Institute of Mathematics, Czech Academy of Sciences

(1+)-meters apart: Separated sets in Covid times

Tommaso Russo (russo@math.cas.cz, tommaso.russo.math@gmail.com)

Functional analysis seminar Institute of Mathematics and Statistics, University of Tartu March 18, 2021

Table of contents

- Classical results and a couple of definitions
 - 1.1 Riesz' lemma and separated sets
 - 1.2 Kottman and Elton–Odell theorems
 - 1.3 Examples and estimates for K^s
- Symmetrically separated sequences
- 2.1 A symmetric version of Kottman's theorem
- 2.2 Is $K^s > 1$?
- 2.3 Open problems
- 3 Non-separable spaces
 - 3.1 What can we hope for 3
 - 3.2 WLD and C(K) spaces
 - 3.3 (Super-)reflexive spaces

Riesz' lemma and separated sets

Hereinafter, X is an **infinite-dimensional** Banach space.

Riesz' lemma (1916). There exists a sequence $(x_n)_{n=1}^{\infty}$ in the unit sphere S_X of X with $||x_n - x_k|| \ge 1$ for $n \ne k$.

• Actually, one has $||x_n \pm x_k|| \ge 1$ for $n \ne k$.

A set $\mathcal{A} \subseteq \mathcal{X}$ and $\delta > 0$, is:

- δ -separated if $||a-b|| \ge \delta$ for $a \ne b \in \mathcal{A}$
- $(\delta +)$ -separated if $||a b|| > \delta$...
- symmetrically δ -separated if $||a \pm b|| \ge \delta$...
- symmetrically $(\delta +)$ -separated if $||a \pm b|| > \delta$...

We are interested in (symmetrically) (1+) or $(1 + \varepsilon)$ -separated subsets of S_{χ} .

• $\mathcal{A} \subseteq S_{\mathcal{X}}$ is symmetrically (1+)- (resp. (1 + ε))-separated if $\mathcal{A} \cup -\mathcal{A}$ is (1+)- (resp. (1 + ε))-separated.

Kottman and Elton-Odell

Kottman's theorem (1975). The unit sphere S_X contains a (1+)-separated sequence $(x_n)_{n=1}^{\infty}$, *i.e.*, $||x_n - x_k|| > 1$ for $n \neq k$.

The Elton–Odell theorem (1981). The unit sphere S_X contains a $(1 + \varepsilon)$ -separated sequence $(x_n)_{n=1}^{\infty}$ (for some $\varepsilon > 0$).

The (symmetric) Kottman constant

$$K(X) := \sup \{ \sigma > 0 \colon B_X \text{ contains a } \sigma\text{-separated sequence} \}$$

 $K^s(X) := \sup \{ \sigma > 0 \colon B_X \text{ contains a symmetrically } \sigma\text{-sep...} \}$

- By Elton–Odell K(X) > 1, for every X.
- Castillo–Papini (2011). Is $K^s(X) > 1$?
- Is there a symmetric version of Kottman's theorem?
- Writing B_X or S_X is equivalent.

Examples and estimates for K^s

- $K^{s}(c_{0}) = 2$:
- $K^s(\ell_p) = 2^{1/p}$ for $p \in [1, \infty)$ (note the equality!);
- $K^s(X) = 2$ if X contains c_0 or ℓ_1 (James' non-distortion);
- Kottman (1975). $K^s(X) \ge 2^{1/p}$ if X contains ℓ_p ;
- $K^s(X) = 2$ if X has a c_0 (or ℓ_1) quotient;
- Castillo-Papini (2011). If X is an \mathcal{L}_{∞} -space, then $K^{s}(X) = 2$;
- **Delpech (2010).** $K^{s}(X) \ge 1 + \delta_{X}(1)$;
- **Maluta-Papini** (2009). $K^{s}(X) \leq K(X) \leq 2 2\delta_{X}(1)$;
- Castillo-González-Kania-Papini (2020). $K^s(X) \cdot K^s(X^*) \ge 2$;
- Kryczka–Prus (2000). $K(X) \ge \sqrt[5]{4}$ for non-reflexive X.

Table of contents

- - 1.2 Kottman and Elton–Odell theorems
 - Examples and estimates for K^s
- 2 Symmetrically separated sequences
 - 2.1 A symmetric version of Kottman's theorem
 - 2.2 Is $K^s > 1$?
 - 2.3 Open problems
- - 3.2 WLD and C(K) spaces

A symmetric version of Kottman's theorem

Theorem (P. Hájek, T. Kania, and R., JFA'18)

The unit sphere of every X contains a symmetrically (1+)-separated sequence $(x_n)_{n=1}^{\infty}$, i.e. $||x_n \pm x_k|| > 1$ for $n \neq k$.

