Vector spaces of sequences with many accumulation points

j/w Paolo Leonetti and Jacopo Somaglia (LRS \equiv Leonetti, R., and Somaglia)

Tommaso Russo

tommaso.russo.math@gmail.com Department of Mathematics University of Innsbruck BWB 2022 São Paulo Dec 05 - 09, 2022

What's this talk about?

$$L(\kappa) := \{x \in \ell_{\infty} : |\{\text{accumulation points of } x\}| = \kappa\}.$$

- ▶ Does $L(\omega)$ or $L(\mathfrak{c})$ contain an infinite-dim vector space?
- ▶ A closed/dense one?
- ▶ What about $\bigcup_{2 \le n < \omega} L(n)$?
- ▶ $\bigcup_{1 \leq n < \omega} L(n)$ is a dense vector subspace of ℓ_{∞} .

Monsters, Inc.

- ▶ Bolzano (1834) Weierstraß (1872). There is a continuous nowhere differentiable function $f: \mathbb{R} \to \mathbb{R}$.
- ▶ Banach (1931). The set of continuous nowhere differentiable functions is residual in C([0,1]).
- ▶ **Gurariy (1966).** There is an infinite-dim linear subspace Y of C([0,1]) such that every $f \in Y$, $f \neq 0$ is nowhere differentiable.
 - ▶ Fonf-Gurariy-Kadets (1999). Such Y can be a closed subspace.
 - **Bayart–Quarta (2007).** Y can be dense in C([0, 1]).
- ▶ **Gurariy (1966).** If Y is a closed subspace of C([0,1]) and every element of Y is differentiable, then Y is finite-dimensional.
- Jarnicki-Pflug (2015), Continuous Nowhere Differentiable Functions. The Monsters of Analysis.

Lineability and friends

A subset M of a normed space X is

- ▶ **lineable**, if $M \cup \{0\}$ contains an infinite-dim linear subspace.
- ▶ **spaceable**, if $M \cup \{0\}$ contains an infinite-dim closed subspace.
- ▶ densely lineable in X, if $M \cup \{0\}$ contains a linear subspace dense in X.
- Aron-Bernal-Pellegrino-Seoane (2016), Lineability.
 - ▶ Plichko–Zagorodnyuk (1998). If X is an infinite-dim complex Banach space and $P: X \to \mathbb{C}$ is a polynomial with P(0) = 0, then $P^{-1}(0)$ is spaceable.
 - Avilés–Todorčević (2007), Aron–Hájek (2006), ...
 - Avilés-Martínez-Rueda-Tradacete. For every infinite metric space, the set of strongly norm-attaining Lipschitz maps on M contains c₀ isomorphically.
 - Kadets–Roldán (2022), Dantas–Medina–Quilis–Roldán, ...

Where did we start?

▶ Papathanasiou (2022). $\ell_{\infty} \setminus c_0$ is densely lineable in ℓ_{∞} .

Let Y be a linear subspace of X. Is $X \setminus Y$ lineable, spaceable, or densely lineable?

- \blacktriangleright $X \setminus Y$ is lineable iff X/Y is infinite-dim.
- ▶ Bernal–Ordóñez (2014). For separable X, iff X \ Y is densely lineable in X.

Lemma (Bernal-Ordóñez, 2014 — LRS)

Let X be a normed space with $\kappa = \text{dens}(X)$ and Y be a linear subspace. Then the following are equivalent:

- (i) $X \setminus Y$ is densely lineable in X,
- (ii) $\kappa \leq \dim(X/Y)$.

