

Klee's tiling of $\ell_1(\Gamma)$. Variations on a theme

Tommaso Russo tommaso.russo.math@gmail.com

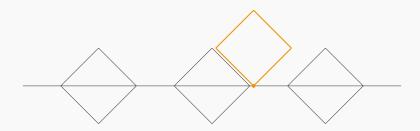
j./w. C.A. De Bernardi and J. Somaglia

IMAG Functional Analysis Seminar Universidad de Granada, Spain February 26, 2025

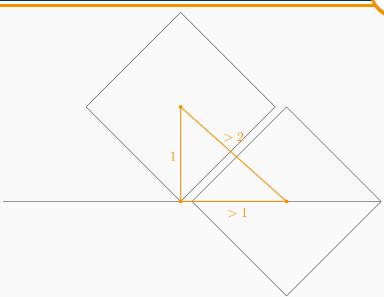
Klee's tiling

- ▶ Klee (1981). A tiling of $\ell_1(\mathbb{R})$ with disjoint balls of radius 1.
- Thm. **Klee, Maluta, Zanco (1986). Separable** rotund Banach spaces don't have tilings with balls.
 - ► Klee, Tricot (1987). Nor do separable smooth ones.
 - ▶ De Bernardi, Veselý (2017). LUR Banach spaces don't have tilings by balls.
 - Nor do Fréchet smooth ones.
 - Problem. Can a rotund/smooth Banach space have a tiling with balls?
 - ▶ De Bernardi, Veselý (2017). A tiling of $\ell_1(\mathbb{R})$ with disjoint LUR (in particular, rotund) bodies.
 - ▶ The set \mathcal{D} of centers is (2+)-separated and 1-dense.
 - ▶ If $d \neq h \in \mathcal{D}$, then ||d h|| > 2.
 - For all $x \in \mathcal{X}$ there is $d \in \mathcal{D}$ with $||x d|| \le 1$.
 - ▶ In $\ell_p(\mathbb{R})$ a $(2^{1/p}+)$ -separated and 1-dense set.

Klee's proof in one picture



Klee's proof in one picture The same, just bigger



Klee: In $\ell_2(\Gamma)$ a $(\sqrt{2}+)$ -separated and 1-dense set.

Theorem (De Bernardi, R., Somaglia)

 $\ell_2(\Gamma)$ contains a $(\sqrt{2}+)$ -separated and 1-dense **subgroup**.

- ▶ So, there is a symmetric body whose translates tile $\ell_2(\Gamma)$.
- ▶ There exists a reflexive Banach space (isomorphic to $\ell_2(\Gamma)$) that is tiled by balls of radius 1.
- ► Fonf, Lindenstrauss (1998). Can a reflexive space be tiled by translates of a convex body?
 - Repeated in Guirao, Montesinos, Zizler (2016) Open problems...
- In every infinite-dimensional Banach space $\mathcal X$ there is a 1-separated and $(1+\varepsilon)$ -dense subgroup.
 - Dilworth, Odell, Schlumprecht, Zsák (2008). X separable.

A disjoint tiling from Badajoz

