Smoothness in normed spaces

Tommaso Russo tommaso.russo.math@gmail.com (j/w Sheldon Dantas and Petr Hájek)

Workshop on Banach spaces and Banach lattices II ICMAT (Madrid), 9-13 May 2022

Smoothness 101

- Renorming theory = Find an equivalent norm on *X* with the strongest possible form of a certain property.
- Let $\mathcal{U} \subseteq X$ be open. $f \colon \mathcal{U} \to \mathcal{Y}$ is differentiable at $x \in \mathcal{U}$ if there is $f'(x) \in \mathcal{B}(X, \mathcal{Y})$ such that

$$\lim_{h\to 0}\frac{f(x+h)-f(x)-\langle f'(x),h\rangle}{\|h\|}=0.$$

- C^k -smoothness, rules of calculus, Implicit Function theorem, ...
- If $p \notin \mathbb{N}$, the ℓ_p norm is $C^{\lfloor p \rfloor}$ -smooth, but not $C^{\lfloor p \rfloor + 1}$. And ℓ_p has no $C^{\lfloor p \rfloor + 1}$ -smooth norm!
- Smooth references:
 - Deville, Godefroy, Zizler, Smoothness and Renormings in Banach Spaces.

Hájek, Johanis, Smooth analysis in Banach spaces.

Smoothness and structure

- If a separable Banach space X has a C^1 -smooth norm, then X is Asplund (i.e., X^* is separable).
 - No closed, inf-dim subspace of ℓ_1 has a C^1 -smooth norm.
- Meshkov (1978). If X and X^* admit a C^2 -smooth norm, then X is isomorphic to a Hilbert space.
- Fabian, Whitfield, Zizler (1983). If X admits a C^2 -smooth norm, either it contains c_0 , or it is super-reflexive with type 2.
- **Deville (1989).** If X has a C^{∞} -smooth norm, either it contains c_0 , or it is super-reflexive, with exact cotype 2k, and it contains ℓ_{2k} .
 - Can the first case actually happen? The c_0 norm doesn't seem smooth...
- Pechanec, Whitfield, Zizler (1981) Fabian, Zizler (1997). If X has a LFC norm, then it is c_0 -saturated and Asplund.

All these proofs require X to be complete (variational principles).

Normed spaces

- Let X be a normed space with a countable algebraic basis.
 - Vanderwerff (1992). X has a C^1 -smooth norm.
 - **Hájek** (1995). X has a C^{∞} -smooth norm.
 - Deville, Fonf, Hájek (1998). X has an analytic norm.
- Guirao, Montesinos, Zizler, Open problems..., Problem 149: Does the space of finitely supported vectors in $\ell_1(\Gamma)$ have a C^1 -smooth norm (when Γ is uncountable)?
- Dantas, Hájek, R. (JMAA'20). Given a Banach space X, is there a dense subspace of X that admits a C^k -smooth norm?
- Benyamini, Lindenstrauss, Geometric Nonlinear Functional Analysis
 - Does the existence of a smooth norm on some 'large' subset of a Banach space X imply that X is Asplund?
 - Is there a norm on ℓ₁ that is differentiable outside a countable union of closed hyperplanes?

Strong maxima A.k.a. The secret of smoothness unveiled

- $c_0(\Gamma)$ has a C^{∞} -smooth norm.
- Normed spaces of countable dim have a C^{∞} -smooth norm.

Theorem (Dantas, Hájek, R., JMAA'20)

$$\ell^F_{\infty} := span\{1_A : A \subseteq \mathbb{N}\} \ has \ a \ C^{\infty}$$
-smooth norm.

• Take a sequence $\varepsilon_j \setminus 0$ and define $T: \ell_{\infty}^F \to \ell_{\infty}$ by

$$(x(j))_{j=1}^{\infty} \mapsto ((1 + \varepsilon_j) \cdot x(j))_{j=1}^{\infty}.$$

- Look at the picture.
- Take $X \subseteq \ell_{\infty}$ of countable dimension, $X = \text{span}\{e_j\}_{j=1}^{\infty}$.
- Take $\{v_j\}_{i=1}^{\infty} \subseteq \ell_{\infty}^F$ 'very close' to e_j s.
- X is isomorphic to span $\{v_j\}_{j=1}^{\infty}$ (small perturbation lemma).
 - Well, I'm cheating a bit, $\{e_j\}_{j=1}^{\infty}$ has to be an M-basis.

Time flies

Fundamental biorthogonal systems

Theorem (Dantas, Hájek, R., JMAA'20)

Let X be a Banach space with long unconditional basis and let \mathcal{Y} be the linear span of such basis. Then, \mathcal{Y} has a C^{∞} -smooth norm.

