Smooth norms and biorthogonal systems

(j/w/Sheldon Dantas and Petr Hájek)

Tommaso Russo tommaso.russo.math@gmail.com Institute of Mathematics

Institute of Mathematics Czech Academy of Sciences Functional Analysis in Lille Jun 27 - Jul 1, 2022

Thank you, Gilles

- Septièmes Journées Besançon-Neuchâtel, Besançon, Jun '17.
- [DGZ] Deville, Godefroy, Zizler, Smoothness and Renorming in Banach spaces.
 - ► Conferences: Marseille, Birmingham, Prague, Svratka, Métabief.
 - Many online talks.
 - ▶ Three papers acknowledge Gilles for suggestions.
 - Two papers (Hájek, R. (MJOM'22) and Hájek, R., Somaglia, Todorčević (JAIM'21)) originate from his questions.
 - Recommendation letters for my PostDoc applications.

Thanks Gilles for your passion for Mathematics, for sharing your knowledge with young researchers, suggesting us new problems, helping with applications, ...

One-two combo

- ▶ **Main problem.** Given a Banach space \mathcal{X} , is there a dense subspace of \mathcal{X} that admits a C^k -smooth norm?
- ▶ The main result. Yes, a C^{∞} -smooth norm, if \mathcal{X} has a fundamental biorthogonal system.

Who cares? / Motivation / History / ...

- If a separable Banach space \mathcal{X} has a C^1 -smooth norm, then \mathcal{X} is Asplund (*i.e.*, \mathcal{X}^* is separable);
- ▶ Meshkov (1978). If \mathcal{X} and \mathcal{X}^* admit a C^2 -smooth norm, then \mathcal{X} is isomorphic to a Hilbert space;
- ▶ **Deville (1989).** If \mathcal{X} has a C^{∞} -smooth norm, either it contains c_0 , or it is super-reflexive, with type 2, exact cotype 2k, and it contains ℓ_{2k} .

All these results require ${\cal X}$ to be complete (variational principles).

Normed spaces

- ▶ Let X be a normed space with a countable algebraic basis.
 - ▶ Vanderwerff (1992). \mathcal{X} has a C^1 -smooth norm.
 - ▶ Hájek (1995). \mathcal{X} has a \mathbb{C}^{∞} -smooth norm.
 - ▶ Dantas, Hájek, R. (JMAA'20). X has an analytic norm.
- ▶ **Guirao, Montesinos, Zizler**, *Open problems...*, Problem 149: Does the space of finitely supported vectors in $\ell_1(\Gamma)$ have a C^1 -smooth norm (when Γ is uncountable)?
- **Dantas, Hájek, R. (JMAA'20).** Given a Banach space \mathcal{X} , is there a dense subspace of \mathcal{X} that admits a C^k -smooth norm?
- ▶ Benyamini, Lindenstrauss, Geometric Nonlinear Functional Analysis
 - Does the existence of a smooth norm on some 'large' subset of a Banach space X imply that X is Asplund?
 - ▶ Is there a norm on ℓ_1 that is differentiable outside a countable union of closed hyperplanes?

A couple of previous results

Theorem (Dantas, Hájek, R., JMAA'20)

 $\ell_{\infty}^{F} \coloneqq \operatorname{span}\{1_{A} \colon A \subseteq \mathbb{N}\}$ has an analytic norm. Consequences:

- $ightharpoonup \ell_{\infty}$ admits a dense subspace with an analytic norm;
- Every normed space with a countable algebraic basis admits an analytic norm (and analytic norms are dense);
- ▶ The space of finitely supported vectors in $\ell_1(c)$ admits an analytic norm.

Theorem (Dantas, Hájek, R., JMAA'20)

Let $\mathcal X$ be a Banach space with long unconditional Schauder basis and let $\mathcal Y$ be the linear span of such basis. Then, $\mathcal Y$ admits a C^∞ -smooth norm.

