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1. Introduction

In [7], we have considered rotor walks (Xn)n≥0 with random initial config-
uration of rotors on regular trees and on Galton – Watson trees, and we have
proven a law of large numbers for the size of the range and for the rate of es-
cape. The proofs used there rely on on analyzing the behavior and the growth
of certain branching processes that appear when looking at rotor walks on trees.
We continue the investigation of the range of rotor walk in this work, and we
prove similar results for positive recurrent rotor walks on periodic trees, but
with completely different methods that involve generating functions.

Periodic trees are a straightforward generalization of regular trees. Using the
methods developed here, one could also recover results from [7]. Nevertheless,
the methods for periodic trees are technically more involved, and the results are
stated in terms of spectral radii of adjacency matrices related to the periodic



468 W. Huss and E. Sava-Huss

tree and to the random initial rotor configuration. Transience and recurrence
of rotor walks on such trees was investigated in [6].

Before stating the main result, we introduce shortly the setting we are work-
ing on. Let G be a finite graph on N vertices, D its adjacency matrix, and Ti be
a periodic tree (directed cover of G), with root of type i ∈ {1, . . . ,N}. A rotor
configuration on Ti is a function which assigns to each vertex a rotor pointing
to one of the neighbors, and the neighbors of each vertex are ordered counter-
clockwise. A rotor walk (Xi

n)n≥0 on Ti is a process which starts at the root
vertex, and at each time step it first rotates the rotor to the next neighbor in
the counterclockwise order, and then it moves to the neighbor the rotor points
at. A child of a vertex is called good if the rotor walk visits this child before
returning to the parent vertex. The tree of good children of (Xi

n), which we

denote by Tgood
i , is a subtree of Ti, consisting of only good children. Suppose

that (Xi
n) is a rotor walk on Ti, with D-distributed random initial configuration

of rotors; see the paragraph above Definition 2.1 for the precise definition of the
distribution D. Then Tgood

i is a multitype branching process (MBP), whose first
moment matrix will be denoted by M . It has been shown in [6] that (Xi

n), for
every i ∈ {1, . . . ,N} is recurrent if and only if the spectral radius ρ(M) ≤ 1. The
range Rin = {Xi

1, . . . , X
i
n} represents the number of distinct visited points by

the walk (Xi
n) up to time n and |Rin| its size. The walk (Xi

n) starts at the root
of Ti, and the super index gives the dependence on the type i of root vertex.
For the size |Rin| of the rotor walk up to time n we prove the following law of
large numbers.

Theorem 1.1. Let (Xi
n)n≥0 be a rotor walk with a D-distributed random ini-

tial configuration of rotors on a periodic tree Ti, with root of type i ∈ {1, . . . ,N}.
For all i ∈ {1, . . . ,N}, if ρ(M) < 1, then

|Rin|
n
→ 1

2

(
1− 1

γ

)
, almost surely, as n→∞,

where γ is the spectral radius of the matrix I + (D − I)(I −M)−1.

In the null recurrent case, when ρ(M) = 1, we conjecture the following.

Conjecture 1.1. For all i ∈ {1, . . . ,N}, if ρ(M) = 1, then

|Rin|
n
→ 1

2
, almost surely, as n→∞.

Let us briefly comment on the proof of Theorem 1.1. For ρ(M) < 1, we use
generating functions equalities and multitype Galton – Watson processes. For
the remaining two cases (when the rotor walk is null recurrent (ρ(M) = 1)
and transient (ρ(M) > 1)) one can also prove a law of large numbers for the
size of the range, but the amount of technical calculations will be too high for
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the expected result. Range of rotor walks and its shape was considered also
in [4] on comb lattices and on Eulerian graphs. It is conjectured in [8], that
on Z2, the range of uniform rotor walks is asymptotically a disk, and its size if
of order n2/3. This is challenging, since on Z2 is not even known whether the
uniform rotor walk is recurrent or transient. For recent results on rotor walks on
transient graphs with initial rotor configuration sampled from the wired uniform
spanning forest oriented toward infinity measure see [2, 3].

2. Preliminaries

Since we use the results from [6] on recurrence/transience of rotor walks on
periodic trees, we keep the same notation as there.

2.1. Periodic trees

Periodic trees are also known in the literature as directed covers of graphs
or trees with finitely many cone types. Such trees have interesting properties
in what concerns both the behavior of random walks and of rotor walks on
them. We add in the appendix an example of a rotor-recurrent periodic tree
that contains rotor-transient subtrees.

