Faculty of Electrical Engineering Czech Technical University in Prague

How different can two dense subspaces of a Banach space be?

Tommaso Russo russotom@fel.cvut.cz

P. Hájek and T. Russo, On densely isomorphic normed spaces.

Preprint available at arXiv:1910.01527.

48th Winter School in Abstract Analysis Svratka, Czech Republic January 11–18, 2020

International Mobility of Researchers in CTU Project number: CZ.02.2.69/0.0/0.0/16_027/0008465

Smoothness and structure

The existence of a smooth norm on a Banach space bears several geometric consequences. Just to name a few:

- ▶ If a separable Banach space X has a C^1 -smooth norm, X^* is separable;
- ▶ If X^* admits a dual C^1 -smooth norm, X is reflexive;
- ▶ Meshkov (1978). If X and X^* admit a C^2 -smooth norm, then X is isomorphic to a Hilbert space;
- ▶ **Fabian, Whitfield, Zizler (1983).** If X admits a C^2 -smooth norm, either it contains c_0 , or it is super-reflexive with type 2;
- ▶ **Deville (1989).** If X has a C^{∞} -smooth norm, either it contains c_0 , or it is super-reflexive, with exact cotype 2k, and it contains ℓ_{2k} .

Smoothness on subsets

It was asked several times if the existence of a smooth norm on some 'large' subset has similar consequences:

- Benyamini–Lindenstrauss, Geometric Nonlinear Functional Analysis, p. 96: Is there an equivalent norm on ℓ_1 that is Fréchet differentiable outside a countable union of hyperplanes?
- Guirao–Montesinos–Zizler, Open problems..., Problem 149: Does the space of finitely supported vectors in $\ell_1(\Gamma)$ have a C^1 -smooth norm (when Γ is uncountable)?

Some recent results, joint with Sheldon Dantas and Petr Hájek:

- ▶ There exists a dense subspace of ℓ_{∞} with a C^{∞} -smooth norm;
- ▶ If $(e_{\gamma})_{\gamma \in \Gamma}$ is a long unconditional basis for a Banach space, its linear span admits a C^{∞} -smooth norm.

What about other dense subspaces?

How different can two dense subspaces of a Banach space be?

Separable Banach spaces

In this talk, subspaces are NOT assumed to be closed.

In every separable Banach space there is a canonical (smallest) dense subspace, that is densely contained in every other dense subspace. More precisely:

Folklore

Let $\{e_j; e_j^*\}_{j=1}^{\infty}$ be an M-basis for a separable Banach space X. Then every dense subspace of X contains a dense subspace isomorphic to $\operatorname{span}\{e_j\}_{j=1}^{\infty}$.

- ▶ $\operatorname{span}\{e_j\}_{i=1}^{\infty}$ is this 'minimal' dense subspace;
- ► **Grivaux (2003).** Such a minimal subspace is additionally unique up to isomorphisms;
- ► This feature breaks down completely in many non-separable Banach spaces; most notably, in (non-separable) Hilbert spaces.

Different dense subspaces

Theorem A

Let X be a non-separable WLD Banach space. Then there are two dense subspaces Y and Z of X whose every dense subspaces are non-isomorphic.

- ▶ If dens $X \le \mathfrak{c}$, there exist two dense subspaces Y and Z such that no non-separable subspace of Y is isomorphic to a subspace of Z;
- A striking particular case is given by $\ell_2(\mathfrak{c})$;
- A 'minimal' subspace as before has to be separable.

Definition

Two normed spaces X and Y are *densely isomorphic* if there exist dense subspaces X_0 of X and Y_0 of Y such that X_0 and Y_0 are isomorphic.

Th A (restated). Every non-separable WLD Banach space contains two dense subspaces that are not densely isomorphic.

Towards a study of dense subspaces

- lackbox Every two dense subspaces of $\ell_1(\Gamma)$ are densely isomorphic.
 - In particular, every dense subspace of $\ell_1(\Gamma)$ contains a further dense subspace with a C^{∞} -smooth norm.
- ▶ What about ℓ_{∞} ?
 - ▶ There exists a dense subspace with a C^{∞} -smooth norm;
 - Is there a dense subspace whose every dense subspace fails to have smooth norms?
- We can look at different properties.
 - Let X be a Banach space and P be a property;
 - Find Y dense in X whose every dense subspace has P;
 - \triangleright Find Z dense in X **no** whose dense subspace has P;
 - P witnesses that Y and Z are not densely isomorphic.
- ► We can say that *X* densely has *P* if every dense subspace of *X* has a dense subspace with *P*.
- ▶ What about uncountable biorthogonal systems?

Biorthogonal systems

Theorem B

(CH) Let X be a WLD Banach space with dens $X = \omega_1$. Then there exists a dense subspace Y of X that contains no uncountable biorthogonal system.

Particular case. (CH) There exists a dense subspace of the Hilbert space $\ell_2(\omega_1)$ that contains no uncountable biorthogonal system.

Lemma

Let $\{e_{\alpha};e_{\alpha}^*\}_{\alpha\in\Gamma}$ be an M-basis for a Banach space X. Then every non-separable subspace of $Z:=\operatorname{span}\{e_{\alpha}\}_{\alpha\in\Gamma}$ contains an uncountable biorthogonal system.

- Again, a common subspace is separable;
- Y and Z are not densely isomorphic.

Inner product spaces

For an orthonormal system $\{e_{\gamma}\}_{{\gamma}\in\Gamma}$ in an inner produce space H, TFAE:

- (i) $\{e_{\gamma}\}_{\gamma \in \Gamma}$ is complete (i.e., linearly dense);
- (ii) $\{e_{\gamma}\}_{{\gamma}\in\Gamma}$ is a Schauder basis;
- (iii) Parseval's equality $||x||^2 = \sum_{\gamma \in \Gamma} |\langle e_{\gamma}, x \rangle|^2$ holds for every $x \in H$.

(iv) $\{e_{\gamma}\}_{\gamma\in\Gamma}$ is maximal.

Gudder (1974). There exists a non-separable inner product space that contains no uncountable orthonormal system.

[See Halmos, A Hilbert space problem book, Problem 54.]

Buhagiar, Chetcuti, and Weber (2008). If dens $H \ge c^+$, H contains an uncountable orthonormal system (actually, of cardinality c^+).

Thank you for your attention!