The main result, now for real

Theorem (Dantas, Hájek, R., arXiv:2201.03379)

Let $\mathcal X$ be a Banach space with a fundamental biorthogonal system $\{e_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$. Consider $\mathcal Y \coloneqq \operatorname{span}\{e_{\alpha}\}_{\alpha \in \Gamma}$. Then:

- (i) \mathcal{Y} admits a polyhedral and LFC norm,
- (ii) \mathcal{Y} admits a C^{∞} -smooth and LFC norm,
- (iii) \mathcal{Y} admits a C^{∞} -smooth and LFC bump,
- (iv) $\mathcal Y$ admits locally finite, σ -uniformly discrete C^{∞} -smooth and LFC partitions of unity,
- (v) \mathcal{Y} admits a C^1 -smooth LUR norm.

Moreover, norms as in (i), (ii), and (v) are dense.

The norm $\|\cdot\|$ is LFC on $\mathcal X$ if for each $x\in\mathcal S_{\mathcal X}$ there exist an open nhood $\mathcal U$ of x, functionals $\varphi_1,\dots,\varphi_k\in\mathcal X^*$, and $G\colon\mathbb R^k\to\mathbb R$ such that

$$||y|| = G(\langle \varphi_1, y \rangle, \dots, \langle \varphi_k, y \rangle)$$
 for every $y \in \mathcal{U}$.

Can we aim for more?

- ▶ Pełczyński (1957) Dantas, Hájek, R. (JMAA'20). No dense subspace of $c_0(\omega_1)$ admits an analytic norm.
- ▶ **Fabian, Whitfield, Zizler (1983).** Let \mathcal{Y} be a normed space with a $C_{\text{loc}}^{1,+}$ -smooth (e.g., C^2 -smooth) LUR norm $\|\cdot\|$. Then the completion of \mathcal{Y} is super-reflexive.
- What about dense subspaces that are not the span of a fundamental biorthogonal system?
 - Hájek, R., JFA'20. Distinct dense subspaces of a Banach space can be extremely different.
- ▶ **Main problem.** Is there a Banach space \mathcal{X} such that no dense subspace of \mathcal{X} has a C^k -smooth norm?

How general is the result?

- $\{e_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma} \subseteq \mathcal{X} \times \mathcal{X}^*$ is a fundamental biorthogonal system for \mathcal{X} if
 - $\blacktriangleright \langle \varphi_{\beta}, \mathbf{e}_{\alpha} \rangle = \delta_{\alpha,\beta},$
 - ▶ span{ e_{α} } $_{\alpha \in \Gamma}$ is dense in \mathcal{X} .

Which Banach spaces admit a fundamental biorthogonal system?

- ▶ Plichko spaces (*e.g.*, WCG, reflexive, $c_0(\Gamma)$, $L_1(\mu)$ for any measure, C(K) for K Valdivia or an abelian group),
- ► Kalenda (2020). Every space with projectional skeleton (duals of Asplund spaces, preduals of Von Neumann algebras, preduals of JBW*-triples),
- \blacktriangleright $\ell_{\infty}(\Gamma)$, $\ell_{\infty}^{c}(\Lambda)$ when $|\Lambda| \leqslant \mathfrak{c}$,
- \triangleright C(T), when T is a tree,
- ▶ **Todorčević (2006).** All Banach spaces of density ω_1 , under MM,
- **Davis, Johnson (1973).** \mathcal{X} with dens $\mathcal{X} = \kappa$ that has a WCG quotient of density κ .

References

- S. Dantas, P. Hájek, and T. Russo, Smooth norms in dense subspaces of Banach spaces, *J. Math. Anal. Appl.* **487** (2020), 123963.
- P. Hájek and T. Russo, On densely isomorphic normed spaces, *J. Funct. Anal.* **279** (2020), 108667.
- S. Dantas, P. Hájek, and T. Russo, Smooth and polyhedral norms via fundamental biorthogonal systems, arXiv:2201.03379.
- S. Dantas, P. Hájek, and T. Russo, Smooth norms in dense subspaces of $\ell_p(\Gamma)$ and operator ranges, arXiv:2205.11282.

The end

And in the end
The love you take
Is equal to the love you make
(The End, Lennon - McCartney, 1969)

4. Just for fun: Gilles Godefroy is really good, but the shortening [God] for him looks to be an exaggeration ©

(From Vladimir Kadets' report on Rihhard Nadel's PhD Thesis, August 2020)

Thank you for your attention!