

Good packings of Banach spaces

Tommaso Russo

tommaso.russo.math@gmail.com

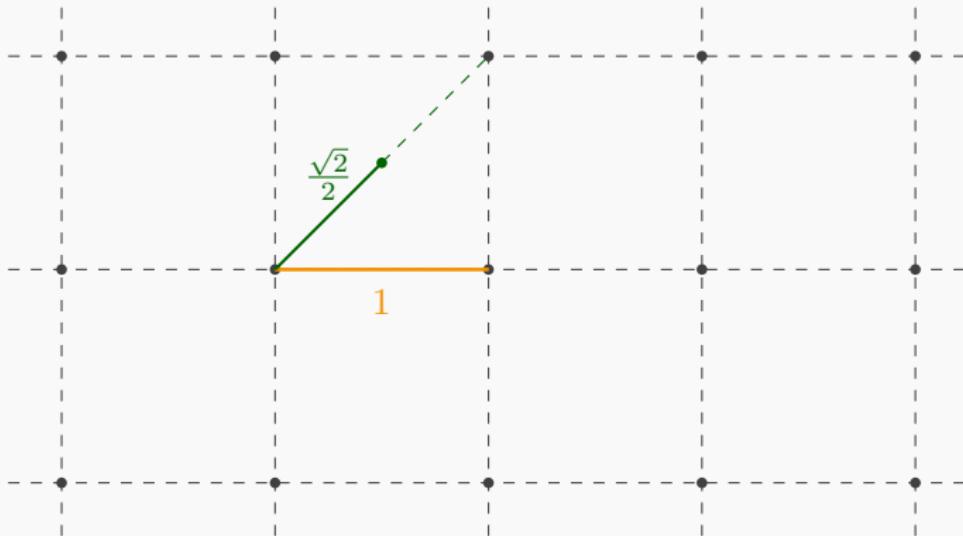
j./w. C.A. De Bernardi, Ş. Sezgek, and J. Somaglia

53rd Winter School in Abstract Analysis
Vlachovice, Czech Republic

January 10–17, 2026

Maximal separated sets

- ▶ Every maximal 1-separated set is 1-dense.
 - ▶ \mathcal{D} is **r -separated** if $\|d - h\| \geq r$ for $d \neq h \in \mathcal{D}$.
 - ▶ \mathcal{D} is **R -dense** if for all $x \in \mathcal{X}$ there is $d \in \mathcal{D}$ with $\|x - d\| \leq R$.
- ▶ In \mathbb{R}^2 , the integer grid \mathbb{Z}^2 is 1-separated and $\frac{\sqrt{2}}{2}$ -dense.

