

Packings and tilings:

from Flatland to infinite dimensions

Tommaso Russo

Habilitation lecture

Innsbruck, November 5, 2025

Part I

Packing and tiling in \mathbb{R}^n : a quick glimpse

Packing problems

Kepler problem (1661)

What is the optimal way to stack cannonballs on a ship?

Gregory-Newton problem (1694)

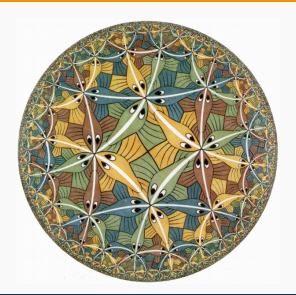
Can a sphere in \mathbb{R}^3 touch 13 spheres of the same size?

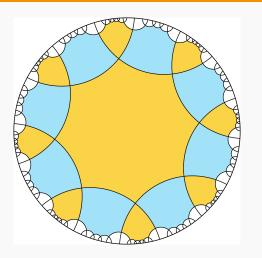
- ► **Gregory**: Yes.
- ▶ Newton: No, at most 12.
- δ_n : the density of the optimal packing of spheres in \mathbb{R}^n .
- δ_n^* : with the extra requirement that the centers are a lattice (namely, a subgroup).

A few values

n	δ_n^*	Author	δ_n	Author
2	$\frac{\pi}{\sqrt{12}}$	Lagrange, 1773	$\frac{\pi}{\sqrt{12}}$	Thue, 1892
3	$\frac{\pi}{\sqrt{18}}$	Gauss, 1831	$\frac{\pi}{\sqrt{18}}$	Hales, 2005 Annals
4	$\frac{\pi^2}{16}$	Korkin, Zolotarev, 1872	???	
5	$\frac{\pi^2}{15\sqrt{2}}$	Korkin, Zolotarev, 1877	???	
6	$\frac{\pi^3}{48\sqrt{3}}$	Blichfeldt, 1925	???	
7	$\frac{\pi^3}{105}$	Blichfeldt, 1926	???	
8	$\frac{\pi^4}{384}$	Blichfeldt, 1934	$\frac{\pi^4}{384}$	Viazovska, 2017 <i>Annals</i>
24	$\frac{\pi^{12}}{12!}$	Cohn, Kumar, 2009 Annals	$\frac{\pi^{12}}{12!}$	Cohn et.al. 2017 Annals

► **Algorithm**: for infinitely many *Annals* papers.





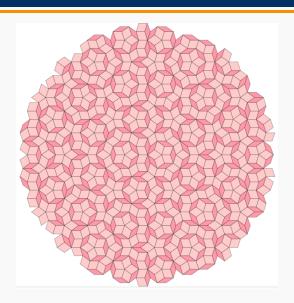
C. Bargetz, F. Luggin, and T. Russo, Tilings of the hyperbolic space and Lipschitz functions, Canad. J. Math. (online first).

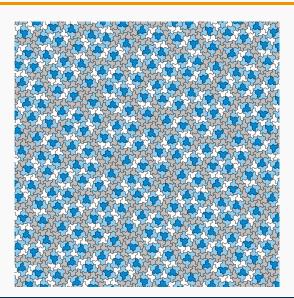
- **Venkov–McMullen.** If a convex set C tiles \mathbb{R}^n by translations, then it also generates a lattice tiling.
- **Stein–Szabó.** Counterexamples without convexity.
- Periodic tiling.

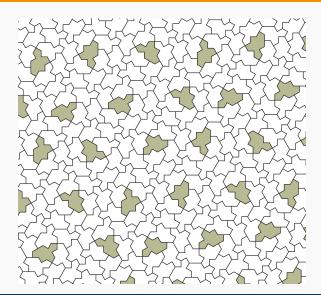
- **Venkov–McMullen.** If a convex set C tiles \mathbb{R}^n by translations, then it also generates a lattice tiling.
- ► Stein-Szabó. Counterexamples without convexity.
- Periodic tiling.
- ► The Aperiodic tiling conjecture: is there a finite set of tiles that tiles, but only aperiodically?
- Penrose' 'kites' and 'darts'.

