Institute of Mathematics Czech Academy of Sciences

Walks on ordinals, Asplund spaces, and norming Markuševič bases

Tommaso Russo tommaso.russo.math@gmail.com

P. Hájek, T. Russo, J. Somaglia, and S. Todorčević, An Asplund space with norming Markuševič basis that is not weakly compactly generated, Adv. Math. **392**, 108041 (2021).

> Progress in Functional Analysis Lecce, Italy Sept 19 – 21, 2022

Markuševič bases

Let \mathcal{X} be a Banach space. A system $\{u_{\alpha}; \varphi_{\alpha}\}_{{\alpha} \in \Gamma} \subseteq \mathcal{X} \times \mathcal{X}^*$ is a **Markuševič basis** (**M-basis**, for short) for \mathcal{X} if

- $\langle \varphi_{\beta}, u_{\alpha} \rangle = \delta_{\alpha,\beta},$
- ▶ span $\{u_{\alpha}\}_{{\alpha}\in{\Gamma}}$ is dense in \mathcal{X} ,
- ▶ $\operatorname{span}\{\varphi_{\alpha}\}_{{\alpha}\in\Gamma}$ is w^* -dense in \mathcal{X}^* .

$$\begin{aligned} & \{ \langle \varphi_\alpha, \mathbf{x} \rangle \colon \alpha \in \Gamma \} & \text{are the coordinates of } \mathbf{x} \in \mathcal{X} \\ & \{ \langle \psi, \mathbf{x}_\alpha \rangle \colon \alpha \in \Gamma \} & \text{are the coordinates of } \psi \in \mathcal{X}^*. \end{aligned}$$

- Markuševič, 1943. Every separable Banach space has an M-basis.
- Amir-Lindenstrauss, 1968. Every WCG Banach space has an M-basis;

 ${\it Def}: \ {\cal X} \ {\it is} \ {\it WCG} \ {\it if} \ {\it it} \ {\it contains} \ {\it a} \ {\it linearly} \ {\it dense} \ {\it weakly} \ {\it compact} \ {\it subset}.$

▶ **Johnson, 1970.** ℓ_{∞} has no M-basis.

Norming M-bases

- ► Several classes of Banach spaces can be characterised by the existence of M-bases with additional properties.
- ▶ So it is tempting to ask if $\operatorname{span}\{\varphi_{\alpha}\}_{\alpha\in\Gamma}$ exhausts \mathcal{X}^* in a stronger sense.
- $\{u_{\alpha}; \varphi_{\alpha}\}_{{\alpha} \in \Gamma}$ is **shrinking** if $\operatorname{span} \{\varphi_{\alpha}\}_{{\alpha} \in \Gamma}$ is dense in \mathcal{X}^* .
- ▶ An M-basis $\{u_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is λ -norming $(0 < \lambda \leqslant 1)$ if

$$\lambda \|x\| \leqslant \sup\{|\langle \varphi, x \rangle| \colon \varphi \in \operatorname{span}\{\varphi_\alpha\}_{\alpha \in \Gamma}, \, \|\varphi\| \leqslant 1\}.$$

- ► Separable Banach spaces have a 1-norming M-basis (Markuševič).
- Every reflexive Banach space has a shrinking M-basis.
- ▶ Alexandrov–Plichko, 2006. $C([0, \omega_1])$ has no norming M-basis.

Norming M-bases and WCG spaces

- 3
- Which class of Banach spaces is characterised by admitting a norming M-basis?
- ▶ John–Zizler, 1974. Do WCG spaces have a norming M-basis?

Theorem (Hájek, Advances 2019)

There exists a WCG $\mathcal{C}(\mathcal{K})$ space with no norming M-basis.

 ${\it Def}: {\cal X}$ is ${\it Asplund}$ if every its separable subspace has separable dual.

- $ightharpoonup \mathcal{C}(\mathcal{K})$ is Asplund iff \mathcal{K} is scattered.
- ▶ **Godefroy**, \sim **1990.** Let \mathcal{X} be an Asplund space with a norming M-basis. Is \mathcal{X} WCG?

Theorem A (Hájek, R., Somaglia, Todorčević, Advances 2021)

There exists an Asplund space ${\mathcal X}$ with a 1-norming M-basis such that ${\mathcal X}$ is not WCG.

The core of the construction

Our example is a subspace of an Asplund C(K) (that is not WCG).

Problem. Is there a C(K) example?

We now explain how to build \mathcal{K} .

- $ightharpoonup \mathcal{P}(\Gamma) \equiv \{0,1\}^{\Gamma} \text{ by } A \leftrightarrow 1_A;$
- ▶ This gives a compact 'product' topology on $\mathcal{P}(\Gamma)$.

Theorem B (HRST)

There exists a family $\mathcal{F}_{\varrho} \subseteq [\omega_1]^{<\omega}$ of finite subsets of ω_1 such that $\mathcal{K}_{\varrho} := \overline{\mathcal{F}_{\varrho}}$ has the following properties:

- (i) $\{\alpha\} \in \mathcal{K}_{\varrho}$ for every $\alpha < \omega_1$,
- (ii) $[0,\alpha) \in \mathcal{K}_{\varrho}$ for every $\alpha \leqslant \omega_1$,
- (iii) if $A \in \mathcal{K}_{\varrho}$ is an infinite set, then $A = [0, \alpha)$ for some $\alpha \leqslant \omega_1$,
- (iv) \mathcal{K}_{ϱ} is scattered.

