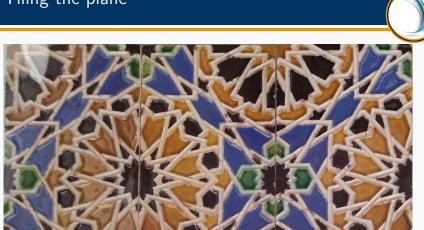


Can you tile the plane with closed balls?

Tommaso Russo tommaso.russo.math@gmail.com

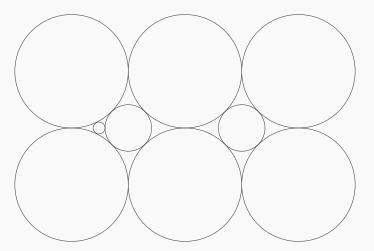
New perspectives in Banach spaces and Banach lattices Castro Urdiales, Spain July 8–12, 2024

Tiling the plane



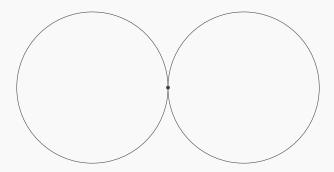
Can you tile the plane with balls?

lackbox Are there closed balls $(B_j)_{j=1}^\infty$ with disjoint interiors s.t. $\mathbb{R}^2 = \bigcup B_j$?



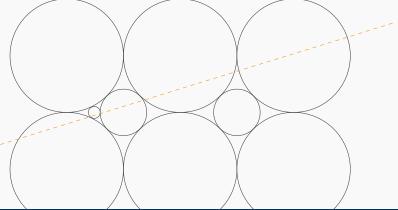
Or maybe not?

- ▶ Assume $(B_i)_{i \in I}$ is a tiling.
- ▶ Then *I* is countable ($int(B_i)$ are mutually disjoint open sets).
- ▶ $B_i \cap B_j = \{p_{ij}\}$ or empty.



Or Maybe not?

- ► Assume $(B_i)_{i \in I}$ is a tiling.
- ▶ Then *I* is countable ($int(B_i)$) are mutually disjoint open sets).
- ▶ $B_i \cap B_j = \{p_{ij}\}$ or empty.
- ▶ So there is a line L such that no p_{ij} belongs to L.



Or Maybe not?

- ► Assume $(B_i)_{i \in I}$ is a tiling.
- ▶ Then *I* is countable ($int(B_i)$) are mutually disjoint open sets).
- ▶ $B_i \cap B_j = \{p_{ij}\}$ or empty.
- ▶ So there is a line L such that no p_{ij} belongs to L.
- ▶ $(B_k \cap L)_{k=1}^{\infty}$ are **disjoint** closed intervals that cover L.
- ► Sierpinski (1918). If a continuum is covered by countably many disjoint closed sets, then only one is not empty.
 - Continuum ≡ compact, connected, Hausdorff.
- ► So, you can't tile the plane with (Euclidean) balls.
- ▶ I guess we see how to tile it with $\|\cdot\|_{\infty}$ balls.
- **Sierpinski-baby version.** You can't cover \mathbb{R} by countably many disjoint compact intervals.

Baby-S

- Sierpinski-baby version. You can't cover ℝ by countably many disjoint compact intervals.
- ▶ Assume $I_k = [a_k, b_k]$ are disjoint intervals, $\mathbb{R} = \bigcup [a_k, b_k]$.
- $\triangleright \ \mathcal{B} := \{a_k, b_k\}_{k=1}^{\infty}.$
- $ightharpoonup \mathcal{B} \subseteq \mathcal{B}'$ (the set of accumulation points).

▶ $\mathcal{B}' \subseteq \mathcal{B}$ (if $x \notin \mathcal{B}$, there is k with $x \in (a_k, b_k)$).

- ▶ So $\mathcal{B} = \mathcal{B}'$ is perfect.
- ► Perfect sets aren't countable. ﴿

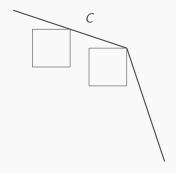
Is this a planar result?