Theorem (Dantas, Hájek, R., arXiv:2201.03379)

Let X be a Banach space with a fundamental biorthogonal system $\{e_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$. Consider $\mathcal{Y} := span\{e_{\alpha}\}_{\alpha \in \Gamma}$. Then:

- (i) *Y* admits a polyhedral and LFC norm.
- (ii) \mathcal{Y} admits a C^{∞} -smooth and LFC norm.
- (iii) \mathcal{Y} admits a C^1 -smooth LUR norm.

Moreover, such norms are dense.

The norm $\|\cdot\|$ is *LFC* on X if for each $x \in \mathcal{S}_X$ there exist an open nhood \mathcal{U} of x, functionals $\varphi_1, \ldots, \varphi_k \in X^*$, and $G \colon \mathbb{R}^k \to \mathbb{R}$ such that

$$||y|| = G(\langle \varphi_1, y \rangle, \dots, \langle \varphi_k, y \rangle)$$
 for every $y \in \mathcal{U}$.

Can we aim for more?

- Dantas, Hájek, R. (JMAA'20). No dense subspace of $c_0(\omega_1)$ admits an analytic norm.
- **Fabian, Whitfield, Zizler (1983).** Let \mathcal{Y} be a normed space with a $C_{\text{loc}}^{1,+}$ -smooth (*e.g.*, C^2 -smooth) LUR norm $\|\cdot\|$. Then the completion of \mathcal{Y} is super-reflexive.
- What about dense subspaces that are not the span of a fundamental biorthogonal system?
 - **Hájek, R., JFA'20.** Different dense subspaces of a Banach space can be extremely different.
 - See Slide 8 for more about this.
- Main problem. Is there a Banach space X such that no dense subspace of X has a C^k -smooth norm?

How general is the result? Enter at your own risk

 $\{e_{\alpha}; \varphi_{\alpha}\}_{{\alpha} \in \Gamma} \subseteq X \times X^*$ is a fundamental biorthogonal system for X if

- $\langle \varphi_{\beta}, e_{\alpha} \rangle = \delta_{\alpha,\beta}$,
- span $\{e_{\alpha}\}_{{\alpha}\in\Gamma}$ is dense in X.

Which Banach spaces admit a fundamental biorthogonal system?

- Plichko spaces (e.g., WCG, reflexive, $c_0(\Gamma)$, $L_1(\mu)$ for a finite measure, $C(\mathcal{K})$ for \mathcal{K} Valdivia),
- Kalenda (2020). Every space with projectional skeleton (duals of Asplund spaces, preduals of Von Neumann algebras, preduals of JBW*-triples),
- $\ell_{\infty}(\Gamma)$, $\ell_{\infty}^{c}(\Lambda)$ when $|\Lambda| \leq \mathfrak{c}$,
- $C(\mathcal{T})$, when \mathcal{T} is a tree,
- Davis, Johnson (1973). X with dens $X = \kappa$ that has a WCG quotient of density κ ,
- Todorčević (2006). All Banach spaces of density ω_1 , under MM.

Other dense subspaces

Theorem (Dantas, Hájek, R., in preparation)

Let $1 \le p < \infty$ and $r \in (0, p)$. The dense subspace $\ell_r(\Gamma)$ of $\ell_p(\Gamma)$ has a C^{∞} -smooth norm.

- ℓ_p has a dense subspace of dimension continuum with a C^{∞} -smooth norm.
- If p > 1 such subspace is an operator range.
- Rosenthal (1970). Every non-separable operator range in $\ell_1(\Gamma)$ contains $\ell_1(\omega_1)$.
- Let X be a separable Banach space. Does it have a dense subspace of dimension continuum with a C^{∞} -smooth norm?
- Can a dense hyperplane in ℓ_1 have a smooth norm?
- Does the space of simple functions in L_1 have a smooth norm?

References

- S. Dantas, P. Hájek, and T. Russo, Smooth norms in dense subspaces of Banach spaces, J. Math. Anal. Appl. 487 (2020), 123963.
- P. Hájek and T. Russo, On densely isomorphic normed spaces, J. Funct. Anal. 279 (2020), 108667.
- S. Dantas, P. Hájek, and T. Russo, Smooth and polyhedral norms via fundamental biorthogonal systems, arXiv:2201.03379.
- S. Dantas, P. Hájek, and T. Russo, Smooth norms in dense subspaces of $\ell_p(\Gamma)$ and operator ranges, in preparation.

Thank you for your attention!