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What do we want to do?
We have finally found intelligent life and now want to identify a dictio-
nary Φ from the received sparse signals, Y = ΦX.

Y = ΦX Φ̂ ' Φ?

We could use

ER-SpUD [7] - but we think the dictionary is overcomplete...

K-SVD [1, 5] - but we think that the dictionary is non-tight...

`1-minimisation [3, 2, 4] - but this might take a while...

...or think of something new [6].

A response maximisation principle
The reason why K-SVD might have trouble recovering non-tight frames
is that for random sparse signals ΦIxI and an ε-perturbation Ψ the
average of the largest squared response behaves like
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The term c(Ψ) is constant over all dictionaries if (and only if ???) Φ is
tight and therefore there is a local maximum at Φ.
But since the average of the largest absolute response should behave
like
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why not simply maximise the absolute norm of the S-largest responses,

(PR1) max
Ψ∈D

∑
n

max
|I|=S

‖Ψ?
Iyn‖1. (1)

A definition

A probability measure ν on the unit sphere SK−1 ⊂ RK is called
symmetric if for all measurable sets X ⊆ SK−1, for all sign sequences
σ ∈ {−1, 1}K and all permutations p we have

ν(σX ) = ν(X ), where σX := {(σ1x1, . . . , σKxK) : x ∈ X} (2)

ν(p(X )) = ν(X ), where p(X ) := {(xp(1), . . . , xp(K)) : x ∈ X} (3)

The signal model
We assume that our signals are generated as

yn =
Φxn + rn√
1 + ‖rn‖22

(4)

where the coefficients xn are drawn from a symmetric probability dis-
tribution ν on the unit sphere and rn = (rn(1) . . . rn(d)) is a centred
random subgaussian noise-vectors with parameter ρ, ie. the rn(i) are
independent and we have E[exp(trn(i))] ≤ exp(t2ρ2/2).

The result
Let Φ be a unit norm frame with frame constants A ≤ B and coherence
µ and let the signals follow the model above. If there is a gap between
the S and S + 1-largest coefficients cS(xn) and cS+1(xn) such that for
some 0 < q < 1/4 the number of samples N , the noiselevel ρ and the
coherence µ satisfy

max{µ, ρ,N−q} < O
(
cS(xn)− cS+1(xn)√

logK

)
, a.s. (5)

then except with probability
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)
there is a local maximum of (1) near Φ.

This means:
Our machine succeeds if we have a gap be-
tween the relevant and the irrelevant coef-
ficients and O(K3d) training signals.

The algorithm
We derive an Iterative Thresholding & K-Means algorithm (ITKM)
using LaGrange multipliers. We have
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k, where I(Ψ, yn) := arg max
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which leads to the update rule,

ψnew
k = λk ·

∑
n:k∈I(Ψold,yn)

sign(〈ψold
k , yn〉)yn (6)

where λk is a scaling parameter ensuring that ‖ψnew
k ‖2 = 1.

Pretty Pictures

Local recovery error for K-SVD
and ITKM for bases with vary-
ing condition numbers in R3,
symmetrisation of c1 uniformly
distributed in [1 − b, 1], c2 =√

1− c21 and c3 = 0.

Decay of recovery error of
a (Dirac+1

2 Hadamard)-
dictionary with increasing
number of training signals
and for various coefficient
distributions.

Comparison & Discussion
The proposed principle compares quite favorably to classic machines:

Machine `1-min. ER-SpUD K-SVD-princ. PR1

Overcomplete Φ � / � �
Non-tight Φ � � //? �
Sparsity O(·) µ−1

√
d µ−1 µ−2

Samples O(·) K3d K2 K3d K3d
Noise stability � ? � �
Fast algorithm / � ? �
local = global ? � ? /

To make it really useful in practice we should figure out ways how to
get to the global optimum and extend the result to the unit norm signal
model.
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