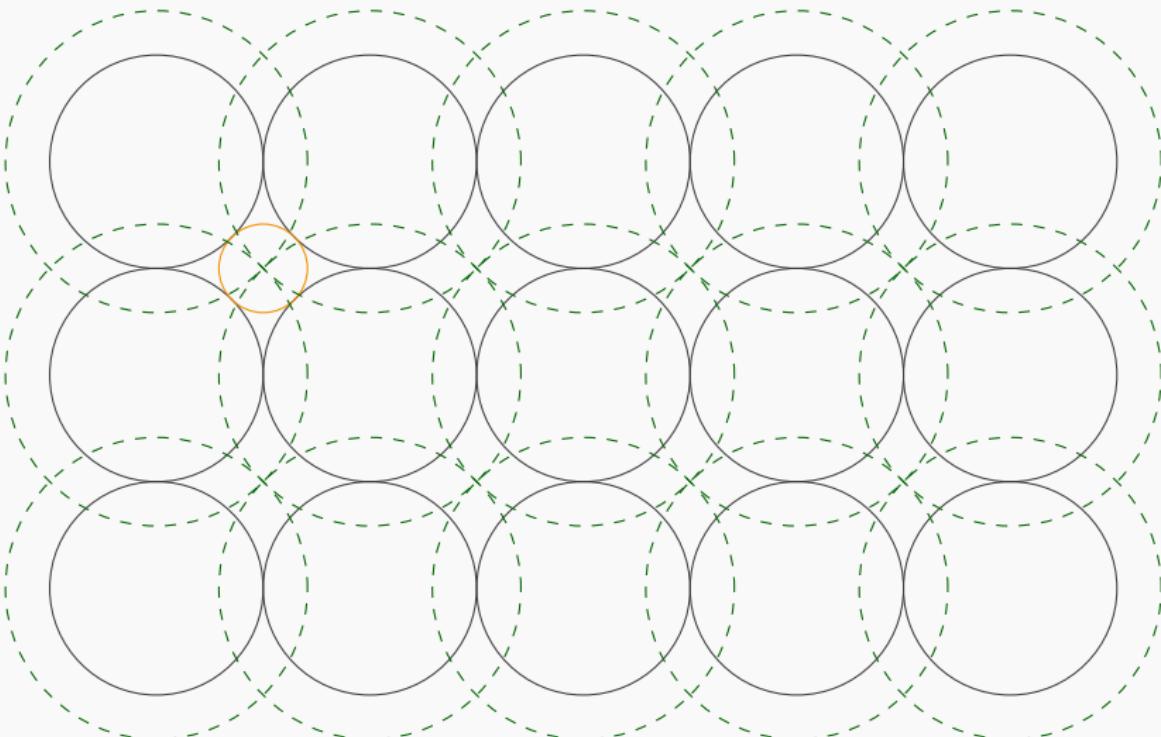


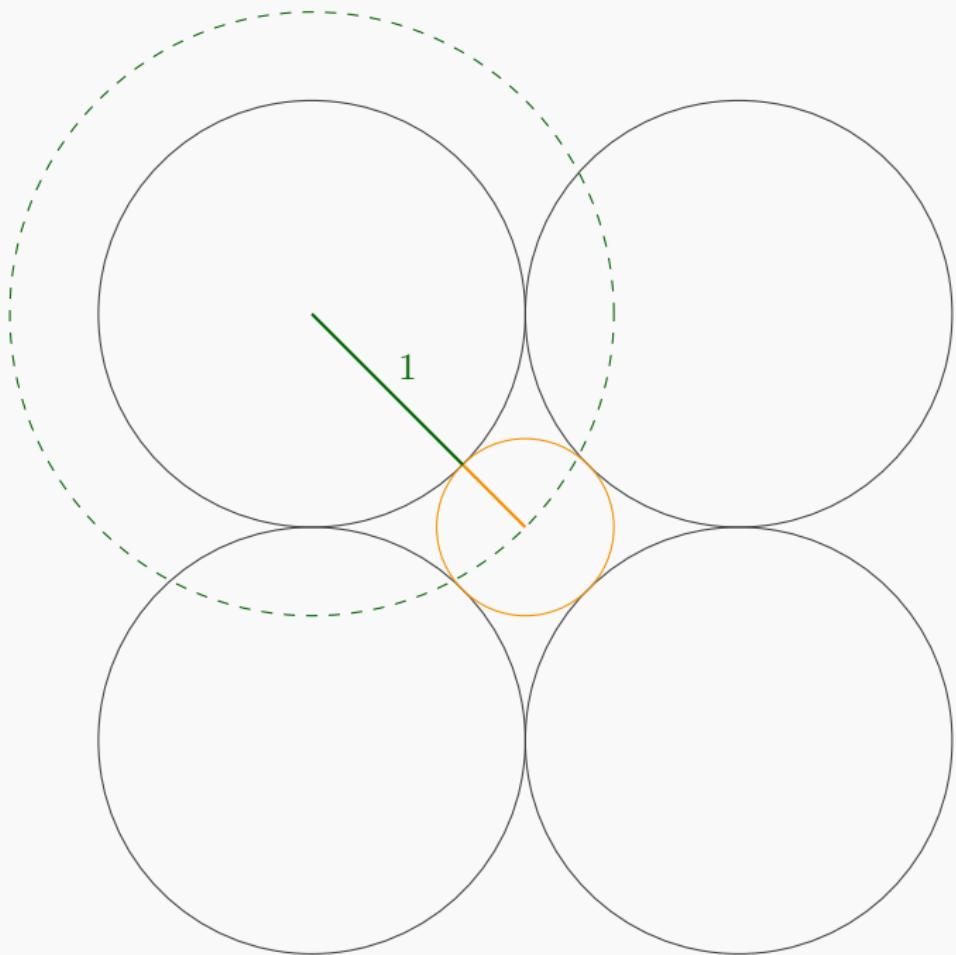
- ▶ **Every maximal 1-separated set is 1-dense.**
 - ▶ \mathcal{D} is **r -separated** if $\|d - h\| \geq r$ for $d \neq h \in \mathcal{D}$.
 - ▶ \mathcal{D} is **R -dense** if for all $x \in \mathcal{X}$ there is $d \in \mathcal{D}$ with $\|x - d\| \leq R$.
- ▶ In \mathbb{R}^2 , the integer grid \mathbb{Z}^2 is 1-separated and $\frac{\sqrt{2}}{2}$ -dense.
- ▶ In $(\mathbb{R}^2, \|\cdot\|_\infty)$, it \mathbb{Z}^2 is 1-separated and $\frac{1}{2}$ -dense.
- ▶ **Can we always find a 1-separated set that is r -dense, $r < 1$?**
 - ▶ Can we always find ad hoc constructions that improve Zorn's one?
 - ▶ Or are there spaces where the optimal net is a 'random' one?
- ▶ **Folklore.** In finite dimensions, yes.
 - ▶ WLOG, $\mathcal{X} = (\mathbb{R}^d, \|\cdot\|)$ and \mathbb{Z}^d is 1-separated.
 - ▶ Take a maximal 1-separated set Λ in $\mathbb{T}^d := \mathbb{R}^d / \mathbb{Z}^d$.
 - ▶ By compactness, Λ is r -dense in \mathbb{T}^d , for some $r < 1$.
 - ▶ Lift it to \mathbb{R}^d .
- ▶ **What about infinite-dimensional spaces?**
- ▶ A change of perspective: multiply by 2.

