

Tiling with infinitedimensional oranges

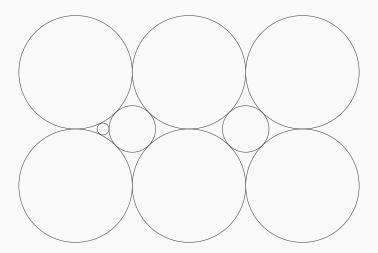
Tommaso Russo tommaso.russo.math@gmail.com

j./w. C.A. De Bernardi and J. Somaglia

Functional Analysis: Theory and applications February 19–22, 2025 Genoa, Italy

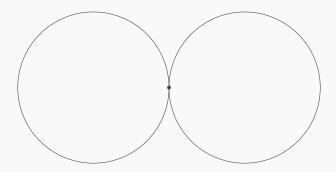
Can you tile the plane with balls?

Are there closed balls $(B_j)_{j=1}^{\infty}$ with disjoint interiors s.t. $\mathbb{R}^2 = \bigcup B_j$?



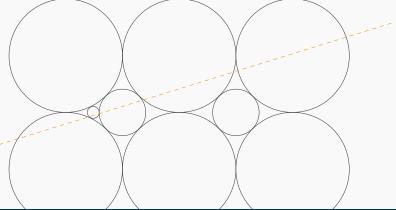
Or maybe not?

- ▶ Assume $(B_i)_{i \in I}$ is a tiling.
- ▶ Then *I* is countable $(int(B_i))$ are mutually disjoint open sets).
- ▶ $B_i \cap B_j = \{p_{ij}\}$ or empty.



Or Maybe not?

- ► Assume $(B_i)_{i \in I}$ is a tiling.
- ▶ Then *I* is countable ($int(B_i)$ are mutually disjoint open sets).
- ▶ $B_i \cap B_j = \{p_{ij}\}$ or empty.
- ▶ So there is a line L such that no p_{ij} belongs to L.



Or Maybe not?

- ► Assume $(B_i)_{i \in I}$ is a tiling.
- ▶ Then *I* is countable ($int(B_i)$) are mutually disjoint open sets).
- ▶ $B_i \cap B_j = \{p_{ij}\}$ or empty.
- ▶ So there is a line L such that no p_{ij} belongs to L.
- ▶ $(B_k \cap L)_{k=1}^{\infty}$ are **disjoint** closed intervals that cover L.
- ➤ Sierpinski (1918). If a continuum is covered by countably many disjoint closed sets, then only one is not empty.
 - ► Continuum ≡ compact, connected, Hausdorff.
- ► So, you can't tile the plane with (Euclidean) balls.
- **Sierpinski-baby version.** You can't cover \mathbb{R} by countably many disjoint compact intervals.

Baby-S

- Sierpinski-baby version. You can't cover ℝ by countably many disjoint compact intervals.
- Assume $I_k = [a_k, b_k]$ are disjoint intervals, $\mathbb{R} = \bigcup [a_k, b_k]$.
- $\triangleright \ \mathcal{B} := \{a_k, b_k\}_{k=1}^{\infty}.$
- $ightharpoonup \mathcal{B} \subseteq \mathcal{B}'$ (the set of accumulation points).

▶ $\mathcal{B}' \subseteq \mathcal{B}$ (if $x \notin \mathcal{B}$, there is k with $x \in (a_k, b_k)$).

- ▶ So $\mathcal{B} = \mathcal{B}'$ is perfect.
- ► Perfect sets aren't countable. ﴿

Is this a planar result?

- ▶ The tiling is countable $\leftarrow \mathbb{R}^2$ is separable.
- ▶ Balls intersect in just one point $\leftarrow \mathbb{R}^2$ is rotund.

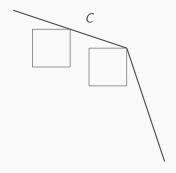
Thm. Klee, Maluta, Zanco (1986). No separable normed space has a tiling with rotund bodies.

- $ightharpoonup \ell_2$ doesn't have a tiling with balls.
- $ightharpoonup c_0$ (and ℓ_{∞}) have a tiling with balls.
- ► Klee, Tricot (1987). Separable smooth Banach spaces don't have tilings with balls.
- ▶ De Bernardi, Veselý (2017). LUR Banach spaces don't have tilings by balls.
 - Nor do Fréchet smooth Banach spaces.
- Problem. Can a rotund/smooth Banach space have a tiling with balls?
- ▶ Preiss (2010). ℓ_2 has a normal tiling (*i.e.*, inner and outer radii are equi-bounded).

