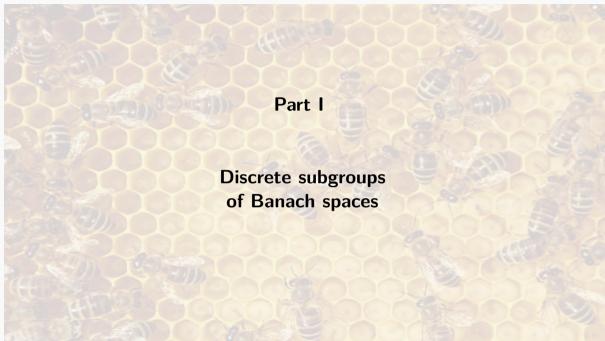


Packings and tilings in Banach spaces

Tommaso Russo tommaso.russo.math@gmail.com

November 21, 2025 IMUS, Sevilla, Spain



Discrete subgroups

- ▶ Rogers (1984). Every infinite-dimensional Banach space contains a 1-separated and $(3/2 + \varepsilon)$ -dense subgroup.
 - ▶ \mathcal{D} is *r*-separated if $||d h|| \ge r$ for $d \ne h \in \mathcal{D}$.
 - ▶ \mathcal{D} is R-dense if for all $x \in \mathcal{X}$ there is $d \in \mathcal{D}$ with $||x d|| \leq R$.
- **Swanepoel (2009).** Can you get $(1 + \varepsilon)$ -dense?
- Every maximal 1-separated set is 1-dense.
- **Dilworth, Odell, Schlumprecht, Zsák (2008).** Yes, if \mathcal{X} separable.
 - ► The following result is of interest in nonlinear functional analysis.
- ▶ I wonder whether separability is necessary (Doucha, by email).

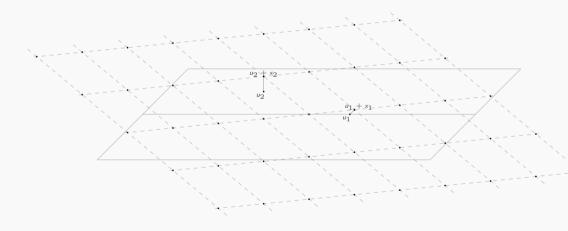
Theorem (De Bernardi, R., Somaglia)

Every infinite-dimensional Banach space $\mathcal X$ contains a 1-separated and $(1+\varepsilon)$ -dense subgroup.

- ► Steprāns (1985). Discrete subgroups of normed spaces are free.
 - ▶ Uses Shelah's Singular Compactness theorem and Fodor's pressing-down lemma.
 - We have a proof without any logic (cit. Fabian).

How to construct them?

▶ Suppose \mathcal{X} is separable, $(u_k)_{k=1}^{\infty}$ is dense in \mathcal{X} .



How to construct them?

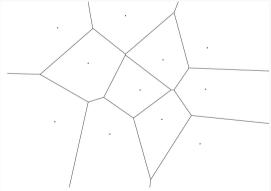
- ▶ Suppose \mathcal{X} is separable, $(u_k)_{k=1}^{\infty}$ is dense in \mathcal{X} .
- ▶ Construct a chain $(\mathcal{D}_k)_{k=1}^{\infty}$ of finitely generated subgroups such that
 - 1. \mathcal{D}_k is 1-separated
 - 2. $\operatorname{dist}(u_k, D_k) \leq 1$.
- ▶ Then $\bigcup_{k=1}^{\infty} \mathcal{D}_k$ does the job.
- ▶ Having \mathcal{D}_k , $E := \operatorname{span}\{\mathcal{D}_k, u_{k+1}\}$ is finite dim.
- ▶ By Riesz' lemma, there is $x_{k+1} \in \mathcal{X}$ with $||x_{k+1}|| = 1$ and $\operatorname{dist}(x_{k+1}, E) \ge 1$.
- Define

$$\mathcal{D}_{k+1} \coloneqq \mathcal{D}_k \oplus (x_{k+1} + u_{k+1}) \mathbb{Z}.$$

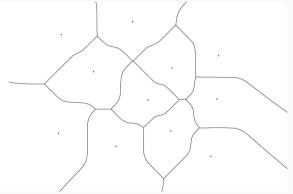
And check that it is 1-separated.

▶ An elementary constructive proof that only uses Riesz' lemma.

- 3
- ightharpoonup A tiling of $\mathcal X$ is a family of bodies that cover $\mathcal X$ and have mutually disjoint interiors.
 - **Body** \equiv closed, convex, bounded, and with non-empty interior.
- ▶ If $\kappa^{\omega} = \kappa$, $\ell_2(\kappa)$ contains a $\sqrt{2}$ -separated and 1-dense subgroup \mathcal{D} .
 - ▶ The constant $\sqrt{2}$ is optimal, as we will see later.