- A **packing** is a collection of non-overlapping balls of radius 1.

- ▶ A **packing** is a collection of non-overlapping balls of radius 1.
- ▶ **How to measure how optimal (or packed) a packing is?**
- ▶ In finite dimensions, compute its density.
- ▶ In infinite dimensions:
 - ▶ Compute the radius of the largest non-overlapping ball (the largest hole in the packing).
 - ▶ How much do we have to inflate the balls to cover the space?
 - ▶ First is second -1.
- ▶ The **simultaneous covering and packing constant** $\gamma(\mathcal{X})$ of \mathcal{X} measures this.

Packings





Two formulas

- The **simultaneous covering and packing constant** $\gamma(\mathcal{X})$ of \mathcal{X} is

$$\gamma(\mathcal{X}) := \inf\{r > 0 : \exists \mathcal{D} \subseteq \mathcal{X} \text{ 2-separated and } r\text{-dense}\}.$$

- The **lattice simultaneous covering and packing constant** $\gamma(\mathcal{X})$ of \mathcal{X} is

$$\gamma^*(\mathcal{X}) := \inf\{r > 0 : \exists \mathcal{D} \subseteq \mathcal{X} \text{ 2-separated and } r\text{-dense } \mathbf{subgroup}\}.$$

Two formulas

$\gamma(\mathcal{X}) := \inf\{r > 0: \exists \mathcal{D} \subseteq \mathcal{X} \text{ 2-separated and } r\text{-dense}\}.$

$\gamma^*(\mathcal{X}) := \inf\{r > 0: \exists \mathcal{D} \subseteq \mathcal{X} \text{ 2-separated and } r\text{-dense subgroup}\}.$

- ▶ If \mathcal{X} has a packing that also covers, $\gamma(\mathcal{X}) = 1$.
- ▶ Taking any maximal packing $\sim \gamma(\mathcal{X}) \leq 2$.
- ▶ **De Bernardi, R., Somaglia (2026+).** $\gamma^*(\mathcal{X}) \leq 2$.
- ▶ **Casini, Papini, Zanco (1986).** $\gamma(\mathcal{X}) \geq \frac{2}{K(\mathcal{X})}$.
- ▶ To sum it up

$$(\text{good}) \quad 1 \leq \frac{2}{K(\mathcal{X})} \leq \gamma(\mathcal{X}) \leq \gamma^*(\mathcal{X}) \leq 2 \quad (\text{bad})$$