Graphs and Trees. Let G = (V,E) be a locally finite and connected directed
multigraph, with vertex set V and edge set E. For ease of presentation, we shall
identify the graph G with its vertex set V , i.e. i ∈ G means i ∈ V . If (i, j)
is an edge of G, we write i ∼G j, and write d(i, j) for the graph distance. Let
D = (dij)i,j∈G be the adjacency matrix of G, where dij is the number of directed
edges connecting i to j. We write di for the sum of the entries in the i-th row of
D, that is di =

∑
j∈G dij is the degree of the vertex i. A tree T is a connected,

cycle-free graph. A rooted tree is a tree with a distinguished vertex r, called
the root. For a vertex x ∈ T , denote by |x| the height of x, that is the graph
distance from the root to x. For x ∈ T \ {r}, denote by x(0) its ancestor, which
is the unique neighbor of x closer to the root r. We attach to T an additional
vertex o to the root r, which will be considered in the following as a sink vertex.
Additionally we fix a planar embedding of T and enumerate the neighbors of a
vertex x ∈ T in counterclockwise order

(
x(0), x(1), . . . , x(dx−1)

)
beginning with

the ancestor. We will call a vertex y a descendant of x, if x lies on the unique
shortest path from y to the root r. A descendant of x, which is also a neighbor
of x, will be called a child. The principal branches of T are the subtrees rooted
at the children of the root r.

Directed Covers of Graphs. Suppose now that G is a finite, directed and
strongly connected multigraph with adjacency matrix D = (dij). Let N be the
cardinality of the vertices of G, and label the vertices of G by {1, 2, . . . ,N}. The
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directed cover T of G is defined recursively as a rooted tree whose vertices are
labeled by the vertex set {1, 2, . . . ,N} of G. The root r of T is labeled with some
i ∈ {1, 2, . . . ,N}. Recursively, if x is a vertex in T with label i ∈ G, then x has
dij descendants with label j. We define the label function τ : T→ G as the map
that associates to each vertex in T its label in G. The label τ(x) of a vertex
x will be also called the type of x. For a vertex x ∈ T, we will not only need
its type, but also the types of its children. In order to keep track of the type
of a vertex and the types of its children we introduce the generation function
χ = (χi)i∈G with χi : {1, . . . , di} → G. For a vertex x of type i, χi(k) represents

the type of the k-th child x(k) of x, i.e.,

if τ(x) = i then χi(k) = τ(x(k)), for k = 1, . . . , di.

As the neighbors
(
x(0), . . . , x(dτ(x))

)
of any vertex x are drawn in counterclock-

wise order, the generation function χ also fixes the planar embedding of the tree
and thus defines T uniquely as a planted plane tree. The tree T constructed in
this way is called the directed cover of G. Such trees are also known as periodic
trees, see [10]. The graph G is called the base graph or the generating graph
for the tree T. We write Ti for a tree with root r of type i, that is τ(r) = i,
and we say that Ti is a periodic tree with N types of vertices and root of type
i ∈ {1, 2, . . . ,N}.

2.2. Multitype branching processes

A multitype branching process (MBP) is a generalization of a Galton –
Watson process, where one allows a finite number of distinguishable types of
particles with different probabilistic behavior. The particle types will coincide
with the different types of vertices in the periodic trees under consideration,
and will be denoted by {1, . . . ,N}.

A multitype branching process is a Markov process (Zn)n∈N0
such that the

states Zn = (Zn,1, . . . ,Zn,N) are N-dimensional vectors with non-negative com-
ponents. The initial state Z0 is nonrandom. The i-th entry Zn,i of Zn represents
the number of particles of type i in the n-th generation. The transition law
of the process is as follows. If Z0 = ei, where ei is the N-dimensional vector
whose i− th component is 1 and all the others are 0, then Zn has the generating
function f(z) =

(
f1(z), . . . , fN(z)

)
with

f i(z) = f i(z1, . . . , zN) =
∑

s1,...,sN≥0

pi(s1, . . . , sN)zs11 · · · z
sN
N , (2.1)

and 0 ≤ z1, . . . , zN ≤ 1, where pi(s1, . . . , sN) is the probability that a particle
of type i has sj children of type j, for j = 1, . . . ,N. For i = (i1, . . . , iN) and
j = (j1, . . . , jN), the one-step transition probabilities are given by

p(i, j) = P[Zn+1 = j|Zn = i] = coefficient of zj in
(
f(z)

)i
,
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where
(
f(z)

)i
=
∏N
k=1 f

k(z)ik . For vectors z, s, we write zs = (zs11 , . . . , z
sN
N ). Let

M = (mij) be the matrix of the first moments:

mij = E
[
Z1,j |Z0 = ei

]
=
∂f i(z1, . . . , zN)

∂zj

∣∣∣∣
z=1

, (2.2)

where 1 = (1, . . . , 1). Then mij represents the expected number of offsprings of
type j of a particle of type i in one generation. If there exists an n such that

m
(n)
ij > 0 for all i, j, then M is called strictly positive and the process Zn is

called positive regular. If each particle has exactly one child, then Zn is called
singular. The following is well known; see Harris [5].

Theorem 2.1. Assume Zn is positive regular and nonsingular, and let ρ(M) be
the spectral radius of M . If ρ(M) ≤ 1, then the process Zn dies with probability
one. If r(M) > 1, then Zn survives with positive probability.

