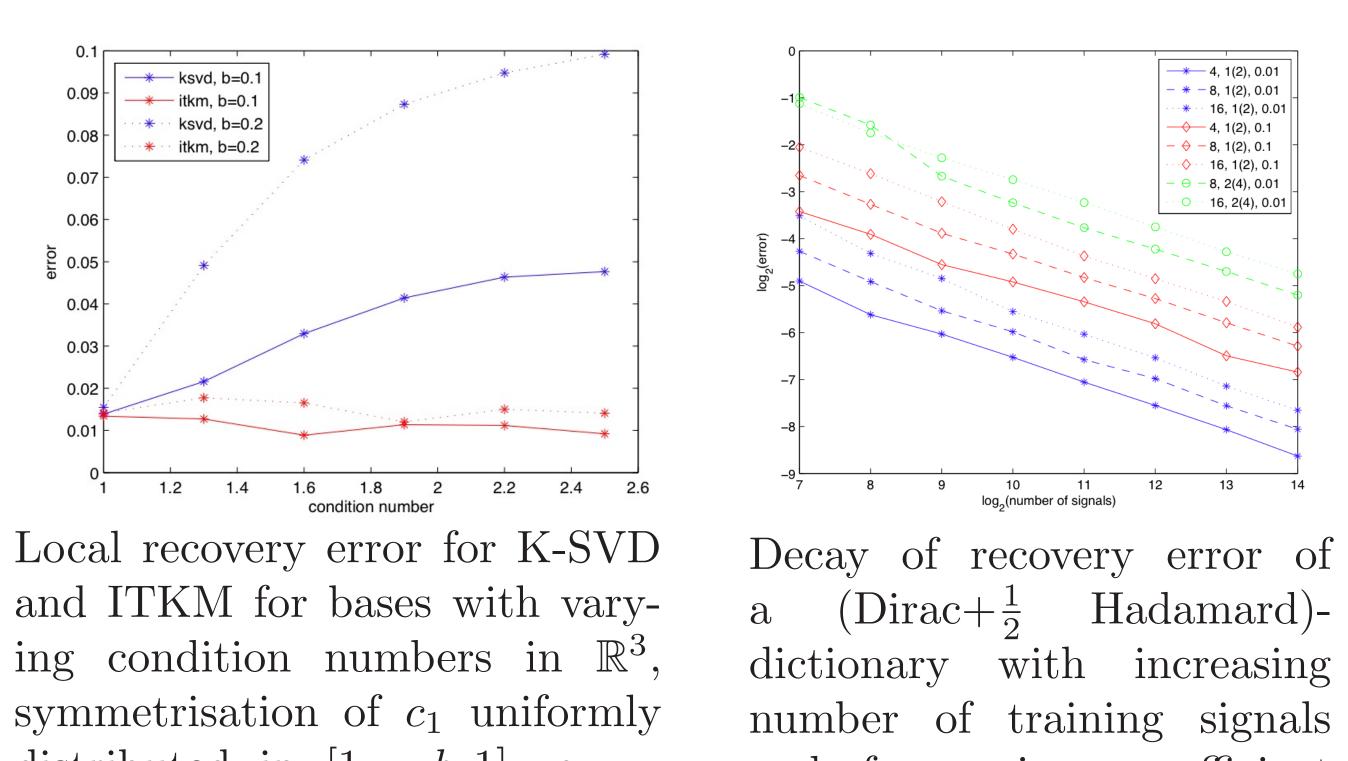


$$\frac{1}{2}$$

 $Ld\log(NK))$



PRETTY PICTURES



distributed in $[1 - b, 1], c_2 =$ $\sqrt{1-c_1^2}$ and $c_3=0$.

COMPARISON & DISCUSSION

The proposed principle compares quite favorably to classic machines:

Machine	ℓ_1 -min.	ER-SpUD	K-SVD-princ.	P_{R1}
Overcomplete Φ	\checkmark		\checkmark	\checkmark
Non-tight Φ	\checkmark	\checkmark	$\odot/?$	\checkmark
Sparsity $O(\cdot)$	μ^{-1}	\sqrt{d}	μ^{-1}	μ^{-2}
Samples $O(\cdot)$	K^3d	K^2	K^3d	K^3d
Noise stability	\checkmark	?	\checkmark	\checkmark
Fast algorithm		\checkmark	?	\checkmark
local = global	?	\checkmark	?	

To make it really useful in practice we should figure out ways how to get to the global optimum and extend the result to the unit norm signal model.

REFERENCES

- *Processing.*, 54(11):4311–4322, November 2006.
- dictionary learning. arXiv:1101.5672, 2011.
- July 2010
- dictionary learning in the presence of noise. preprint, 2012.
- principle underlying K-SVD. submitted, 2013.
- In Conference on Learning Theory (arXiv:1206.5882), 2012.

and for various coefficient distributions.

[1] M. Aharon, M. Elad, and A.M. Bruckstein. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal

[2] Q. Geng, H. Wang, and J. Wright. On the local correctness of ℓ^1 -minimization for

[3] R. Gribonval and K. Schnass. Dictionary identifiability - sparse matrix-factorisation via l_1 -minimisation. IEEE Transactions on Information Theory, 56(7):3523-3539,

[4] R. Jenatton, F. Bach, and R. Gribonval. Local stability and robustness of sparse

[5] K. Schnass. On the identifiability of overcomplete dictionaries via the minimisation

[6] K. Schnass. Identification of overcomplete dictionaries. in preparation since forever.

[7] D. Spielman, H. Wang, and J. Wright. Exact recovery of sparsely-used dictionaries.