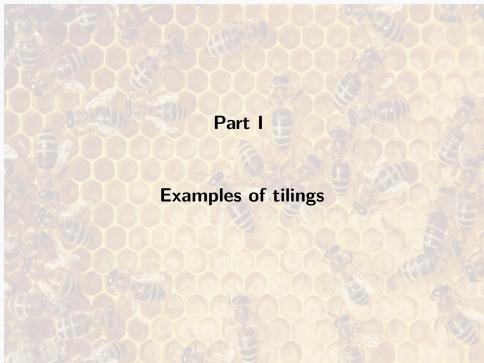


An introduction to tilings of Banach spaces

Tommaso Russo tommaso.russo.math@gmail.com

November 20, 2025 IMUS, Sevilla, Spain



Tilings and potatoes

- A tiling of a normed space \mathcal{X} is a collection \mathcal{T} of subsets of \mathcal{X} that have mutually disjoint interiors and that cover \mathcal{X} .
- ► We only consider tiles that are **bodies**: bounded, closed, **convex**, and with non-empty interior.

Examples

▶ In \mathbb{R}^2 , we can tile by squares, or hexagons.

▶ In \mathbb{R}^3 by cubes. By octahedra?

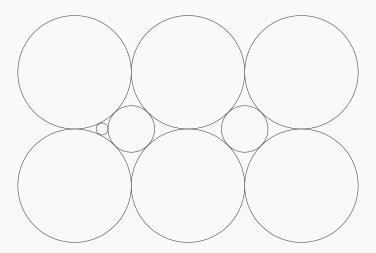
Aristotle: yes.

Part II

Tilings that don't exist

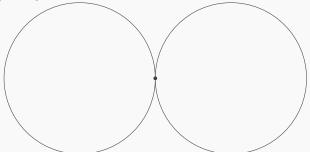
Can you tile the plane with balls?

▶ Are there closed balls $(B_j)_{j=1}^{\infty}$ with disjoint interiors s.t. $\mathbb{R}^2 = \bigcup B_j$?



Or maybe not?

- ► Assume $(B_i)_{i \in I}$ is a tiling.
- ▶ Then *I* is countable ($int(B_i)$) are mutually disjoint open sets).
- ▶ $B_i \cap B_j = \{p_{ij}\}$ or empty.



Or maybe not?

- ► Assume $(B_i)_{i \in I}$ is a tiling.
- ▶ Then *I* is countable ($int(B_i)$) are mutually disjoint open sets).
- ▶ $B_i \cap B_j = \{p_{ij}\}$ or empty.
- ▶ So there is a line L such that no p_{ij} belongs to L.



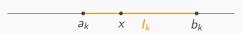
Or maybe not?

- Assume $(B_i)_{i \in I}$ is a tiling.
- ▶ Then *I* is countable ($int(B_i)$) are mutually disjoint open sets).
- ▶ $B_i \cap B_j = \{p_{ij}\}$ or empty.
- ▶ So there is a line L such that no p_{ij} belongs to L.
- ▶ $(B_k \cap L)_{k=1}^{\infty}$ are **disjoint** closed intervals that cover L.
- ► Sierpinski (1918). If a continuum is covered by countably many disjoint closed sets, then only one is not empty.
 - **Continuum** ≡ compact, connected, Hausdorff.
- ► So, you can't tile the plane with (Euclidean) balls.
- **Sierpinski-baby version.** You can't cover \mathbb{R} by countably many disjoint compact intervals.

Baby-S

- ► Sierpinski-baby version. You can't cover R by countably many disjoint compact intervals.
- Assume $I_k = [a_k, b_k]$ are disjoint intervals, $\mathbb{R} = \bigcup [a_k, b_k]$.
- $\triangleright \ \mathcal{B} := \{a_k, b_k\}_{k=1}^{\infty}.$
- $ightharpoonup \mathcal{B} \subseteq \mathcal{B}'$ (the set of accumulation points).

▶ \mathcal{B} is closed (if $x \notin \mathcal{B}$, there is k with $x \in (a_k, b_k)$).

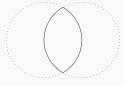


- ▶ So $\mathcal{B} = \mathcal{B}'$ is **perfect**.
- ► Perfect subsets of R aren't countable. ∮

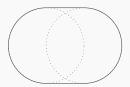
Smooth and rotund bodies

- ► Smooth = No corners;
- ► Rotund = No segments.