We will also make use of the mixed second moments defined as following:

σijk = E
[
Z1,jZ1,k|Z0 = ei

]
=
∂2f i(z1, . . . , zN)

∂zj∂zk

∣∣∣∣
z=1

. (2.3)

2.3. Rotor walks

Let T be a rooted tree with root r and for each vertex x order its neighbors
counterclockwise {x0, . . . , xdx−1}. A rotor configuration is a function ρ : T → T ,
with ρ(x) ∼ x, for all x ∈ T . By abuse of notation, we write ρ(x) = i if the
rotor at x points to the neighbor x(i). A rotor walk (Xn)n≥0 is defined by the
following rule. Let x be the current position of the walker, and ρ(x) = i the
state of the rotor at x. In one step the walker does the following: it increments
the rotor at x to point to the next neighbor x(i+1) in the counterclockwise order
of the neighbors of x, that is ρ(x) is set to i+1 (with addition performed modulo
dx). Then it moves to position x(i+1). The rotor walk is obtained by repeatedly
applying this rule. We suppose that it starts at the root, that is X0 = r.

For a vertex x ∈ T define the set of good children as
{
x(k) : ρ(x) < k ≤ dx

}
.

This means that a particle performing rotor walk will first visit all its good
children before visiting its ancestor. An infinite sequence of vertices

(
xn
)
n∈N

with each vertex being a child of the previous one, is called a live path if for
every n ≥ 0 the vertex xn+1 is a good child of xn. An end of T is an infinite
sequence of vertices x1, x2, . . . each being the ancestor of the next. An end is
called live if the subsequence (xi)i≥j starting at one of its vertices is a live path.
This definitions were introduced in [1].

Nondeterministic Rotor Configurations on Directed Covers. Let Ti
be a periodic tree with N types of vertices, and root r of type i, to whom
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an additional sink vertex o is added. Moreover, let (Xi
n) be a rotor walk

on Ti starting at r, with initial random configuration, distributed as follow-
ing. Let D = (D1, . . . ,DN) be a vector of probability distributions: for each
i ∈ {1, . . . ,N}, Di is a probability distribution with values in {0, . . . , di}. Con-
sider a random initial configuration ρ of rotors on Ti, such that (ρ(x))x∈Ti are
independent random variables, and ρ(x) has distribution Dj if the vertex x is
of type j. Shortly

ρ(x)
d∼ Dj ⇐⇒ τ(x) = j. (2.4)

If (2.4) is satisfied, we shall say that the rotor configuration ρ is D = (D1, . . . ,

DN)-distributed, and we write ρ
d∼ D.

Definition 2.1. For i ∈ {1, . . . ,N} and k ∈ {0, . . . , di} denote by Cji (k) the
number of good children with type j of a vertex x with type i, if the rotor ρ(x)
at x is in position k, i.e.,

Cji (k) = #
{
l ∈ {k + 1, . . . , di} : χi(l) = j

}
.

We have that
∑N
j=1 C

j
i (k) = di − k. Using this definition we can now define

a new MBP which models connected subtrees consisting of only good children.
In this MBP, pi(s1, . . . , sN) represents the probability that a vertex of type i has
sj good children of type j, with j = 1, . . . ,N. Define the generating function of
the MBP as in (2.1) and the probabilities pi by

pi(s1, . . . , sm) =

{
Di(k) if for all j=1, . . . ,N : sj= Cji (k), and k∈{0, . . . , di},
0 otherwise,

(2.5)
with Di(k) = P[ρ(x) = k], for k ∈ {0, . . . , di} and i ∈ {1, . . . ,N}. In the
following we always make the additional assumption that this MBP is positive
regular and nonsingular, such that Theorem 2.1 can be applied. In particular,
when the rotors point to every neighbor with positive probability these two
conditions are always satisfied. Let M(D) be the first moment matrix — as
defined in (2.2) — of the MBP with offspring probabilities given in (2.5), and
ρ = ρ(M(D)) its spectral radius. It has been shown in [6] that the rotor walk
(Xi

n) is recurrent if and only if ρ ≤ 1, and transient if ρ > 1. For the MBP with
offspring distribution as in (2.5), since every vertex in Ti has finite degree, also
the entries σijk of the second moment matrix are finite, for all i, j, k ∈ {1, . . . ,N}.
If ρ(M(D)) = 1, we call (Xn) null recurrent, and we refer to the critical case.
Otherwise, if ρ(M(D)) < 1, we say that (Xn) is positive recurrent.

3. Positive recurrent rotor walks

From now on, we let Ti be a periodic tree with N types, and root of type
i ∈ {1, . . . ,N}, and let D the N× N-adjacency matrix of the finite graph which
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generates Ti. Let (Xi
n) be a rotor walk on Ti with D-distributed initial config-

uration of rotors, as defined in (2.4). Denote by Tgood
i the tree of good children

of (Xi
n), and the associated MBP (multitype branching process) with transition

probabilities as in (2.5). We denote again by Zn the size of the n-th generation
of this MBP, that is, Zn = (Zn,1, . . . ,Zn,N), where Zn,i represents the num-
ber of good children of type i in the n-th generation of the MBP. Finally, let
M = M(D) be the first moment matrix of Zn.

In this section we handle the case ρ(M) < 1, when the rotor walk (Xi
n) is

positive recurrent. We first look a look at the range Rin = {X(i)
1 , . . . , Xi

n} at
times (τ ik), when the rotor walk (Xi

n) returns to the sink o for the k-th time:
set τ i0 = 0 and for k ≥ 1 define

τ ik = inf{n > τ ik−1 : Xi
n = o}.