A disjoint tiling from Badajoz

Klee's tiling

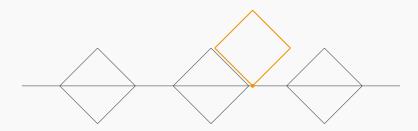
- ▶ Klee (1981). A tiling of $\ell_1(\mathbb{R})$ with disjoint balls of radius 1.
- ► The set of centers forms a **discrete** Chebyshev set (every point in the space has a unique point in *C* at minimal distance).
- ▶ **Problem.** Are Chebyshev sets in Hilbert spaces convex?
- $\blacktriangleright (\mathbb{R}^2, \|\cdot\|_{\infty}).$



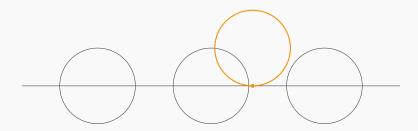
Klee's tiling

- ▶ Klee (1981). A tiling of $\ell_1(\mathbb{R})$ with disjoint balls of radius 1.
- ► The set of centers forms a **discrete** Chebyshev set (every point in the space has a unique point in *C* at minimal distance).
- ▶ **Problem.** Are Chebyshev sets in Hilbert spaces convex?
- $\blacktriangleright (\mathbb{R}^2, \|\cdot\|_{\infty}).$
- ▶ The set \mathcal{D} of centers is (2+)-separated and 1-dense.
 - ▶ If $d \neq h \in \mathcal{D}$, then ||d h|| > 2.
 - For all $x \in \mathcal{X}$ there is $d \in \mathcal{D}$ with $||x d|| \le 1$.
- ▶ In $\ell_p(\mathbb{R})$ a $(2^{1/p}+)$ -separated and 1-dense set.
- ▶ De Bernardi, Veselý (2017). A tiling of $\ell_1(\mathbb{R})$ with disjoint LUR (in particular, rotund) bodies.

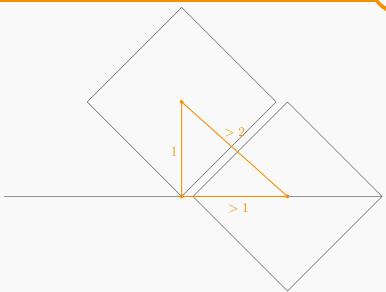
Klee's proof in one picture



Klee's proof in one picture



Klee's proof in one picture The same, just bigger



Nice pics, but how do you **prove** it?

- ▶ For a Banach space \mathcal{X} , $|\mathcal{X}| = \text{dens}(\mathcal{X})^{\omega}$.
- ▶ So, $|\ell_1(\mathbb{R})| = \mathfrak{c}$. Write $\ell_1(\mathbb{R}) = \{u_\alpha\}_{\alpha < \mathfrak{c}}$.
- ▶ By (long) induction. If $(B_{\alpha})_{\alpha < \gamma}$ already cover u_{γ} , \checkmark .
- ▶ If not, let c_{α} be the center of B_{α} .
 - Find a subspace that contains all c_{α} and u_{γ} .
 - ► There is $\tilde{\gamma}$ with $u_{\gamma}(\tilde{\gamma}) = 0$ and $c_{\alpha}(\tilde{\gamma}) = 0$.
- ightharpoonup Take $B_{\gamma}:=B(u_{\gamma}+e_{\tilde{\gamma}}).$
 - ▶ This ball contains u_{γ}
 - and touches that subspace only in one point.

A little algebraic drop

- ▶ Klee (1981). A (2+)-separated and 1-dense set \mathcal{D} in $\ell_1(\mathbb{R})$.
- ▶ This set is not an (additive) subgroup of $\ell_1(\mathbb{R})$.
- A tiling $\mathcal T$ is **group-generated** (or **lattice**) if there is a subgroup $\mathcal D$ of $\mathcal X$ such that

$$\mathcal{T} = \{d + B_{\mathcal{X}}\}_{d \in \mathcal{D}}.$$

▶ So, a tiling by balls of radius 1 with centers being a group.

Theorem (De Bernardi, R., Somaglia)

If $\mathcal X$ admits a group-generated tiling, $\operatorname{dens}(\mathcal X)$ -many tiles intersect $\mathcal B_{\mathcal X}$.

- Group-generated tilings are not disjoint.
- ▶ And in infinite dimensions they are not star-finite.
- ▶ Who cares? Please, wait for the next talk...

Thank you for your attention!