- ▶ **Is it true that $\gamma(\mathcal{X}) < 2$ for all spaces?**
 - ▶ **Are we smarter than Zorn?**

A problem of Swanepoel

- ▶ Our original motivation:
- ▶ Swanepoel (2009). $\gamma(\ell_p) = \frac{2}{2^{1/p}}$ which equals $\frac{2}{K(\ell_p)}$.
- ▶ Swanepoel (2009). Is it true that for all Banach spaces

$$\gamma(\mathcal{X}) = \frac{2}{K(\mathcal{X})}?$$

- ▶ If the unit ball of \mathcal{X} admits a LUR point, then $\gamma(\mathcal{X}) > 1$.
- ▶ Consider $\ell_1 \oplus_2 \mathbb{R}$. Its unit ball has a LUR point, but $K(\ell_1 \oplus_2 \mathbb{R}) = 2$.
- ▶ Every Banach space \mathcal{X} is isomorphic to a Banach space \mathcal{Y} with $K(\mathcal{Y}) = 2$ and $\gamma(\mathcal{Y}) > 1$.
 - ▶ So, there are reflexive (even isomorphic to ℓ_2) counterexamples to Swanepoel's question.

Some known values

- ▶ For $1 \leq p < \infty$ and every infinite κ

$$\gamma(\ell_p(\kappa)) = \gamma^*(\ell_p(\kappa)) = \frac{2}{2^{1/p}}.$$

- ▶ If \mathcal{X} is **separable** and octahedral, or $\mathcal{X} = \mathcal{C}(\mathcal{K})$ with \mathcal{K} zero-dimensional

$$\gamma(\mathcal{X}) = \gamma^*(\mathcal{X}) = 1.$$

- ▶ This applies, e.g., to: $L_1(\mu)$, $\mathcal{C}([0, 1])$, $\mathcal{C}(2^\omega)$, $\mathcal{C}(\mathcal{K})$ for \mathcal{K} countable (or scattered).
- ▶ Some Lipschitz-free spaces, spaces of Lipschitz functions, tensor products, ...

- ▶ A **modulus** is a function $\phi: (0, \infty) \rightarrow (0, \infty)$ such that $\phi(0^+) = 0$ and $t \mapsto \frac{\phi(t)}{t}$ is increasing.
- ▶ A normed space \mathcal{X} is **ϕ -octahedral** if for every $\varepsilon > 0$ and every finite-dimensional subspace \mathcal{Z} of \mathcal{X} there is $x \in S_{\mathcal{X}}$ with

$$\|z + \lambda x\| \geq (1 - \varepsilon)(1 + \phi(|\lambda|)) \quad z \in S_{\mathcal{Z}}, \lambda \neq 0.$$

- ▶ Octahedral spaces are ϕ -octahedral; **so are uniformly convex ones.**
- ▶ **Take $p \in [1, \infty)$, $p_k \rightarrow \infty$. Then**

$$\mathcal{X}_p = \left(\bigoplus_{k=1}^{\infty} \ell_{p_k}(\omega_k) \right)_{\ell_p}$$

satisfies $\gamma(\mathcal{X}_p) = 2$.

- ▶ **There are reflexive (resp. octahedral) spaces with $\gamma(\mathcal{X}) = 2$.**

- ▶ Is there a **separable** Banach space \mathcal{X} with $\gamma(\mathcal{X}) = 2$?
- ▶ Is there a Banach space \mathcal{X} with $\gamma(\mathcal{X}) \neq \gamma^*(\mathcal{X})$?
- ▶ What are the exact values of $\gamma(\ell_1 \oplus_2 \mathbb{R})$ and $\gamma^*(\ell_1 \oplus_2 \mathbb{R})$?
 - ▶ They are > 1 (LUR point).
- ▶ What are the exact values of $\gamma(\ell_1 \oplus_2 \ell_1)$ and $\gamma^*(\ell_1 \oplus_2 \ell_1)$?
- ▶ **And many more...**

Thank you for your attention!