In the recurrent case, these stopping times are almost surely finite. Let us
denote by Rik := Ri

τ ik
. Then

τ ik − τ ik−1 = 2|Rik|. (3.1)

The equation above has the following explanation: at time τ ik the walker is at
the sink, all rotors in the explored part Rik of the tree Ti point towards the root,
while all other rotors are still in their random initial configuration. Between
two consecutive stopping times τ ik−1 and τ ik, the walker performs a depth first
search in the finite subtree induced by Rik, by visiting every child of a vertex
from right to left order. In a depth first search of Rik is visited exactly two times.
We first prove the following result.

Theorem 3.1. Let γ be the spectral radius of the matrix I+(D−I)(I−M)−1.
For all i = 1, . . . ,N we have the following strong law of large numbers at times
(τ ik)k≥0:

lim
k→∞

|Rik|
τ ik

=
1

2

(
1− 1

γ

)
, a.s.

In order to prove Theorem 3.1, we first look at the size of the tree Tgood
i

of good children, tree which, in view of ρ < 1, dies out almost surely. Let
Y =

∑∞
n=0 Zn be the vector valued random variable counting the total number

of vertices of Tgood
i , separately for each type. Let F(z) =

(
F 1(z), . . . , FN(z)

)
with

F i(z) =
∑

s1,...,sN≥0

P
[
Y = (s1, . . . , sN)|Z0 = ei

]
zs11 . . . zsNN ,

be the generating function of Y. It follows (see e.g. [5, 13.2] for the case of
Galton – Watson trees with just one type) that F i(z) satisfies the following func-
tional equation

F i(z) = zi · f i
(
F(z)

)
= zi · f i

(
F 1(z), . . . , FN(z)

)
, (3.2)
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for all i ∈ {1, . . .N}, where f(z) = (f1(z), . . . , fN(z)) is the generating function
of the MBP Zn, as defined in (2.1). Let now V =

(
vij
)
i,j=1,...,N

be the first

moment matrix of Y, that is,

vij = E
[
Yj |Z0 = ei

]
=
∂F i(z)

∂zj

∣∣∣∣
z=1

.

Lemma 3.1. We have V = (I −M)−1 where I is the identity matrix, and the
spectral radius of V is given by

ρ(V ) =
1

1− ρ(M)
> 1. (3.3)

Proof. Differentiating the functional equation (3.2) and using that f i(1) = 1
and F(1) = 1 gives

vij =

{
zi

N∑
a=1

∂f i

∂F a
(
F(z)

)∂F a
∂zj

(z) + δij · f i
(
F(z)

)}∣∣∣∣∣
z=1

=

N∑
a=1

∂f i

∂za
(z)

∣∣∣∣
z=1

∂F a

∂zj
(z)

∣∣∣∣
z=1

+ δij

=

N∑
a=1

miavaj + δij .

Thus we get the matrix equality V = M · V + I, where I is the identity matrix,
and this implies that

V = (I −M)−1.

The inverse of I −M exists, since by assumption ρ(M) < 1, and the equation
for the spectral radius follows immediately. 2

We next look at the mixed second moments of Y, for which we prove the
following.

Lemma 3.2. E
[
YjYk|Z0 = ei] <∞ for all i, j, k ∈ {1, . . . ,N}.

Proof. Let

ξijk = E
[
YjYk|Z0 = ei

]
=
∂2F i(z1, . . . , zN)

∂zj∂zk

∣∣∣∣
z=1

.

From the functional equation (3.2) we get

ξijk =
∂

∂zk

{
zi

N∑
a=1

∂f i

∂F a
(
F(z)

)∂F a
∂zj

(z) + δij · f i
(
F(z)

)}∣∣∣∣∣
z=1
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=

{
N∑
a=1

∂f i

∂F a
(
F(z)

)(
δij
∂F a

∂zj
(z) + zi

∂2F a

∂zj∂zk
(z) + δik

∂F a

∂zk
(z)

)

+zi

N∑
a,b=1

∂2f i

∂F a∂F b
(
F(z)

)∂F a
∂zj

(z)
∂F b

∂zk
(z)


∣∣∣∣∣∣
z=1

.

Using the fact that F(1) = 1, the above equation simplifies to

ξijk =

N∑
a=1

mia

(
δikvaj + ξajk + δijvak

)
+

N∑
a,b=1

σiabvajvbk. (3.4)

For each k, we introduce the matrices Sk=
(
ξijk
)
i,j=1,...,N

and Γk=
(
γijk
)
i,j=1,...,N

,

where

γijk =

N∑
a=1

mia

(
δikvaj + δijvak

)
+

N∑
a,b=1

σiabvajvbk <∞.

From (3.4) it follows that Sk = MSk + Γk and thus Sk = (I −M)−1Γk. In
particular ξijk <∞ for all i, j, k, which concludes the proof. 2

Since by Lemma 3.1 also the first moment of the total population size exists,
we get the following.

