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Maximal separated sets

▶ Every maximal 1-separated set is 1-dense.
▶ D is r-separated if ∥d − h∥ ⩾ r for d ̸= h ∈ D.
▶ D is R-dense if for all x ∈ X there is d ∈ D with ∥x − d∥ ⩽ R.

▶ In R2, the integer grid Z2 is 1-separated and
√
2
2 -dense.
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▶ In (R2, ‖·‖∞), it Z2 is 1-separated and 1
2 -dense.

▶ Can we always find a 1-separated set that is r-dense, r < 1?
▶ Can we always find ad hoc constructions that improve Zorn’s one?
▶ Or are there spaces where the optimal net is a ‘random’ one?

▶ Folklore. In finite dimensions, yes.
▶ WLOG, X = (Rd, ∥·∥) and Zd is 1-separated.
▶ Take a maximal 1-separated set Λ in Td := Rd/Zd.
▶ By compactness, Λ is r-dense in Td, for some r < 1.
▶ Lift it to Rd.

▶ What about infinite-dimensional spaces?
▶ A change of perspective: multiply by 2.
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Packings

▶ A packing is a collection of non-overlapping balls of radius 1.

▶ How to measure how optimal (or packed) a packing is?
▶ In finite dimensions, compute its density.
▶ In infinite dimensions:

▶ Compute the radius of the largest non-overlapping ball (the largest
hole in the packing).

▶ How much do we have to inflate the balls to cover the space?
▶ First is second -1.

▶ The simultaneous covering and packing constant γ(X ) of X
measures this.
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Two formulas

▶ The simultaneous covering and packing constant γ(X ) of X is

γ(X ) := inf{r > 0: ∃ D ⊆ X 2-separated and r-dense}.

▶ The lattice simultaneous covering and packing constant γ(X )
of X is

γ∗(X ) := inf{r > 0: ∃ D ⊆ X 2-separated and r-dense subgroup}.
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Two formulas

γ(X ) := inf{r > 0: ∃ D ⊆ X 2-separated and r-dense}.
γ∗(X ) := inf{r > 0: ∃ D ⊆ X 2-separated and r-dense subgroup}.

▶ If X has a packing that also covers, γ(X ) = 1.
▶ Taking any maximal packing ; γ(X ) ⩽ 2.
▶ De Bernardi, R., Somaglia (2026+). γ∗(X ) ⩽ 2.
▶ Casini, Papini, Zanco (1986). γ(X ) ⩾ 2

K(X ) .
▶ To sum it up

(good) 1 ⩽ 2

K(X )
⩽ γ(X ) ⩽ γ∗(X ) ⩽ 2 (bad)

▶ Is it true that γ(X ) < 2 for all spaces?
▶ Are we smarter than Zorn?
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A problem of Swanepoel

▶ Our original motivation:
▶ Swanepoel (2009). γ(ℓp) =

2
21/p which equals 2

K(ℓp)
.

▶ Swanepoel (2009). Is it true that for all Banach spaces

γ(X ) =
2

K(X )
?

▶ If the unit ball of X admits a LUR point, then γ(X ) > 1.
▶ Consider ℓ1 ⊕2 R. Its unit ball has a LUR point, but K(ℓ1 ⊕2 R) = 2.
▶ Every Banach space X is isomorphic to a Banach space Y with

K(Y) = 2 and γ(Y) > 1.
▶ So, there are reflexive (even isomorphic to ℓ2) counterexamples

to Swanepoel’s question.
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Some known values

▶ For 1 ⩽ p < ∞ and every infinite κ

γ(ℓp(κ)) = γ∗(ℓp(κ)) =
2

21/p .

▶ If X is separable and octahedral, or X = C(K) with K
zero-dimensional

γ(X ) = γ∗(X ) = 1.

▶ This applies, e.g., to: L1(µ), C([0, 1]), C(2ω), C(K) for K countable
(or scattered).

▶ Some Lipschitz-free spaces, spaces of Lipschitz functions, tensor
products, ...
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ϕ-octahedral spaces

▶ A modulus is a function ϕ : (0,∞) → (0,∞) such that ϕ(0+) = 0

and t 7→ ϕ(t)
t is increasing.

▶ A normed space X is ϕ-octahedral if for every ε > 0 and every
finite-dimensional subspace Z of X there is x ∈ SX with

‖z + λx‖ ⩾ (1− ε)
(
1 + ϕ(|λ|)

)
z ∈ SZ , λ 6= 0.

▶ Octahedral spaces are ϕ-octahedral; so are uniformly convex ones.
▶ Take p ∈ [1,∞), pk → ∞. Then

Xp =

( ∞⊕
k=1

ℓpk(ωk)

)
ℓp

satisfies γ(Xp) = 2.
▶ There are reflexive (resp. octahedral) spaces with γ(X ) = 2.
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Unknown values

▶ Is there a separable Banach space X with γ(X ) = 2?
▶ Is there a Banach space X with γ(X ) 6= γ∗(X )?
▶ What are the exact values of γ(ℓ1 ⊕2 R) and γ∗(ℓ1 ⊕2 R)?

▶ They are > 1 (LUR point).
▶ What are the exact values of γ(ℓ1 ⊕2 ℓ1) and γ∗(ℓ1 ⊕2 ℓ1)?
▶ And many more...

Thank you for your attention!
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