Smoothness in long sequence spaces

j/w/Sheldon Dantas and Petr Hájek

Tommaso Russo tommaso.russo.math@gmail.com

Department of Mathematics University of Innsbruck 50th Winter School in Abstract Analysis Sněžné Jan 07 - 14, 2023

What and Why

Prerequisites:

- Banach space & norm;
- ▶ Dense subspace;
- ► Derivative (in the Fréchet sense).

So far so good.

Question. Let \mathcal{X} be a Banach space. Is there a dense subspace \mathcal{Y} of \mathcal{X} with a C^k -smooth norm?

Note. We always mean C^k -smooth on $\mathcal{Y} \setminus \{0\}$ (equiv. on $S_{\mathcal{Y}}$).

Separable Banach spaces

- ▶ \mathcal{X} has a C^1 -smooth norm $\iff \mathcal{X}^*$ is separable.
 - ▶ No closed, inf-dim subspace of ℓ_1 has a C^1 -smooth norm.
- **Vanderwerff (1992).** \mathcal{X} has a dense subspace with a C^1 -smooth norm.
- If $p \notin \mathbb{N}$, the ℓ_p norm is $C^{\lfloor p \rfloor}$ -smooth, but not $C^{\lfloor p \rfloor + 1}$. And ℓ_p has no $C^{\lfloor p \rfloor + 1}$ -smooth norm!
- ▶ **Deville (1989).** If \mathcal{X} has a C^{∞} -smooth norm, either it contains c_0 , or it is super-reflexive, with exact cotype 2k, and it contains ℓ_{2k} .
- ▶ **Hájek (1995).** \mathcal{X} has a dense subspace with a C^{∞} -smooth norm.
- ▶ Dantas, Hájek, R. (JMAA'20). X has a dense subspace with an analytic norm.

Important. All the above dense subspaces are the linear span of an M-basis.

We don't like separable spaces anymore

- ▶ Benyamini, Lindenstrauss, Geometric Nonlinear Functional Analysis
 - Does the existence of a smooth norm on some 'large' subset of a separable Banach space \(\mathcal{X} \) imply that \(\mathcal{X}^* \) is separable?
 - Is there a norm on ℓ_1 that is differentiable outside a countable union of closed hyperplanes?
- ▶ **Guirao, Montesinos, Zizler**, *Open problems...*, Problem 149: Does the space of finitely supported vectors in $\ell_1(\Gamma)$ have a C^1 -smooth norm (when Γ is uncountable)?

Some more recent results.

- ▶ Dantas, Hájek, R. (JMAA'20). ℓ_{∞} and $\ell_{1}(c)$ have a dense subspace with an analytic norm.
- ▶ Dantas, Hájek, R. (JMAA'20). Every \mathcal{X} with a (long) uncond. basis has a dense subspace with a C^{∞} -smooth norm.
- ▶ Dantas, Hájek, R. (IMRN'22+). Every \mathcal{X} with a fundamental biorthogonal system ... dense ... C^{∞} -smooth.

Different subspaces?

(Still) Important. All the above dense subspaces are the linear span of some biorthogonal system.

▶ With the exception of ℓ_{∞} .

Main open problem. Is there a Banach space \mathcal{X} such that no dense subspace has a C^k -smooth norm?

- ▶ Pełczyński (1957) Dantas, Hájek, R. (JMAA'20). No dense subspace of $c_0(\omega_1)$ has an analytic norm.
- Natural strategy: "diagonalise" different dense subspaces.
- ▶ Every dense subspace of $\ell_1(\Gamma)$ contains an isomorphic copy of the linear span of the canonical basis.

Hájek, R. (JFA'20). Let \mathcal{X} be a WLD Banach space with dens $\mathcal{X} \leq \mathfrak{c}$. Then there are two dense subspaces \mathcal{Y} and \mathcal{Z} of \mathcal{X} such that no non-separable subspace of \mathcal{Y} is isomorphic to a subspace of \mathcal{Z} .

Question. Uncountably many such subspaces?

Where are the long sequence spaces?

Theorem (Dantas, Hájek, R., arXiv:2205.11282)

Let $1 \le p < \infty$ and $r \in (0, p)$. The dense subspace

$$\mathcal{Y}_p \coloneqq \left\{ y \in \ell_p(\Gamma) \colon \|y\|_q < \infty \text{ for some } q \in (0,p) \right\} = \bigcup_{0 < q < p} \ell_q(\Gamma)$$

of $\ell_p(\Gamma)$ has a C^{∞} -smooth norm.

- $ightharpoonup \ell_p$ has a dense subspace of dimension continuum with a C^∞ -smooth norm.
- ▶ If p > 1 such subspace contains an operator range.
 - ► Hence, it is not the linear span of an M-basis.
- ▶ Rosenthal (1970). Every non-separable operator range in $\ell_1(\Gamma)$ contains $\ell_1(\omega_1)$.
- ▶ Can a dense hyperplane in ℓ_1 have a smooth norm?
- \blacktriangleright Does the space of simple functions in L_1 have a smooth norm?

References

- S. Dantas, P. Hájek, and T. Russo, Smooth norms in dense subspaces of Banach spaces, *J. Math. Anal. Appl.* **487** (2020), 123963.
- P. Hájek and T. Russo, On densely isomorphic normed spaces, *J. Funct. Anal.* **279** (2020), 108667.
- S. Dantas, P. Hájek, and T. Russo, Smooth and polyhedral norms via fundamental biorthogonal systems, *Int. Math. Res. Not. IMRN* (online first), rnac211.
- S. Dantas, P. Hájek, and T. Russo, Smooth norms in dense subspaces of $\ell_p(\Gamma)$ and operator ranges, arXiv:2205.11282.

Thank you for your attention!