Corollary 3.1. Var(Y|Z0 = ei) <∞.

Definition 3.1. For a finite subset G ⊂ Ti of the vertex set of Ti, the (multi-
type) cardinality of G is defined as #G = (g1, . . . , gN), where gk = #

{
v ∈ G :

v has type k
}

.

Definition 3.2. Let G be a connected subset of Ti containing the root. Denote
by ∂oG the set of leaves of G, that is, ∂oG =

{
w ∈ Ti \G : ∃v ∈ G s.t. v ∼ w

}
.

We will use the following simple fact.

Lemma 3.3. Let G be a finite connected subset of Ti containing the root.
Then

#∂oG = (D − I) ·#G+ ei.

Proof. Let D =
(
dkl
)
k,l=1,...,N

be the adjacency matrix of the finite graph which

generates the periodic tree Ti. Let H be the set of children of all vertices in G.
By the definition of periodic trees, any vertex of type k has dkl children of type
l, hence #H = D ·#G. We can then recover the set of leaves of G by

∂oG = H \G ∪ {root of Ti},

and the claim follows. 2
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We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Write Rik = Ri
τ ik

for the range of (Xi
n) up to time τ ik.

From [6], we know that Ri1 is a subcritical multitype Galton – Watson tree with
offspring probabilities as given in (2.5) and first moment matrix M . At time
τ ik the rotor walk is at the sink, all rotors in the visited set Rik point towards
the root, while all other rotors are still in their initial D-distributed random
configuration. Thus between times τ ik and τ ik+1 the rotor walk performs a depth
first search of Rik ∪ ∂oRik visiting every child of each vertex from right to left.
Whenever it reaches a leaf vertex v ∈ ∂oRik of type l, it performs an independent
finite excursion starting at v, excursion which has the same distribution as Rl1.
Let Lik = ∂oR

i
k. Then, by Lemma 3.3 we have

#Lik = (D − I) ·#Rik + ei. (3.5)

Let L0 = ei if the root of the tree is of type i, and let Lk = #Lik be the
(multitype)-cardinality of the leaves of the range after the k-th return to the
sink, that is, the j-th entry in Lk represents the number of leaves of type j in
∂oR

i
k. By Lemma 3.1, we get

E
[
L1,j |L0 = ei

]
=
(
I + (D − I)(I −M)−1

)
ji
.

Then
(
Lk
)
k≥0 is a multitype Galton – Watson process with first moment matrix

Γ =
(
I + (D − I)(I −M)−1

)T
. (3.6)

We also need to check the finiteness of the second cross moments. Let
Ci =

(
cijl
)
j,l=1,...,N

be the matrix of second cross moments

cijl = E
[
L1,jL1,l|L0 = ei

]
.

Since Var(L1|L0 = ei) = Ci − E
[
L1|L0 = e1

]
E
[
LT1 |L0 = e1

]
, and the first

moments of L1 exist by Lemma 3.1 and Lemma 3.3 it suffices to check the
existence of the variance. We have

Var(L1|L0 = ei
)

= Var
(
(D − I)#Ri1 + ei

)
= (D − I)Var

(
#Ri1

)
(D − I)T ,

which together with Corollary 3.1 implies that all matrix elements of Ci are
finite. Let γ > 1 be the spectral radius of Γ and u > 0 be the corresponding
Perron-Frobenius eigenvector. Since Ci is finite, Kesten-Stigum Theorem [9]
for the branching process Lk implies the existence of an almost surely positive
random variable W such that

γ−kLk →Wu, (3.7)
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almost surely as k →∞. Let e = (u, v) where u, v are vertices of the tree with
v ∼ u, be an edge of the tree. The type ι(e) of the edge e is defined as the type
of the endvertex of the edge which is further away from the sink. For each time
n ≥ 0 we let ψ(n) ∈ NN

≥0 be the vector of the number of edges of each type that

are traversed by the rotor walk up to time n. That is, ψ(n) =
(
ψ1, . . . , ψN

)
,

with
ψl = #

{
l = 1, . . . , n : ι({Xi

l−1, X
i
l }) = l},

which satisfies ‖ψ(n)‖1= n. Moreover, if we define τk = ψ(τk), then for all
k ≥ 1

τ i
k − τ i

k−1 = 2#Rik, (3.8)

which together with (3.5) yields

(D − I)
(
τ i
k − τ i

k−1
)

+ 2ei = (D − I)2#Rik + ei = 2Lk,

assuming the initial state L0 = ei for the branching process. Multiplying the
previous equation by γ−k and using (3.7) we get

(D − I)

(
τ i
k

γk
− 1

γ
·
τ i
k−1
γk−1

)
+ 2γ−kei = 2γ−kLk → 2Wu,

almost surely as k →∞. Writing σk = τ ik/γ
k, the previous equation reduces to

σk −
1

γ
σk−1 → 2(D − I)−1Wu,

and the limit vector 2(D − I)−1Wu is almost surely positive. Denoting by σ?

the common limit of σk and σk−1, we have

σ? = lim
k→∞

τ ik
γk

= 2

(
1− 1

γ

)−1
(D − I)−1Wu > 0.