For $X_0 \subseteq X$, dim $(X_0) = \infty$, we say that X_0 has (\square) if:

$$\exists x \in S_{\mathcal{X}_0}, \exists \mathcal{Y} \subseteq \mathcal{X}_0, \dim(\mathcal{Y}) = \infty \colon \forall y \in S_{\mathcal{Y}} \|x + y\| > 1.$$

- **Case 1:** Every $X_0 \subseteq X$, dim $(X_0) = \infty$, has (\square) .
- Case 2: Pick X_0 that has $(\neg \Box)$. WLOG $X_0 = X$. Equivalently:
 - $\forall x \in B_X, \forall \mathcal{Y} \subseteq \mathcal{X}, \dim(\mathcal{Y}) = \infty, \exists y \in S_M : ||x + y|| \leq 1.$

Contd, Case 2

$$(\blacksquare) \quad \forall x \in B_{\mathcal{X}}, \forall \mathcal{Y} \subseteq \mathcal{X}, \dim(\mathcal{Y}) = \infty, \ \exists y \in S_{\mathcal{Y}} \colon ||x + y|| \le 1.$$

Now that we have the symmetric Kottman, is also $K^s(X) > 1$?

Hájek–Kania–R., JFA'18: $K^s(X) > 1$ if:

- X contains a boundedly complete basic sequence,
 - X is reflexive,
 - X contains a separable dual,
 - X has the Radon–Nikodym property,
- X contains an unconditional basic sequence,
- X has cotype $q < \infty$.

$ls K^{s}(X) > 1?$

Theorem (R., RACSAM'19)

For every X, $K^s(X) > 1$, namely, the unit sphere of X contains a symmetrically $(1 + \varepsilon)$ -separated sequence.

Check the proof of Elton–Odell: if X doesn't contain c_0 and $(x_j)_{j=1}^{\infty}$ is normalised and weakly null, it admits a $(1 + \varepsilon)$ -separated normalised block sequence.

$ls K^{s}(X) > 1?$

Theorem (R., RACSAM'19)

For every X, $K^s(X) > 1$, namely, the unit sphere of X contains a symmetrically $(1 + \varepsilon)$ -separated sequence.

Check the proof of Elton–Odell: if X doesn't contain c_0 and $(x_j)_{j=1}^{\infty}$ is normalised and weakly null, it admits a $(1 + \varepsilon)$ -separated normalised block sequence.

- Tuning the argument: If S_X contains a $(1 + \varepsilon)$ -separated weakly null sequence, it contains a symmetrically $(\sqrt{1 + \varepsilon})$ -septd one.
- Hence, $K^s(X) \ge \sqrt{K(X)}$ if
 - X is reflexive with the non-strict Opial property, or
 - X has a suppression 1-unconditional Schauder basis.
- Does $K^s(X) \ge \sqrt{K(X)}$ hold for every reflexive X?
- How large can $K^s(X) K(X)$ be in general?

Open problems

- \bullet In a **complex** Banach space X consider **toroidal separation**:
 - 1 Is there $(x_n)_{n=1}^{\infty}$ with $||x_n \theta x_k|| > 1$ $(\theta \in \mathbb{C}, |\theta| = 1, n \neq k)$?
 - 2 Do we have a 'toroidal' version of the Elton–Odell theorem?
- **ONE OF STATE OF STAT**

$$\widetilde{K}(X) := \inf\{K(\mathcal{Y}) : \mathcal{Y} \text{ isomorphic to } X\}$$

- 1 Is $\widetilde{K} > 1$? (Of course, also \widetilde{K}^s could be defined.)
- **2** Can we choose the ε in the Elton–Odell theorem to be renorming invariant?
- $\widetilde{K}(X) > 1$ if X contains c_0 , or ℓ_p .
- **3 Diestel (1984).** The 'subspace' Kottman constant:

$$K^D(X) := \inf\{K(\mathcal{Y}) : \mathcal{Y} \text{ subspace of } X\}$$

- $K^D(\ell_p) = 2^{1/p}, K^D(c_0) = 2.$
- (2) $K^D(X) = 1$ if X contains $\ell_{p_n}, p_n \to \infty$.
- § For which spaces is $K^D(X) > 1$?

Table of contents

- ① Classical results and a couple of definitions
 - 1.1 Riesz' lemma and separated sets
 - 1.2 Kottman and Elton–Odell theorems
 - 1.3 Examples and estimates for K^s
- Symmetrically separated sequences
- 2.1 A symmetric version of Kottman's theorem
- 2.2 Is $K^s > 1$?
- 2.3 Open problems
- 3 Non-separable spaces
 - 3.1 What can we hope for?
 - 3.2 WLD and C(K) spaces
 - 3.3 (Super-)reflexive spaces

What can we hope for?