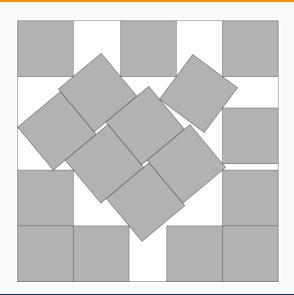
- **Venkov–McMullen.** If a convex set C tiles \mathbb{R}^n by translations, then it also generates a lattice tiling.
- ► Stein-Szabó. Counterexamples without convexity.
- Periodic tiling.
- ► The Aperiodic tiling conjecture: is there a finite set of tiles that tiles, but only aperiodically?
- Penrose' 'kites' and 'darts'.
- ▶ The *Einstein problem*: Is there a single tile...?
- ► Smith–Myers–Kaplan–Goodman-Strauss (2024). The 'hat' tiles the plane by rotations and translations, but only aperiodically.

- **Venkov–McMullen.** If a convex set C tiles \mathbb{R}^n by translations, then it also generates a lattice tiling.
- ► Stein-Szabó. Counterexamples without convexity.
- Periodic tiling.
- ► The Aperiodic tiling conjecture: is there a finite set of tiles that tiles, but only aperiodically?
- Penrose' 'kites' and 'darts'.
- ▶ The *Einstein problem*: Is there a single tile...?
- ► Smith–Myers–Kaplan–Goodman-Strauss (2024). The 'hat' tiles the plane by rotations and translations, but only aperiodically.
- ► Greenfeld—Tao (2024). Only by translations.
- ► Tilings in finite dimensions tend to have some patterns.









Convex potatoes

From now on, we only consider tiles that are *bodies/* potatoes, namely bounded, closed, convex, and with non-empty interior.

Part II

Aristotle, Hilbert, and Voronoi go to a restaurant

Polyhedra and tilings

In this part we consider tilings by translates of just one body.

▶ In \mathbb{R}^2 , we can tile by squares, or hexagons.

► In \mathbb{R}^3 by cubes. By octahedra?

Aristotle: yes.

Cubes in infinite dimensions

- ► Can we tile by cubes in infinite dimensions?
- ightharpoonup C is not bounded: $\|(\underbrace{1,\ldots,1}_n,0,0,0,\ldots)\| = \sqrt{n}$.
- \triangleright But *C* is bounded in c_0

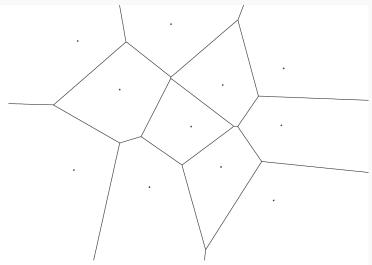
$$c_0 \coloneqq \{(x_j) \in \mathbb{R}^{\mathbb{N}} \colon x_j \to 0\} \qquad \|(x_j)\| = \max |x_j|.$$

- $ightharpoonup c_0$ can be tiled by translates of its unit ball.
- ► Fonf, Lindenstrauss (1998). Can you tile a reflexive space by translates of a body?

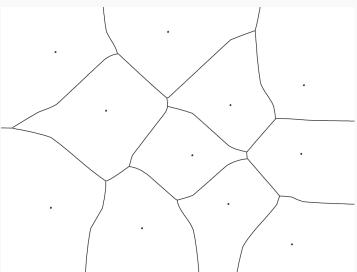
Theorem (j./w. De Bernardi and Somaglia, arXiv.2505.04267)

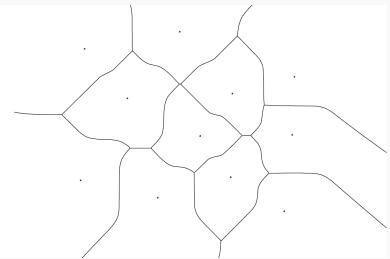
Yes. Actually, some Hilbert spaces.

