

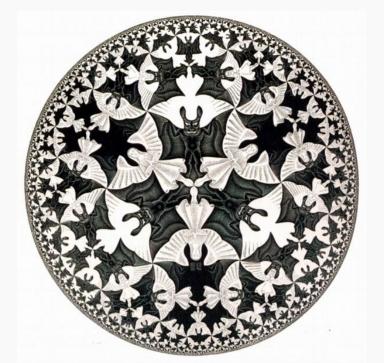
# Tiling Hilbert spaces

Tommaso Russo tommaso.russo.math@gmail.com

j./w. C.A. De Bernardi and J. Somaglia

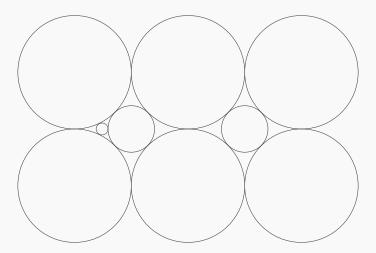
52<sup>th</sup> Winter School in Abstract Analysis Vlachovice, Czech Republic January 11–18, 2025





# Can you tile the plane with balls?

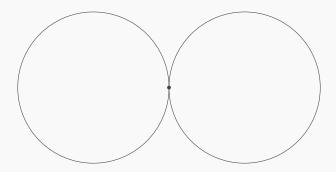
Are there closed balls  $(B_j)_{j=1}^{\infty}$  with disjoint interiors s.t.  $\mathbb{R}^2 = \bigcup B_j$ ?



# Or maybe not?



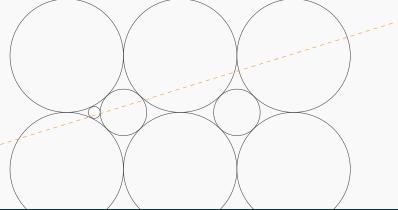
- ► Assume  $(B_i)_{i \in I}$  is a tiling.
- ▶ Then *I* is countable ( $int(B_i)$  are mutually disjoint open sets).
- ▶  $B_i \cap B_j = \{p_{ij}\}$  or empty.



## Or Maybe not?



- ► Assume  $(B_i)_{i \in I}$  is a tiling.
- ▶ Then *I* is countable ( $int(B_i)$ ) are mutually disjoint open sets).
- ▶  $B_i \cap B_j = \{p_{ij}\}$  or empty.
- ▶ So there is a line L such that no  $p_{ij}$  belongs to L.



# Or Maybe not?



- Assume  $(B_i)_{i \in I}$  is a tiling.
- ▶ Then *I* is countable ( $int(B_i)$ ) are mutually disjoint open sets).
- ▶  $B_i \cap B_j = \{p_{ij}\}$  or empty.
- ▶ So there is a line L such that no  $p_{ij}$  belongs to L.
- ▶  $(B_k \cap L)_{k=1}^{\infty}$  are **disjoint** closed intervals that cover L.
- ► Sierpinski (1918). If a continuum is covered by countably many disjoint closed sets, then only one is not empty.
  - ► Continuum ≡ compact, connected, Hausdorff.
- ► So, you can't tile the plane with (Euclidean) balls.
- **Sierpinski-baby version.** You can't cover  $\mathbb{R}$  by countably many disjoint compact intervals.
  - Exercise. (It's a school, after all.)

## Is this a planar result?



- ▶ The tiling is countable  $\leftarrow \mathbb{R}^2$  is separable.
- ▶ Balls intersect in just one point  $\leftarrow \mathbb{R}^2$  is strictly convex.

Thm. Klee, Maluta, Zanco (1986). No separable normed space has a tiling with strictly convex bodies.

- $ightharpoonup \ell_2$  doesn't have a tiling with balls.
- $ightharpoonup c_0$  (and  $\ell_{\infty}$ ) have a tiling with balls.
- ► Klee, Tricot (1987). Separable smooth Banach spaces don't have tilings with balls.
- ▶ De Bernardi, Veselý (2017). LUR Banach spaces don't have tilings by balls.
  - Nor do Fréchet smooth Banach spaces.
- ▶ **Problem.** Can a strictly convex/smooth Banach space have a tiling with balls?
- ▶ Preiss (2010).  $\ell_2$  has a normal tiling (*i.e.*, inner and outer radii are equi-bounded).