Not smooth, not rotund



Not smooth, rotund



Smooth, not rotund

Smooth, rotund

Smooth/rotund tilings don't exist

- ► Klee, Maluta, Zanco (1986). Separable normed spaces do not admit tilings by rotund bodies.
- ► Klee, Tricot (1987). Separable smooth Banach spaces don't have tilings with smooth bodies.
- ▶ De Bernardi, Veselý (2017).
 - No Banach space admits a tiling by Fréchet smooth bodies.
 - LUR Banach spaces do not have tilings by balls.
 - \blacktriangleright $\ell_1(\kappa)$, for $\kappa^{\omega} = \kappa$, admits a tiling by LUR bodies.

Part III

Tilings that exist

Local finiteness

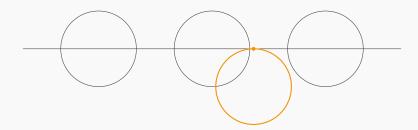
- A point x_0 is a **singular point** for a covering \mathcal{T} if every neighbourhood of x_0 intersects infinitely many elements of \mathcal{T} .
- ► A covering is **locally finite** if it has no singular point.
- ► Corson (1961). Infinite-dimensional reflexive Banach spaces do not admit locally finite coverings.
- **Fonf, Zanco (2006).** If a Banach space \mathcal{X} admits a locally finite covering, then it is c_0 -saturated.
- ► Fonf (1990). A separable Banach space admits a locally finite tiling if and only if it is isomorphically polyhedral.

Tilings that exist

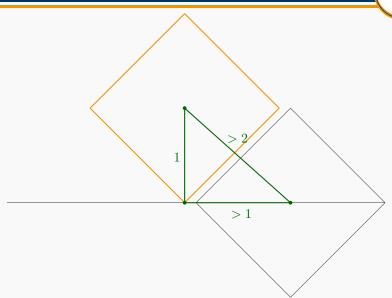
- ▶ Klee (1981). $\ell_1(\kappa)$, for $\kappa^{\omega} = \kappa$, has a **disjoint** tiling by unit balls.
- Fonf, Pezzotta, Zanco (1997).
 - ho ℓ_{∞} admits a countable tiling.
 - Every Banach space admits a tiling that is bounded below: there is r > 0 such that all tiles contain a ball of radius r.
- ▶ Preiss (2010). ℓ_2 admits a normal tiling: there are r, R > 0 such that all tiles contain a ball of radius r and have diameter at most R.
- ▶ Marchese, Zanco (2012). Every Banach space admits a tiling where each point belongs to at most two bodies.

Klee's proof in one picture

Klee's proof in one picture



Klee's proof in one picture



How do you actually use that?

- ▶ So, $|\ell_1(\mathbb{R})| = \mathfrak{c}$. Write $\ell_1(\mathbb{R}) = \{u_\alpha\}_{\alpha < \mathfrak{c}}$.
- ▶ By (long) induction. If $(B_{\alpha})_{\alpha < \gamma}$ already cover u_{γ} , \checkmark .
- ▶ If not, let c_{α} be the center of B_{α} .
 - Find a subspace that contains all c_{α} and u_{γ} .
 - There is $\tilde{\gamma}$ with $u_{\gamma}(\tilde{\gamma}) = 0$ and $c_{\alpha}(\tilde{\gamma}) = 0$.
- ightharpoonup Take $B_{\gamma}:=B(u_{\gamma}+e_{\tilde{\gamma}}).$
 - ightharpoonup This ball contains u_{γ}
 - and touches that subspace only in one point.

Tilings that exist

- ▶ Klee (1981). $\ell_1(\kappa)$, for $\kappa^{\omega} = \kappa$, has a **disjoint** tiling by unit balls.
- Fonf, Pezzotta, Zanco (1997).
 - ho ℓ_{∞} admits a countable tiling.
 - Every Banach space admits a tiling that is bounded below: there is r > 0 such that all tiles contain a ball of radius r.
- ▶ Preiss (2010). ℓ_2 admits a normal tiling: there are r, R > 0 such that all tiles contain a ball of radius r and have diameter at most R.
- ▶ Marchese, Zanco (2012). Every Banach space admits a tiling where each point belongs to at most two bodies.

That's all folks!