Proof of (ii) \Rightarrow (i)

- ▶ Let $\{B_{\alpha}\}_{{\alpha} \in \kappa}$, $B_{\alpha} \neq \emptyset$ be a basis for the topology of X.
- ▶ By transfinite induction take vectors $\{x_{\alpha}\}_{{\alpha} \in \kappa}$ such that

$$x_{\alpha} \in B_{\alpha} \setminus \operatorname{span}(Y \cup \{x_{\gamma}\}_{\gamma \in \alpha}) \text{ for all } \alpha < \kappa.$$

- ▶ By (i i), span($Y \cup \{x_{\gamma}\}_{{\gamma} \in \alpha}$) $\neq X$ for all $\alpha < \kappa$.
- ▶ $V := \operatorname{span}\{x_{\alpha}\}_{{\alpha} \in \kappa}$ is dense in X and $V \cap Y = \{0\}$.
- **Papathanasiou (2022).** $L(\mathfrak{c})$ is densely lineable in ℓ_{∞} .
- ▶ **Notation.** For $x \in \ell_{\infty}$ and a cardinal number κ ,

$$L_x \coloneqq \{ \eta \in \mathbb{R} : \eta \text{ is an accumulation point of } x \}$$

$$L(\kappa) \coloneqq \{ x \in \ell_{\infty} : |L_x| = \kappa \}.$$

- ▶ LRS. $L(\omega)$ and $\bigcup_{2 \le n \le \omega} L(n)$ are densely lineable in ℓ_{∞} .
- ▶ Notice that $L(\kappa) = \emptyset$ for uncountable $\kappa < \mathfrak{c}$.

Spaceability

Wilansky (1975). If Y is a <u>closed</u> subspace of X, $X \setminus Y$ is spaceable iff X/Y is infinite-dim.

- ightharpoonup Let (y_n) be a basic sequence in Y.
- ▶ Let $q: X \to X/Y$ be the quotient map and take (x_n) in X such that $(q(x_n))$ is a basic sequence in X/Y.
- ▶ For $\varepsilon_n > 0$ small, $(y_n + \varepsilon_n x_n)$ is a basic sequence equiv to (y_n) .
- ▶ Take $V := \overline{\operatorname{span}}\{y_n + \varepsilon_n x_n\}$. Then $V \cap Y = \{0\}$ (easy).

However, we can't apply this to study spaceability of $L(\mathfrak{c})$, $L(\omega)$, and $\bigcup_{2\leqslant n<\omega} L(n)$.

Theorem (LRS)

 $L(\mathfrak{c})$ and $L(\omega)$ are spaceable.

More precisely, $\mathrm{L}(\omega) \cup \{0\}$ contains c_0 isometrically and $\mathrm{L}(\mathfrak{c}) \cup \{0\}$ contains ℓ_∞ isometrically.

Finitely many accumulation points

Theorem (LRS)

 $\bigcup_{2 \leqslant n < \omega} L(n)$ is not spaceable.

Among others, in the proof we use the following:

- Let $n \ge 2$. Then $L(n) \cup \cdots \cup L(n+d)$ is (d+1)-lineable, but not (d+2)-lineable.
- ▶ More generally, we could study the lineability of $\bigcup_{n \in A} L(n)$, where $A \subset \omega$ with min $A \geqslant 2$.
- ▶ If A is an interval, we have a complete result, but for 'sparse' A?

Theorem (LRS)

- ▶ $\bigcup_{2 \le n < \omega} L(n!)$ and $\bigcup_{1 \le n < \omega} L(3^n)$ are not 2-lineable.
- ► $\bigcup_{1 \le n \le \omega} L(2n+1)$ is \mathfrak{c} -lineable.

Further results?

- We also study the same problem in \mathbb{R}^{ω} (with pointwise topology).
 - ▶ $L(\omega)$ is not spaceable in \mathbb{R}^{ω} .
- We collect several problems for further research.
 - ▶ Does $L(\omega)$ contain a closed non-separable subspace?
 - ► Is $\bigcup_{1 \le n \le n}$ L(2*n*) lineable?
 - ▶ Is $\bigcup_{1 \le n \le \omega} L(2n+1)$ densely lineable in ℓ_{∞} ?

P. Leonetti, T. Russo, and J. Somaglia, *Dense lineability and spaceability in certain subsets of* ℓ_{∞} , arXiv: 2203.08662.

Thank you for your attention!