

Discrete subgroups of Banach spaces and lattice tilings

Tommaso Russo tommaso.russo.math@gmail.com

j./w. C.A. De Bernardi and J. Somaglia

Structures in Banach Spaces March 17–21, 2025 Vienna, Austria

A net which is a subgroup?

Question (Medina, Vlachovice WS'24, problem session)

Does every Banach space admit a net closed under addition?

- ▶ \mathcal{D} is *r*-separated if $||d h|| \ge r$ for $d \ne h \in \mathcal{D}$.
- ▶ \mathcal{D} is R-dense if for all $x \in \mathcal{X}$ there is $d \in \mathcal{D}$ with $||x d|| \leq R$.
- \triangleright \mathcal{D} is a **net** if it is both (for some r, R).
- Motivation:
 - ▶ Does $\mathcal{F}(\mathcal{N})$ have a Schauder basis, for a net \mathcal{N} in a separable \mathcal{X} ?
 - ightharpoonup A discretisation of \mathcal{X} , both in the metric and algebraic sense.

Answer (Doucha, ibidem)

- **Yes**, a 1-separated and $(1+\varepsilon)$ -dense subgroup, if $\mathcal X$ separable.
 - Dilworth, Odell, Schlumprecht, Zsák (2008).
- \blacktriangleright (A later email) What about non-separable \mathcal{X} ?

And why should we care?

- **Rogers (1984).** A 1-separated and $(3/2 + \varepsilon)$ -dense subgroup.
- **Swanepoel (2009).** Can you get $(1 + \varepsilon)$ -dense?

Theorem (De Bernardi, R., Somaglia)

In every infinite-dimensional Banach space $\mathcal X$ there is a 1-separated and $(1+\varepsilon)$ -dense subgroup.

- ► And... who cares, precisely?
- ► A simple constructive proof by induction, only using Riesz' lemma.
- ▶ If $\Gamma^{\omega} = \Gamma$, $\ell_2(\Gamma)$ contains a $(\sqrt{2}+)$ -separated and 1-dense subgroup.
- ▶ There exists a reflexive Banach space (isomorphic to $\ell_2(\Gamma)$) that is tiled by balls of radius 1.
- Fonf, Lindenstrauss (1998). Can a reflexive space be tiled by translates of a convex body?
 - Repeated in Guirao, Montesinos, Zizler (2016) Open problems...

What about ℓ_p , 1 ?

 \blacktriangleright $\ell_p(\Gamma)$ contains a $(2^{1/p}+)$ -separated and 1-dense subgroup.

Thank you for your attention!