Henceforth, X is a **non-separable** Banach space.

General problem: How large can separated subsets of S_X be?

 B_X contains an uncountable ε -separated set, for some $\varepsilon > 0$.

- Does S_X contain an uncountable (1+)-separated subset?
- What about uncountable $(1 + \varepsilon)$ -separated subsets?
- Can we find a such subsets with cardinality dens(X)?

A few reassuring examples:

- $c_0(\Gamma)$: the sphere contains an uncountable (1+)-separated set;
- In $\ell_p(\Gamma)$, the canonical basis is $2^{1/p}$ -separated;
- In the ball of $\ell_{\infty}(\Gamma)$ we have a 2-separated set of cardinality $2^{|\Gamma|}$.

8/12

Did we hope for too much? More on $c_0(\Gamma)$

Elton–Odell (1981). In $c_0(\Gamma)$, $(1 + \varepsilon)$ -separated subsets of the ball are at most countable.

∆-system lemma

Let $\{A_{\gamma}\}_{{\gamma}\in\Gamma}$ be uncountably many finite subsets of S. Then there are $\Gamma_0\subseteq\Gamma$ uncountable and $\Delta\subseteq S$ finite such that

$$A_{\alpha} \cap A_{\beta} = \Delta \quad for \quad \alpha \neq \beta \in \Gamma_0.$$

Theorem (P. Hájek, T. Kania, and R., TAMS'20)

Let $\mathcal{F} \subseteq S_{c_0(\Gamma)}$ be (1+)-separated. Then $|\mathcal{F}| \leq \omega_1$.

- Does S_X contain an uncountable (1+)-separated subset?
- For which X also an uncountable $(1 + \varepsilon)$ -separated one?

WLD and C(K) spaces

Theorem (P. Hájek, T. Kania, and R., TAMS'20)

 S_X and S_{X^*} contain uncountable (1+)-separated sets if:

- X is WLD, dens $X > \mathfrak{c}$, or
- X is 'large' (more precisely, w^* -dens $X^* > 2^{2^c}$).
- WLD spaces of density ω_1 ? Renormings of $c_0(\omega_1)$?

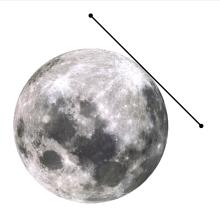
C(K) spaces:

- Kania–Kochanek (2016). The ball contains an uncountable (1+)-separated set.
- Koszmider (2018). It is undecidable if the ball contains an uncountable $(1 + \varepsilon)$ -separated set.
- Does the ball contain a (1+)-separated set of cardinality dens C(K)?
 - Cúth-Kurka-Vejnar (2019). Yes, if dens $C(\mathcal{K}) \leq \mathfrak{c}$.

(Super-)reflexive spaces

Theorem (P. Hájek, T. Kania, and R., TAMS'20)

The sphere of a reflexive X contains a (1+)-separated set of cardinality dens(X);



(Super-)reflexive spaces

Theorem (P. Hájek, T. Kania, and R., TAMS'20)

- The sphere of a reflexive X contains a (1+)-separated set of cardinality dens(X);
- if X is reflexive and $\lambda \leq \text{dens}(X)$ has uncountable cofinality, the sphere of X contains a $(1 + \varepsilon)$ -separated set of cardinality λ ;
- if X is super-reflexive, the sphere contains a $(1 + \varepsilon)$ -separated set of cardinality dens(X).

Example (Kania-Kochanek, 2016). the unit sphere of

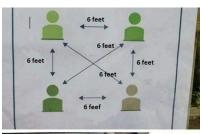
$$\mathcal{X} := \left(\bigoplus_{n \in \mathbb{N}} \ell_{p_n}(\omega_n) \right)_{\ell_2} \qquad (p_n)_{n=1}^{\infty} \subseteq (1, \infty), \ p_n \nearrow \infty$$

does not contain $(1 + \varepsilon)$ -separated subsets of cardinality $\omega_{\omega} = \text{dens } X$.

References

- P. Hájek, T. Kania, and T. Russo, Symmetrically separated sequences in the unit sphere of a Banach space, J. Funct. Anal. **275** (2018), 3148–3168.
- P. Hájek, T. Kania, and T. Russo, Separated sets and Auerbach systems in Banach spaces, Trans. Amer. Math. Soc. 373 (2020), 6961–6998.
- T. Russo, A note on symmetric separation in Banach spaces, *Rev.* R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), 3649–3658.
- T. Russo, On some open problems in Banach space theory, *Ph.D.* Thesis (2018).

The end



Thank you for your attention!