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WHAT DO WE WANT TO DO?

We have finally found intelligent life and now want to identify a dictio-
nary ® from the received sparse signals, ¥ = ®X.

Y =dX

We could use
ER-SpUD [7] - but we think the dictionary is overcomplete...

K-SVD [1, 5] - but we think that the dictionary is non-tight...

(1-minimisation [3, 2, 4] - but this might take a while...

...or think of something new [6].

A RESPONSE MAXIMISATION PRINCIPLE

The reason why K-SVD might have trouble recovering non-tight frames
is that for random sparse signals ®;x; and an e-perturbation W the
average of the largest squared response behaves like
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The term ¢(V) is constant over all dictionaries if (and only if 777) & is

tight and therefore there is a local maximum at P.

But since the average of the largest absolute response should behave
like
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why not simply maximise the absolute norm of the S-largest responses,

(Pr1) max 3 max [ W5y, (1)

VeD 4~ |[|=5
n

A DEFINITION

A probability measure v on the unit sphere S*~! c R is called
symmetric if for all measurable sets X C S® =1, for all sign sequences
o € {—1,1}% and all permutations p we have

v(cX) =v(X), where oX :={(o1x1,...,0xxK):xE X} (2)

(X), where p(X):= {(Tp),. -+ Tpx)) T € X} (3)

[DENTIFICATION OF OVERCOMPLETE DICTIONARIES SABED
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THE SIGNAL MODEL

We assume that our signals are generated as
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where the coeflicients x,, are drawn from a symmetric probability dis-
tribution v on the unit sphere and r, = (r,(1)...7,(d)) is a centred
random subgaussian noise-vectors with parameter p, ie. the r,(7) are
independent and we have Elexp(tr,(¢))] < exp(t?p?/2).

Yn
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THE RESULT

Let & be a unit norm frame with frame constants A < B and coherence
1 and let the signals follow the model above. If there is a gap between
the S and S + 1-largest coefficients cg(x,,) and csy1(x,) such that for
some 0 < ¢ < 1/4 the number of samples NV, the noiselevel p and the
coherence i satisty

max{u, o, N 1} <O (Cs(xnf/l_();i;rl(xn)> ., Q.s. (5)

then except with probability

exp (-0 (N ;;q> L O(Kd log(NK))>

there is a local maximum of (1) near .

This means:
Our machine succeeds if we have a gap be- o
tween the relevant and the irrelevant coet-
ficients and O(K°d) training signals. : I P

THE ALGORITHM

We derive an Iterative Thresholding & K-Means algorithm (ITKM)
using LaGrange multipliers. We have
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which leads to the update rule,
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where \j; is a scaling parameter ensuring that || |2 = 1.

PRETTY PICTURES
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Local recovery error for K-SVD Decay of recovery error of
and I'TKM for bases with vary- a (Dirac—l—% Hadamard)-

ing condition numbers in R?, dictionary with increasing
symmetrisation of c¢; uniformly number of training signals
distributed in [1 — 0,1}, co = and for various coefficient
\/ 1 —¢f and c3 = 0. distributions.
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COMPARISON & DISCUSSION

The proposed principle compares quite favorably to classic machines:

Machine ¢1-min. ER-SpUD K-SVD-princ. Prq
Overcomplete ® v ® v v
Non-tight & v v4 ® /7 v
Sparsity O(-) p! Vd p! o
Samples O(-) K°d K K°d K°d
Noise stability va ? v v
Fast algorithm ® v 7 v
local = global ? V4 7 ®

To make it really useful in practice we should figure out ways how to
oet to the global optimum and extend the result to the unit norm signal
model.
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