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Maximal separated sets

Every maximal 1-separated set is 1-dense.
Dis if ||d— h|| > rford# heD.
Dis if for all x € X there is d € D with ||[x— d|| < R.

. . . \/Q
In R?, the integer grid Z? is 1-separated and %2-dense.
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Maximal separated sets

Every maximal 1-separated set is 1-dense.
Dis if [|[d— h|| > rford# heD.
Dis if for all x € X there is d € D with ||x— d|| < R.
In R2, the integer grid Z? is 1-separated and g—dense.
In (R?, |]|.). it Z* is 1-separated and i-dense.
Can we always find a 1-separated set that is r~dense, r < 17
Can we always find ad hoc constructions that improve Zorn's one?
Or are there spaces where the optimal net is a ‘random’ one?
Folklore. In finite dimensions, yes.
WLOG, X = (RY, ||-||) and Z? is 1-separated.
Take a maximal 1-separated set A in T¢ := R9/Z.
By compactness, A is r-dense in T for some r < 1.
Lift it to RY.

What about infinite-dimensional spaces?

A change of perspective: multiply by 2.
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Packings
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Packings

A is a collection of non-overlapping balls of radius 1.
How to measure how optimal (or packed) a packing is?
In finite dimensions, compute its density.

In infinite dimensions:

Compute the radius of the largest non-overlapping ball (the largest
hole in the packing).

How much do we have to inflate the balls to cover the space?
First is second -1.

The v(X) of X
measures this.
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Packings
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Two formulas

The v(X) of X'is

7(X) ==1inf{r>0: 3D C X 2-separated and r-dense}.

The v(X)
of X' is

v (X) = inf{r>0: 3D C X 2-separated and r-dense subgroup}.
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Two formulas /y
/ 4
Z

~¥(X) ==1inf{r>0: 3D C X 2-separated and r-dense}.
Y (X) = inf{r>0: 3D C X 2-separated and r-dense subgroup}.

If X has a packing that also covers, v(X) = 1.
Taking any maximal packing ~ v(X) < 2.

De Bernardi, R., Somaglia (2026+). +*(X) < 2.
Casini, Papini, Zanco (1986). ~(¥) > y%y-

To sum it up

(good) 1<~ <y(X) <7 (X)<2 (bad)

Is it true that v(X) < 2 for all spaces?
Are we smarter than Zorn?
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A problem of Swanepoel

Our original motivation:
Swanepoel (2009). 7(¢,) = 57; which equals 7.

Swanepoel (2009). Is it true that for all Banach spaces

Consider ¢1 @2 R. Its unit ball has a LUR point, but K(¢; @2 R) = 2.
Every Banach space X is isomorphic to a Banach space ) with
K(Y) =2 and v(¥) > 1.

So, there are reflexive (even isomorphic to ¢>) counterexamples
to Swanepoel’s question.
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Some known values

For 1 < p < oo and every infinite

() =7 (Ep() = 5205

If X is separable and octahedral, or X = C(K) with K
zero-dimensional

2(X) =7*(X) = 1.
This applies, e.g., to: Li(u), C([0,1]), C(2¥), C(K) for K countable
(or scattered).

Some Lipschitz-free spaces, spaces of Lipschitz functions, tensor
products, ...
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¢-octahedral spaces

A is a function ¢: (0,00) — (0, 00) such that ¢(07) =0
and t+— &tt) is increasing.

A normed space X is if for every € > 0 and every
finite-dimensional subspace Z of X there is x € Sy with

lz+ Axl| = (1 —e) (1 + ¢(|A]) ze Sz, A #0.

Octahedral spaces are ¢-octahedral; so are uniformly convex ones.

There are reflexive (resp. octahedral) spaces with v(X') = 2.
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Unknown values

Is there a separable Banach space X with (X') = 27

Is there a Banach space X’ with (X)) # v*(X)?

What are the exact values of y(¢; @2 R) and v*(¢; @2 R)?
They are > 1 (LUR point).

What are the exact values of (¢ @2 ¢1) and v*(¢1 B ¢1)?

And many more...

Thank you for your attention!
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