# A disjoint tiling from Badajoz





## Klee's tiling



- ▶ Klee (1981). A tiling of  $\ell_1(\mathbb{R})$  with disjoint balls of radius 1.
- ▶ The set of centers is (2+)-separated and 1-dense.
  - ▶ In  $\ell_p(\mathbb{R})$  a  $(2^{1/p}+)$ -separated and 1-dense set.
- But centers do not form a subgroup.
- ▶ De Bernardi, Veselý (2017). A tiling of  $\ell_1(\mathbb{R})$  with disjoint LUR (in particular, strictly convex) bodies.

#### Theorem (De Bernardi, R., Somaglia)

 $\ell_p(\mathbb{R})$  contains a  $2^{1/p}$ -separated and 1-dense subgroup.

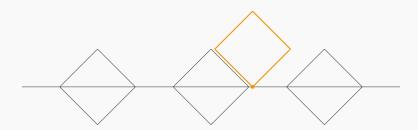
Sheldon: What the hell is this?

Pepe: WHY?

► We'll get there, suspense.

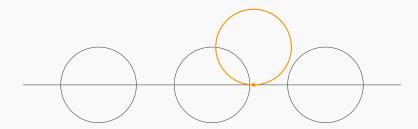
# Klee's proof in one picture





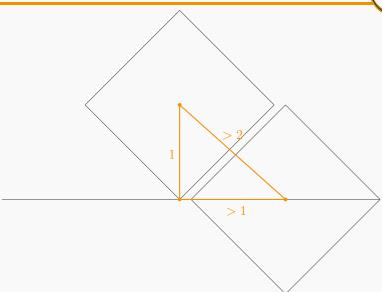
# Klee's proof in one picture





# Klee's proof in one picture The same, just bigger





#### Is this the solution to an exercise?



- ▶ So,  $|\ell_1(\mathbb{R})| = \mathfrak{c}$ . Write  $\ell_1(\mathbb{R}) = \{u_\alpha\}_{\alpha < \mathfrak{c}}$ .
- ▶ By (long) induction. If  $(B_{\alpha})_{\alpha < \gamma}$  already cover  $u_{\gamma}$ ,  $\checkmark$ .
- ▶ If not, let  $c_{\alpha}$  be the center of  $B_{\alpha}$ .
  - Find a subspace that contains all  $c_{\alpha}$  and  $u_{\gamma}$ .
  - ► There is  $\tilde{\gamma}$  with  $u_{\gamma}(\tilde{\gamma}) = 0$  and  $c_{\alpha}(\tilde{\gamma}) = 0$ .
- ightharpoonup Take  $B_{\gamma}:=B(u_{\gamma}+e_{\tilde{\gamma}}).$ 
  - ► This ball contains  $u_{\gamma}$
  - and touches that subspace only in one point.



## Back to that subgroup, please



- $\blacktriangleright$   $\ell_2(\mathbb{R})$  contains a  $\sqrt{2}$ -separated and 1-dense subgroup  $\mathcal{D}$ .
- lacktriangle The Voronoi cells generated by  ${\mathcal D}$  are convex
- ▶ and invariant under D.
- So, there is a symmetric, bounded convex body whose translates tile  $\ell_2(\mathbb{R})$ .
- ▶ There exists a reflexive Banach space (isomorphic to  $\ell_2(\mathbb{R})$ ) that is tiled by balls of radius 1.
  - (and the centers form a group).
- ► Fonf, Lindenstrauss (1998). Can a reflexive space be tiled by translates of a convex body?
  - Repeated in Guirao, Montesinos, Zizler (2016) Open problems...
- In every infinite-dimensional Banach space  $\mathcal X$  there is a 1-separated and  $(1+\varepsilon)$ -dense subgroup.
  - **Dilworth, Odell, Schlumprecht, Zsák (2008).**  $\mathcal{X}$  separable.

#### Thank you for your attention!