Therefore, also τ ik grows exponentially with rate γ, thus, the almost sure limit

lim
k→∞

τ ik
γk

= lim
k→∞

∥∥τ ik∥∥1
γk

, (3.9)

exists and is almost surely positive. Now since |Rik| =
∣∣Ri

τ ik

∣∣ = ‖#Rik‖1, the

total size of the range up to time of the k-th return τ ik is τ ik − τ ik−1 = 2|Rik|,
which dividing by τ ik gives

|Rik|
τ ik

=
1

2

(
1−

τ ik−1
τ ik

)
=

1

2

(
1− 1

γ
·
τ ik−1
γk−1

· γ
k

τ ik

)
.
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Using now (3.9) we get the almost sure limit

lim
k→∞

|Rik|
τ ik

=
1

2

(
1− 1

γ

)
,

which completes the proof. 2

The generalization of the previos result to all times follows the lines of the
similar result for regular trees in [7]. For sake of completeness, we adapt the
result to periodic trees.

Proof of Theorem 1.1.. Write again Rik = Ri
τ ik

for the range of (Xi
n) up to time

τ ik. For every n, let
k = max{j : τ ij < n},

so that τ ik < n ≤ τ ik+1 and Xi
n ∈ Rik+1 := Riτk+1

. For each k = 1, 2, . . . , we

partition the time intervals (τ ik, τ
1
k+1] into finer intervals, on which the behavior

of the range can be controlled. Recall, from the proof of Theorem 3.1, that
Lik = ∂oR

i
k represents the set of leaves of Rik, and Lk = #Lik represents the

multitype cardinality of Lik, which is a multitype Galton – Watson process with
first moment matrix Γ as in (3.6) and spectral radius γ > 1. We order the
vertices in Lik = ∂oR

i
k = {x1, . . . , x|Lik|} from right to left, and introduce the the

following two (finite) sequences of stopping times (ηk(j)) and (θk(j)) of random
length |Lik| + 1, as following: let θk(0) = τ ik and ηk(|Lik| + 1) = τ ik+1 and for
j = 1, 2, . . . , |Lik|

ηk(j) = min{l > θk(j − 1) : Xi
l = xj},

θk(j) = min{l > ηk(j) : Xi
l = xj and ρ(Xi

l ) = x
dxj
j }.

(3.10)

That is, for each leaf xj , the time ηk(j) represents the first time the rotor walk
reaches xj , and θk(j) represents the last time the rotor walk returns to xj after
making a full excursion in the subtree rooted at xj . Then

(τ ik, τ
i
k+1] =

{
∪|L

i
k|+1

j=1

(
θk(j − 1), ηk(j)

]}
∪
{
∪|L

i
k|

j=1

(
ηk(j), θk(j)

]}
.

For leaves xj of type l, with l = 1, . . . ,N, the increments (θk(j) − ηk(j)) are
i.i.d random variables, and distributed according to τ l1, which represents the
time the rotor walk, started at the root of type l of a periodic tree Tl, needs
to return to the sink for the first time. Once the rotor walk reaches the leaf
xj for the first time at time ηk(j), the subtree rooted at xj was never visited
before by a rotor walk. Even more, the tree of good children with root xj is a
subcritical multitype Galton – Watson tree, which dies out almost surely. Thus,
the rotor walk on this subtree is recurrent, and it returns to xj at time θk(j) for
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the last time. Then θk(j)− ηk(j) represents the length of this excursion which
has expectation E[τ l1] = 2E[|Rl1(xj)|], and Rl1(xj) has the same distribution as
Rl1 which has the first moment matrix M , with ρ(M) < 1, associated with
transition probabilities (2.5). In the time intervals (θk(j − 1), ηk(j)], the rotor
walk leaves the leaf xj−1 and returns to the confluent between xj−1 and xj ,
from where it continues its journey until it reaches xj . Then ηk(j) − θk(j − 1)
is the time the rotor walk needs to reach the new leaf xj after leaving xj−1. In
this time intervals, the range does not change, since (Xi

n) makes steps only in
Rik. Depending on the position of Xi

n, we shall distinguish two cases:
Case 1: There exists a j ∈ {1, 2, . . . , |Lik|} such that n ∈ (ηk(j), θk(j)].
Case 2: There exists a j ∈ {1, 2, . . . , |Lik|+1} such that n ∈ (θk(j−1), ηk(j)].
Case 1: if n ∈ (ηk(j), θk(j)] for some j, then ηk(j) < n ≤ θk(j)

|Riηk(j)|
θk(j)

≤ |R
i
n|
n
≤
|Riθk(j)|
ηk(j)

, (3.11)

and we show that, as k →∞, the difference
|Riθ(j)|
η(j)

−
|Riη(j)|
θ(j)

→ 0, almost surely.