- 3
- ightharpoonup A tiling of $\mathcal X$ is a family of bodies that cover $\mathcal X$ and have mutually disjoint interiors.
 - ightharpoonup Body \equiv closed, convex, bounded, and with non-empty interior.
- ▶ If $\kappa^{\omega} = \kappa$, $\ell_2(\kappa)$ contains a $\sqrt{2}$ -separated and 1-dense subgroup \mathcal{D} .
 - ▶ The constant $\sqrt{2}$ is optimal, as we will see later.

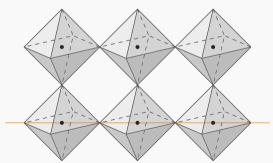


- 3
- ightharpoonup A tiling of $\mathcal X$ is a family of bodies that cover $\mathcal X$ and have mutually disjoint interiors.
 - **Body** \equiv closed, convex, bounded, and with non-empty interior.
- ▶ If $\kappa^{\omega} = \kappa$, $\ell_2(\kappa)$ contains a $\sqrt{2}$ -separated and 1-dense subgroup \mathcal{D} .
 - ▶ The constant $\sqrt{2}$ is optimal, as we will see later.

- ightharpoonup A tiling of \mathcal{X} is a family of bodies that cover \mathcal{X} and have mutually disjoint interiors.
 - **Body** \equiv closed, convex, bounded, and with non-empty interior.
- ▶ If $\kappa^{\omega} = \kappa$, $\ell_2(\kappa)$ contains a $\sqrt{2}$ -separated and 1-dense subgroup \mathcal{D} .
 - ▶ The constant $\sqrt{2}$ is optimal, as we will see later.
- ▶ The Voronoi cells generated by \mathcal{D} are convex and \mathcal{D} -invariant.
- Moreover, they form a tiling (because of the value $\sqrt{2}$).
- ▶ So, $\ell_2(\kappa)$ can be tiled by translates of one Voronoi cell.
- ▶ There exists a reflexive Banach space (isomorphic to $\ell_2(\kappa)$) that admits a tiling by balls of radius 1.
 - And the centers form a group (i.e., the tiling is lattice).
- ► Fonf, Lindenstrauss (1998). Can a reflexive Banach space be tiled by translates of a bounded convex body?

Tilings with diamonds

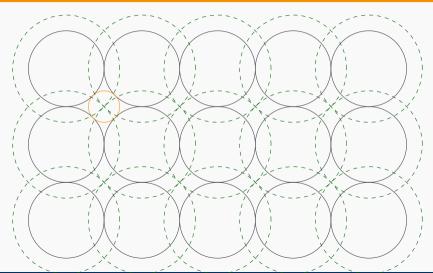
- ▶ If $\kappa^{\omega} = \kappa$, $\ell_1(\kappa)$ contains a 2-separated and 1-dense subgroup \mathcal{D} .
- \blacktriangleright $\ell_1(\kappa)$ admits a lattice tiling by balls of radius 1.
- ▶ Klee (1981). A tiling of $\ell_1(\kappa)$ with disjoint balls of radius 1.
 - Lattice tilings with balls cannot be disjoint.
- ▶ Each point belongs to at most two tiles and two tiles intersect at most in some vertex.

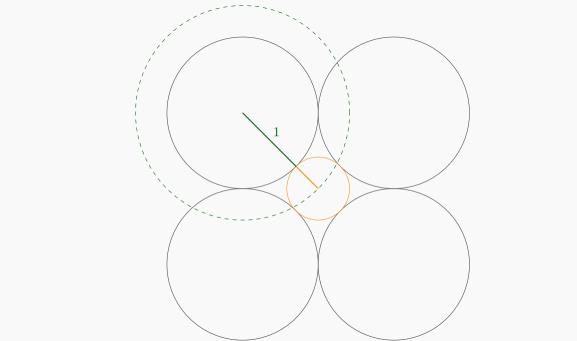


When tilings don't exist

- Not all Banach spaces admit a tiling by balls.
- ▶ Klee, Tricot (1987). Separable smooth Banach spaces don't have tilings with balls.
- ► Klee, Maluta, Zanco (1986). Nor do separable rotund normed spaces.
- ▶ De Bernardi, Veselý (2017). LUR Banach spaces don't have tilings by balls.
 - Nor do Fréchet smooth Banach spaces.
- ► A packing (of balls) is a collection of non-overlapping balls of radius 1.
- ► How to measure how optimal (or packed) a packing is?
 - Compute the radius of the largest non-overlapping ball (the largest hole in the packing).
 - ▶ How much do we have to inflate the balls to cover the space?
 - First is second -1.
- ▶ The simultaneous covering and packing constant $\gamma(\mathcal{X})$ of \mathcal{X} measures this.