Todorčević's ρ -functions

S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. **159** (1987), 261–294.

S. Todorčević, Walks on ordinals and their characteristics. Birkhäuser Verlag, Basel, 2007.

- We consider functions $\rho \colon [\omega_1]^2 \to \omega$.
- We identify $[\omega_1]^2 = \{(\alpha, \beta) \in \omega_1^2 : \alpha < \beta\}.$
 - ▶ Thus, we write $\varrho(\alpha, \beta)$, with $\alpha < \beta$, for $\varrho(\{\alpha, \beta\})$.
- We also add the 'boundary condition' $\rho(\alpha, \alpha) = 0$.

Definition (Todorčević)

A ϱ -function on ω_1 is a function $\varrho \colon [\omega_1]^2 \to \omega$ such that:

- $(\rho 1)$ $\{\xi \leqslant \alpha : \rho(\xi, \alpha) \leqslant n\}$ is finite, for every $\alpha < \omega_1$ and $n < \omega$,
- $(\rho 2)$ $\rho(\alpha, \gamma) \leq \max{\{\rho(\alpha, \beta), \rho(\beta, \gamma)\}}$ for $\alpha < \beta < \gamma < \omega_1$
- $(\rho 3) \ \rho(\alpha, \beta) \leq \max\{\rho(\alpha, \gamma), \rho(\beta, \gamma)\} \ \text{for } \alpha < \beta < \gamma < \omega_1.$

Definition of the compact \mathcal{K}_{arrho}

Proposition (Todorčević)

There exists a function $\varrho \colon [\omega_1]^2 \to \omega$ such that $(\alpha < \beta < \gamma < \omega_1)$:

- $\triangleright \varrho(\alpha,\beta) > 0;$

$$\begin{split} F_n(\alpha) &:= \{\xi \leqslant \alpha \colon \varrho(\xi,\alpha) \leqslant n\} \\ \mathcal{F}_\varrho &:= \{F_n(\alpha) \colon n < \omega, \ \alpha < \omega_1\} \qquad \text{and} \qquad \mathcal{K}_\varrho := \overline{\mathcal{F}_\varrho}. \end{split}$$

Fact

- $|F_n(\alpha)| \leq n+1;$
- $ightharpoonup (F_n(\alpha))_{n<\omega}$ converges to $[0,\alpha]$.

The compact \mathcal{K}_{ϱ} satisfies Theorem B.

Semi-Eberlein compacta

Definition (Kubiś and Leiderman, 2004)

A compact space is **semi-Eberlein** if it is homeomorphic to a compact $\mathcal{K}\subseteq [0,1]^\Gamma$ such that $c_0(\Gamma)\cap \mathcal{K}$ is dense in \mathcal{K} .

Kubiś and Leiderman (2004). No semi-Eberlein compact space has a P-point.

- Used to find a Corson, not semi-Eberlein space.
- ▶ A point $p \in \mathcal{K}$ is a **P-point** if it is not isolated and for every choice of $(U_j)_{j<\omega}$ nhoods of p, $\cap U_j$ is a nhood of p.

Question (Kubiś and Leiderman, 2004)

Can a semi-Eberlein compact space have weak P-points?

- A point $p \in \mathcal{K}$ is a **weak P-point** if it is not isolated and no countable set in $\mathcal{K} \setminus \{p\}$ accumulates at p.
- The compact space \mathcal{K}_{ϱ} in Theorem B is semi-Eberlein and it has a weak P-point.

The end

P. Hájek, T. Russo, J. Somaglia, and S. Todorčević, An Asplund space with norming Markuševič basis that is not weakly compactly generated, Adv. Math. **392**, 108041 (2021).

Thank you for your attention!

$\begin{array}{c} \text{Th B} \Longrightarrow & \text{Th A (in 1 slide)} \\ \text{Not even a sketch of a proof} \end{array}$

• We define a biorthogonal system $\{f_{\gamma}; \mu_{\gamma}\}_{\gamma < \omega_1}$ in $\mathcal{C}(\mathcal{K}_{\varrho})$:

$$f_{\gamma} \in \mathcal{C}(\mathcal{K}_{\varrho}) \qquad f_{\gamma}(A) = \begin{cases} 1 & \gamma \in A \\ 0 & \gamma \notin A \end{cases} \quad (A \in \mathcal{K}_{\varrho})$$

$$\mu_{\gamma} := \delta_{\{\gamma\}} \in \mathcal{M}(\mathcal{K}_{\varrho}) \qquad \mu_{\gamma}(S) = \begin{cases} 1 & \{\gamma\} \in S \\ 0 & \{\gamma\} \notin S \end{cases} \quad (S \subseteq \mathcal{K}_{\varrho}).$$

- $\blacktriangleright \langle \mu_{\alpha}, f_{\gamma} \rangle = f_{\gamma}(\{\alpha\}) = \delta_{\alpha, \gamma}$, so *it is* biorthogonal.
- The space that we are looking for is

$$\mathcal{X}_{\varrho} := \overline{\operatorname{span}}\{f_{\gamma}\}_{\gamma < \omega_1} \subseteq \mathcal{C}(\mathcal{K}_{\varrho}).$$