

# Lattice tilings of Hilbert spaces

Tommaso Russo tommaso.russo.math@gmail.com

j./w. C.A. De Bernardi and J. Somaglia Lattice tilings of Hilbert spaces, arXiv:2505.04267

Functional and Metric Analysis and their Interactions May 26–30, 2025 Granada, Spain

## Discrete subgroups of Banach spaces

- **Rogers (1984).** Every infinite-dimensional Banach space contains a 1-separated and  $(3/2+\varepsilon)$ -dense subgroup.
  - $ightharpoonup \mathcal{D}$  is *r*-separated if  $||d h|| \ge r$  for  $d \ne h \in \mathcal{D}$ .
  - ▶  $\mathcal{D}$  is R-dense if for all  $x \in \mathcal{X}$  there is  $d \in \mathcal{D}$  with  $||x d|| \leq R$ .
- **Swanepoel (2009).** Can you get  $(1 + \varepsilon)$ -dense?
- **Dilworth, Odell, Schlumprecht, Zsák (2008).** Yes, if  $\mathcal{X}$  separable.
  - ► The following result is of interest in nonlinear functional analysis.
- I wonder whether separability is necessary (Doucha, by email).

### Theorem (De Bernardi, R., Somaglia)

Every infinite-dimensional Banach space  $\mathcal X$  contains a 1-separated and  $(1+\varepsilon)$ -dense subgroup. Further, it is generated by the elements of norm at most  $2+\varepsilon$ .

- ► Steprāns (1985). Discrete subgroups of normed spaces are free.
  - ▶ Uses Shelah's Singular Compactness theorem and Fodor's pressing-down lemma.
  - ▶ We have a proof without any logic (cit. Fabian).

## And tilings of Hilbert spaces



- ▶  $3/2 \sim 1$ . Was it really worth the effort?
- ▶ A simple constructive proof by induction, only using Riesz' lemma.

#### Theorem (De Bernardi, R., Somaglia)

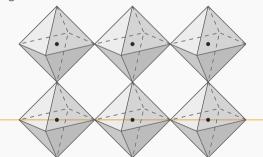
If  $\kappa^{\omega} = \kappa$ ,  $\ell_p(\kappa)$  contains a  $2^{1/p}$ -separated and 1-dense subgroup  $\mathcal{D}$ .

- Which has applications to the theory of tilings.
- ▶ The constant  $2^{1/p}$  is optimal.
- ightharpoonup Case p=2.
- ▶ The Voronoi cells generated by  $\mathcal{D}$  are convex and  $\mathcal{D}$ -invariant.
- $\blacktriangleright$  So, there is a symmetric, bounded convex body whose translates tile  $\ell_2(\kappa)$ .
- ▶ There exists a reflexive Banach space (isomorphic to  $\ell_2(\kappa)$ ) that admits a tiling by balls of radius 1.
  - And the centers form a group (i.e., the tiling is lattice).
- ► Fonf, Lindenstrauss (1998). Can a reflexive Banach space be tiled by translates of a bounded convex body?
  - Repeated in Guirao, Montesinos, Zizler (2016), Open problems...

## Tilings with diamonds



- ightharpoonup Case p=1.
- ▶ Klee (1981). A tiling of  $\ell_1(\kappa)$  with disjoint balls of radius 1.
- $\blacktriangleright$   $\ell_1(\kappa)$  admits a lattice tiling by balls of radius 1.
  - Lattice tilings with balls cannot be disjoint.
  - ▶ Each point belongs to at most two tiles and two tiles intersect at most in some vertex.



### Thank you for your attention!