When tilings don't exist





Two formulas

▶ The simultaneous covering and packing constant $\gamma(X)$ of X is

$$\gamma(\mathcal{X}) \coloneqq \inf\{r > 0 \colon \text{there exists } \mathcal{D} \subseteq \mathcal{X} \text{ 2-separated and } r\text{-dense}\}.$$

$$\frac{2}{\gamma(\mathcal{X})} = \sup\{r > 0 \colon \text{there exists } \mathcal{D} \subseteq \mathcal{X} \text{ 1-dense and } r\text{-separated}\}.$$

▶ The lattice simultaneous covering and packing constant $\gamma(\mathcal{X})$ of \mathcal{X} is

$$\gamma^*(\mathcal{X}) \coloneqq \inf\{r > 0 \colon \text{there exists } \mathcal{D} \subseteq \mathcal{X} \text{ 2-separated and } r\text{-dense } \text{subgroup}\}.$$

$$\frac{2}{\gamma^*(\mathcal{X})} = \sup\{r > 0 \colon \text{there exists } \mathcal{D} \subseteq \mathcal{X} \text{ 1-dense and } r\text{-separated subgroup}\}.$$

Two formulas

$$\gamma(\mathcal{X}) \coloneqq \inf\{r > 0 \colon \text{there exists } \mathcal{D} \subseteq \mathcal{X} \text{ 2-separated and } r\text{-dense}\}.$$

$$\gamma^*(\mathcal{X}) \coloneqq \inf\{r > 0 \colon \text{there exists } \mathcal{D} \subseteq \mathcal{X} \text{ 2-separated and } r\text{-dense } \mathbf{subgroup}\}.$$

- ▶ If \mathcal{X} has a tiling by balls of radius 1, $\gamma(\mathcal{X}) = 1$.
- ▶ Taking any maximal packing $\sim \gamma(\mathcal{X}) \leq 2$.
- ▶ By the result from the beginning, $\gamma^*(\mathcal{X}) \leq 2$.
- ► Casini, Papini, Zanco (1986). $\gamma(\mathcal{X}) \geqslant \frac{2}{K(\mathcal{X})}$.
- ► To sum it up

$$1 \leqslant \frac{2}{K(\mathcal{X})} \leqslant \gamma(\mathcal{X}) \leqslant \gamma^*(\mathcal{X}) \leqslant 2.$$

A problem of Swanepoel

- **Swanepoel (2009).** $\gamma(\ell_p) = \frac{2}{2^{1/p}}$ which equals $\frac{2}{K(\ell_p)}$.
- ▶ Swanepoel (2009). Is it true that for all Banach spaces

$$\gamma(\mathcal{X}) = \frac{2}{\mathit{K}(\mathcal{X})}?$$

Theorem (De Bernardi, R., Sezgek, Somaglia)

If the unit ball of \mathcal{X} admits a LUR point, then $\gamma(\mathcal{X}) > 1$.

- ightharpoonup Consider $\ell_1 \oplus_2 \mathbb{R}$. Its unit ball has a LUR point, but $K(\ell_1 \oplus_2 \mathbb{R}) = 2$.
- lacktriangle Every Banach space $\mathcal X$ is isomorphic to a Banach space $\mathcal Y$ with $\mathcal K(\mathcal Y)=2$ and $\gamma(\mathcal Y)>1$.
 - \blacktriangleright So, there are reflexive (even isomorphic to ℓ_2) counterexamples to Swanepoel's question.

Some known values

▶ For $1 \le p < \infty$ and every infinite κ

$$\gamma(\ell_p(\kappa)) = \gamma^*(\ell_p(\kappa)) = \frac{2}{2^{1/p}}.$$

▶ For $1 \le p < \infty$ and q the conjugate index of p

$$\max\left\{\frac{2}{2^{1/p}}, \frac{2}{2^{1/q}}\right\} \leqslant \gamma(L_p([0,1])) \leqslant \gamma^*(L_p([0,1])) \leqslant \frac{2}{2^{1/p}}.$$

▶ If $\mathcal X$ is separable and octahedral, or $\mathcal X = \mathcal C(\mathcal K)$ with $\mathcal K$ zero-dimensional

$$\gamma(\mathcal{X}) = \gamma^*(\mathcal{X}) = 1.$$

- ► This applies, e.g., to: $\mathcal{C}([0,1])$, $\mathcal{C}(2^{\omega})$, $\mathcal{C}(\mathcal{K})$ for \mathcal{K} countable (or scattered).
- ► Some Lipschitz-free spaces, spaces of Lipschitz functions, tensor products, ...

And unknown ones

- ▶ Is there a Banach space \mathcal{X} with $\gamma(\mathcal{X}) = 2$?
- ▶ Is there a Banach space \mathcal{X} with $\gamma(\mathcal{X}) \neq \gamma^*(\mathcal{X})$?
- ▶ What are the exact values of $\gamma(\ell_1 \oplus_2 \mathbb{R})$ and $\gamma^*(\ell_1 \oplus_2 \mathbb{R})$?
 ▶ They are > 1 (LUR point).
- ▶ What are the exact values of $\gamma(\ell_1 \oplus_2 \ell_1)$ and $\gamma^*(\ell_1 \oplus_2 \ell_1)$?
- And many more

Thank you for your attention!