- ▶ The tiling is countable $\leftarrow \mathbb{R}^2$ is separable.
- ▶ Balls intersect in just one point $\leftarrow \mathbb{R}^2$ is strictly convex.
- Thm. No separable strictly convex normed space has a tiling with balls.
 - ▶ Did we actually use balls?
- Thm. No separable normed space has a tiling with strictly convex bodies.
 - $ightharpoonup c_0$ has a tiling with balls.
 - ► What happens without "separable"?
 - ▶ No countable tiling can have disjoint tiles.
 - Uncountable ones?
 - ► Can we have "small" intersections?

A disjoint tiling from Badajoz

Klee's tiling

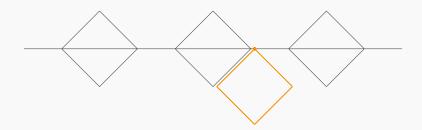
- ▶ Klee (1981). A tiling of $\ell_1(\mathbb{R})$ with disjoint balls of radius 1.
- ► The set of centers forms a **discrete** Chebyshev set (every point in the space has a unique point in *C* at minimal distance).
- ▶ **Problem.** Are Chebyshev sets in Hilbert spaces convex?
- $\blacktriangleright (\mathbb{R}^2, \|\cdot\|_{\infty}).$



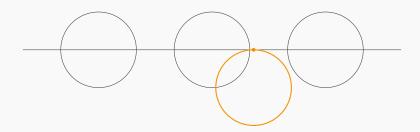
Klee's tiling

- ▶ Klee (1981). A tiling of $\ell_1(\mathbb{R})$ with disjoint balls of radius 1.
- ► The set of centers forms a **discrete** Chebyshev set (every point in the space has a unique point in *C* at minimal distance).
- ▶ **Problem.** Are Chebyshev sets in Hilbert spaces convex?
- $\blacktriangleright (\mathbb{R}^2, \|\cdot\|_{\infty}).$
- ▶ De Bernardi, Veselý (2017). A tiling of $\ell_1(\mathbb{R})$ with disjoint LUR (in particular, strictly convex) bodies.
 - So, in nonseparable spaces there are (even disjoint!!) tilings by strictly convex bodies.
- ▶ De Bernardi, Veselý (2017). LUR Banach spaces don't have tilings by balls.
 - So, the above LUR bodies can't be balls.

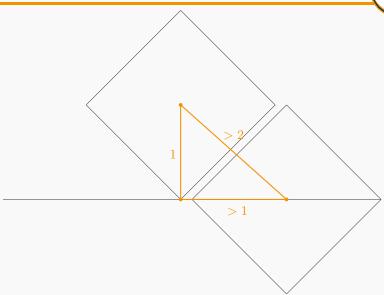
Klee's proof in one picture



Klee's proof in one picture

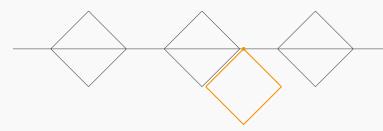


Klee's proof in one picture The same, just bigger



How do you actually use that?

- ▶ So, $|\ell_1(\mathbb{R})| = \mathfrak{c}$. Write $\ell_1(\mathbb{R}) = \{u_\alpha\}_{\alpha < \mathfrak{c}}$.
- ▶ By (long) induction. If $(B_{\alpha})_{\alpha < \gamma}$ already cover u_{γ} , \checkmark .
- ▶ If not, let c_{α} be the center of B_{α} .
 - Find a subspace that contains all c_{α} and u_{γ} .
 - ► There is $\tilde{\gamma}$ with $u_{\gamma}(\tilde{\gamma}) = 0$ and $c_{\alpha}(\tilde{\gamma}) = 0$.
- ightharpoonup Take $B_{\gamma}:=B(u_{\gamma}+e_{\tilde{\gamma}}).$
 - ► This ball contains u_{γ}
 - and touches that subspace only in one point.



I have no idea if I will have time

- ▶ Marchese, Zanco (2012). Every Banach space has a tiling by convex bodies such that every tile intersects at most two other tiles.
- ► Locally finite tiling ≡ every point has a neighbourhood that intersects finitely many tiles.
- ► Fonf (1990). A separable Banach space has a locally finite tiling if and only if it is isomorphically polyhedral.
- ▶ Preiss (2010). ℓ_2 has a tiling with equi-bounded outer and inner radii.
- ▶ Deville, Mar Jimenez (2021). The same in every separable Banach space, but with starshaped tiles.
- ▶ A shared Overleaf file with De Bernardi and Somaglia.
- Maybe next year?

Thank you for your attention!