We use the following relations: for all i = 1, . . . ,N and all j = 1, 2, . . . , |Lik|, if
the type of xj is l ∈ {1, . . . ,N}

|Riθk(j)| = |R
i
ηk(j)
|+ |Rl1(xj)|

θk(j) = ηk(j) + τ l1(xj),

where τ l1(xj) is a random variable which is distributed as τ l1, which is finite al-
most surely. Moreover, Rl1(xj), represents the range of the rotor walk started at
xj which has type l, until the first return to xj ; R

l
1(xj) has the same distribution

as Rl1, the range of the rotor walk started at the root r of type l of a periodic
tree Tl, until the first return τ l1. Then,

0 ≤
|Riθk(j)|
ηk(j)

−
|Riηk(j)|
θk(j)

=
τ l1(xj)|Rl1|

ηk(j)(ηk(j) + τ l1(xj))
+

|Rl1|
ηk(j) + τ l1(xj)

+
τ l1(xj)|Riηk(j)|

ηk(j)(ηk(j) + τ l1(xj))

≤ 2|Rl1|
ηk(j)

+
τ l1(xj)|Riηk(j)|

(ηk(j))2
.

As k → ∞, ηk(j) → ∞, but τ l1(xj) and |Rl1| are finite, almost surely, therefore
the first term in the last inequality above converges to 0 almost surely, and
we still have to prove convergence to 0 of the second term. But we know that
τ ik < ηk(j) < τ ik+1, therefore

0 ≤
τ l1(xj)|Riηk(j)|

(ηk(j))2
≤ τ l1(xj)

τ ik
·

(
|Rik|
τ ik

+

∑j
l=1(θk(l)− ηk(l))

2τ ik

)
→ 0, (3.12)



480 W. Huss and E. Sava-Huss

almost surely. Since τ l1(xj) is finite almost surely, and τ ik → ∞ as k → ∞, it
is clear that the first fraction goes to 0, while |Rik|/τ ik converges to (1− 1/γ)/2
by Theorem 3.1. The last term in the equation above is bounded from above
by (τ ik+1 − τ ik)/(2τ ik) which in view of (3.1) and Theorem 3.1 converges almost
surely to γ <∞ as k →∞. This shows that

|Riθk(j)|
ηk(j)

−
|Riηk(j)|
θk(j)

→ 0, almost surely, as k →∞,

therefore there exists α0 = lim |Riθk(j)|/ηk(j), and both the right and the left

hand side in (3.11) converge to α0 <∞ almost surely, which implies that |Rin|/n
converges to α0 almost surely, as well. But, along the subsequence (τ ik), we have
from Theorem 3.1, that

|Rik|
τ ik
→ 1

2

(
1− 1

γ

)
almost surely, as k →∞, therefore α0 = (1− 1/γ)/2.

Case 2: if n ∈ (θk(j − 1), ηk(j)] for some j ∈ {1, 2, . . . , |Lik| + 1}, and since in
this time interval the rotor walk Xi

n visits no new vertices and moves only in
Rik, we have

|Riθk(j−1)|
n

=
|Rin|
n

=
|Riηk(j)|

n
. (3.13)

In view of lim |Riθk(j)|/ηk(j)→ (1− 1/γ)/2 almost surely and

|Riθk(j)|
ηk(j)

=
|Riθk(j)|

θk(j)− τ l1(xj)
=
|Riθk(j)|
θk(j)

1

1− τ l1(xj)
θk(j)

,

and τ l1(xj)/θk(j) → 0, it follows that |Riθk(j)|/θk(j) converges almost surely to

(1−1/γ)/2. The same argument can be applied for the almost sure convergence
of |Riηk(j)|/ηk(j) to (1− 1/γ)/2. Finally, in view of (3.13)

|Riηk(j)|
ηk(j)

≤
|Riηk(j)|

n
=
|Rin|
n

=
|Riθk(j−1)|

n
≤
|Riθk(j−1)|
θk(j − 1)

,

both the lower bound and the upper bound in the previous equation converge
almost surely to (1 − 1/γ)/2. Thus, also in this case |Rin|/n converges almost
surely to (1− 1/γ)/2, and the claim follows. 2

4. Palindromic trees

If we look at periodic trees with a strong mirror symmetry we can give a
more geometric interpretation of the limit in Theorem 3.1.
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Definition 4.1. A periodic tree T with production rule χi(k) is called palin-
dromic if the word

(
χi(1), χi(2), . . . , χi(di)

)
is a palindrome for all types i ∈

{1, . . . ,N}, that is,
χi(k) = χi(di + 1− k),

for all k ∈ {1, . . . , di}.

Let (Xn) be a rotor walk on T , and denote by T good the tree of good children
for (Xn).

Lemma 4.1. Let T be a palindromic periodic tree, and (Xn) a rotor walk with
uniform initial rotor configuration. Let D be the adjacency matrix of the graph
which generates T and M the first moment matrix of T good. Then

D = 2M.

Proof. Recall that D =
(
dij
)

with dij =
∑di
k=1 1{χi(k) = j}. For uniformly

distributed rotors the first moment matrix M =
(
mij

)
is given by

mij =
1

di+1

di∑
k=1

k1{χi(k) = j}.