Voronoi

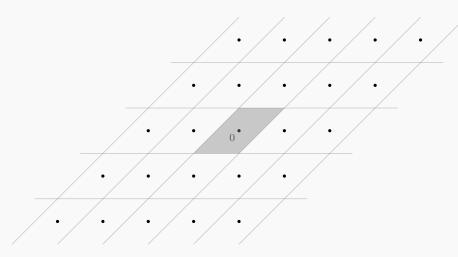


Voronoi





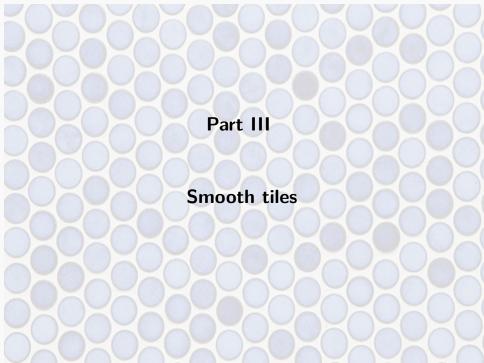
Voronoi



What could go wrong?

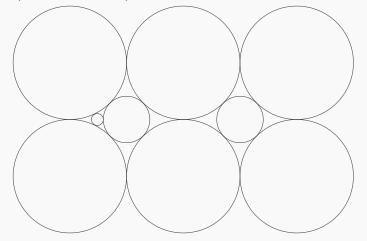
Voronoi cells in Hilbert spaces are convex.

- ▶ Why does every point belong to a cell?
 - Why is there always a closest restaurant?
 - ► In finite dimensions ~ compactness.
 - In infinite dimensions, overcoming this is the main issue.
 - → Measures of non-compactness.



Back to Flatland

- ► Which shapes can the tiles have?
- ► Is it possible to tile the plane with balls?



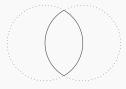
Back to Flatland

- ► Which shapes can the tiles have?
- Is it possible to tile the plane with balls?
- Does this work, any guesses?
- ► It doesn't.
- Exercise.
 - Hint: The most useful tool from Analysis 4, a.k.a. Baire theorem.

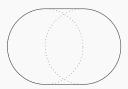
Smooth and rotund bodies

- ► Smooth = No corners;
- ► Rotund = No segments.

Not smooth, not rotund



Not smooth, rotund



Smooth, not rotund

Smooth, rotund

Can you get smooth tilings?

- Which shapes can the tiles have?
- Is it possible to tile the plane with balls?
- Does this work, any guesses?
- ► It doesn't.
- Exercise.
 - ► Hint: The most useful tool from Analysis 4, a.k.a. Baire theorem.

Thm. Klee, Maluta, Zanco (1986). No separable normed space has a tiling with rotund bodies.

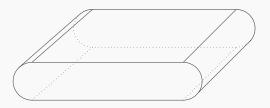
Theorem (j./w. De Bernardi and Somaglia, in progress)

Some (separable) inner product spaces have tilings by smooth bodies.

Lemma (Abbott, 1884)

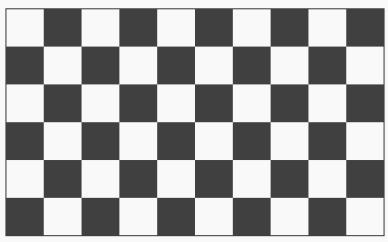
Lemma (Abbott, 1884)

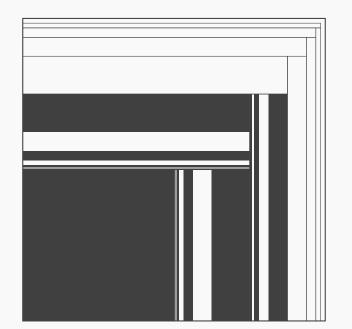
Yes, this is a smooth body (in 3 dimensions).

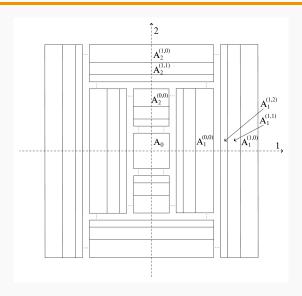


Lemma (Abbott, 1884)

There is a 3-dimensional smooth body that has a square as a face.







Something to take home

- ► Algorithm for infinitely many *Annals* papers.
- Keeping a list of your favourite restaurants is useful.
- ► Some Hilbert spaces admit lattice tilings.
 - Namely, tilings by translates of one body (and the set of translations is a group).
- Political pamphlets/book for kids can give good ideas too.
- Some (separable) inner product spaces admit tilings by smooth bodies.

Thank you for your attention!