Fix i ∈ {1, . . . ,N} assuming di is even. We can split mij into two summands as
follows

mij =
1

di + 1

(di/2∑
k=1

k1{χi(k) = j}+

di∑
k=di/2+1

k1{χi(k) = j}
)

=
1

di + 1

(di/2∑
k=1

k1{χi(k) = j}+

di∑
k=di/2+1

k1{χi(di + 1− k) = j}
)
,

where in the second line we use that T is palindromic. Changing the order of
summation of the second sum and using the substitution l = di + 1− k gives

mij =
1

di + 1

(di/2∑
k=1

k1{χi(k) = j}+

di/2∑
l=1

(di + 1− l)1{χi(l) = j}
)

=
1

di + 1

di/2∑
k=1

(k + di + 1− k)1{χi(k) = j}

=

di/2∑
k=1

1{χi(k) = j} =
1

2
dij ,
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where the last identity is again due to the palindromic property of T . If di is
odd, we rewrite mij into three summands

mij =
1

di + 1

( (di−1)/2∑
k=1

k1{χi(k) = j}

+
di + 1

2
1
{
χi

(di + 1

2

)
= j
}

+

di∑
k=(di+3)/2

k1{χi(k) = j}
)
.

By the palindromic property of T , and setting l = di + 1− k we can transform
the third summand in the last equation

di∑
k=(di+3)/2

k1{χi(k) = j} =

di∑
k=(di+3)/2

k1{χi(di + 1− k) = j}

=

(di−1)/2∑
l=1

(di + 1− l)1{χi(l) = j}.

Thus

mij =
1

2
1
{
χi

(di + 1

2

)
= j
}

+
1

di + 1

(di−1)/2∑
k=1

(k + di + 1− k)1{χi(k) = j}

=
1

2
1
{
χi

(di + 1

2

)
= j
}

+

(di−1)/2∑
k=1

1{χi(k) = j} =
1

2
dij ,

and this implies 2M = D. 2

The following is obvious.

Lemma 4.2. Let D be a (N× N)-matrix with spectral radius ψ. Let γ be the
spectral radius of I + (D − I)(I − α−1 ·D)−1, for some real number α. If the
spectral radius ψ of D is not equal to α then

γ = 1 +
ψ − 1

1− ψ/α
=

(α− 1)ψ

α− ψ
.

Theorem 4.1. Let T be a palindromic periodic tree, and consider a rotor walk
(Xn) on T with uniform initial rotor configuration. Let br(T ) be the branching
number of T . Then (Xn) is recurrent if and only if br(T ) ≤ 2 and in the positive
recurrent case (when br(T ) < 2) we have:

lim
n→∞

|Rn|
n

=
br(T )− 1

br(T )
, almost surely.
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Proof. Recall that the branching number of T is equal to the spectral radius of
the matrix D. By Lemma 4.1, D = 2M . In the positive recurrent case, we can

apply Lemma 4.2 with α = 2, which gives γ = br(T)
2−br(T) , which together with

Theorem 3.1 completes the proof. 2

Appendix A. Rotor-recurrent trees

Definition A.1. We call a tree T rotor-recurrent if the rotor walk (Xn) on T
with uniform initial rotor configuration is recurrent. If (Xn) is transient on T,
we call T rotor-transient.

Not much is known about the recurrence and transience of rotor walks on
graphs other than trees. But even on trees we can give examples of unusual
properties of rotor-recurrence that confirm the fact that a general theory of
rotor-recurrence will necessarily be much more involved than the theory of re-
currence of random walks. In [6] the authors give an example of a tree that is
rotor-recurrent or rotor-transient depending on its planar embedding into the
plane. This suggests that the underlying graph for the rotor walk does not
provide enough information for stating a rotor-recurrence criteria. The whole
ribbon structure of the graph, which determines the way the rotors turn, will
be needed for that. The rotor-recurrence has even more peculiar properties as
the following example shows.

Figure 1. A rotor-recurrent tree that contains a transient subtree, which is
drawn in black.

Example A.1. Let T be the direct cover given by the following generator χ.
We use the notation of [6]; note the planar embedding of the tree, and thus the
rotor-mechanism, already specified by the table χ.
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k →

χi(k) 1 2 3 4

i→

1 2 2 1 3
2 1
3 4
4 5
5 2

The rotor walk on T has the first moment matrix M given by

M =


3/5 3/5 4/5 0 0
1
2 0 0 0 0
0 0 0 1/2 0
0 0 0 0 1/2
0 1/2 0 0 0

 ,

with spectral radius ρ(M) = 0.967. By [6, Theorem 3.5], since ρ(M) < 1, T is
rotor-recurrent. We now construct a subtree T̄ from T by deleting all vertices
of type 3 and all their descendants. Thus T̄ is the direct cover defined by the
generator χ̄ as follows:

k →

χ̄i(k) 1 2 3

i→

1 2 2 1
2 1

The rotor walk on T̄ has first moment matrix M̄ given by

M̄ =

(
3/4 3/4
1/2 0

)
,

which has spectral radius ρ(M̄) = 1.093. Hence, by [6, Theorem 3.5], T̄ is
rotor-transient.

Remark. There exist rotor-recurrent graphs that contain rotor-transient sub-
graphs.
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