Czech Academy of Sciences and Czech Technical University in Prague

Asplund Banach spaces with norming Markuševič bases

Tommaso Russo

P. Hájek, T. Russo, J. Somaglia, and S. Todorčević, An Asplund space with norming Markuševič basis that is not weakly compactly generated. Preprint available at arXiv: 2007.14201.

> Banach spaces webinars August 28, 2020

Broad introduction

Around the main results

Q-functions and Theorem B

Semi-Eberlein compacta (very briefly)

Broad introduction

Around the main results

Q-functions and Theorem E

Semi-Eberlein compacta (very briefly

Markuševič bases

A system $\{u_{\alpha}; \varphi_{\alpha}\}_{{\alpha} \in \Gamma} \subseteq \mathcal{X} \times \mathcal{X}^*$ is a **Markuševič basis** (**M-basis**, for short) for \mathcal{X} if

- ▶ span $\{u_{\alpha}\}_{{\alpha}\in\Gamma}$ is dense in \mathcal{X} ,
- ▶ span $\{\varphi_{\alpha}\}_{{\alpha}\in\Gamma}$ is w*-dense in \mathcal{X}^* .

$$\{ \langle \varphi_{\alpha}, \mathbf{x} \rangle \colon \alpha \in \Gamma \} \qquad \text{are the coordinates of } \mathbf{x} \in \mathcal{X}$$

$$\{ \langle \psi, \mathbf{x}_{\alpha} \rangle \colon \alpha \in \Gamma \} \qquad \text{are the coordinates of } \psi \in \mathcal{X}^*.$$

- Markuševič, 1943. Every separable Banach space has an M-basis.
- ▶ Amir-Lindenstrauss, 1968. Every WCG Banach space has an M-basis; $Def: \mathcal{X}$ is WCG if it contains a linearly dense weakly compact subset.
- **In Johnson, 1970.** ℓ_{∞} has no M-basis.

Existence of Norming M-bases

- It is tempting to ask if $\operatorname{span}\{\varphi_{\alpha}\}_{{\alpha}\in\Gamma}$ exhausts \mathcal{X}^* in a stronger sense.
- $\{u_{\alpha}; \varphi_{\alpha}\}_{{\alpha} \in \Gamma}$ is **shrinking** if $\operatorname{span} \{\varphi_{\alpha}\}_{{\alpha} \in \Gamma}$ is dense in \mathcal{X}^* .
- A subspace $\mathcal Z$ of $\mathcal X^*$ is λ -norming (0 $<\lambda\leqslant$ 1) if

$$\lambda \|\mathbf{x}\| \leqslant \sup\{|\langle \varphi, \mathbf{x} \rangle| \colon \varphi \in \mathcal{Z}, \, \|\varphi\| \leqslant \mathbf{1}\}.$$

Plainly, \mathcal{X}^* is 1-norming, by the Hahn–Banach theorem.

Definition

An M-basis $\{u_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is λ -norming (0 $< \lambda \le$ 1) if $\operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}$ is a λ -norming subspace, namely if

$$\lambda \|\mathbf{x}\| \leqslant \sup\{|\langle \varphi, \mathbf{x} \rangle| \colon \varphi \in \operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}, \ \|\varphi\| \leqslant \mathbf{1}\}.$$

- Separable Banach spaces have a 1-norming M-basis (Markuševič).
- Every reflexive Banach space has a shrinking M-basis.
- [HRST] $\mathcal{C}(\mathcal{K})$ has a 1-norming M-basis, if \mathcal{K} is adequate.

How strong are them?

- ▶ Alexandrov-Plichko, 2006. $C([0, \omega_1])$ has no norming M-basis;
 - but it has a countably 1-norming, strong M-basis
 - and a monotone long Schauder basis.
- ► Schauder bases and (long) unconditional bases are norming M-bases.
- ▶ (Folklore) Fact. Let $\{f_\gamma; \mu_\gamma\}_{\gamma<\omega_1}$ be a λ -norming M-basis for a Banach space \mathcal{X} . Then there exists an uncountable subset Λ of ω_1 such that $(f_\gamma)_{\gamma\in\Lambda}$ is a long basic sequence in \mathcal{X} .
 - If $\mathcal{Y} \subseteq \mathcal{X}$ is separable, there is a countable $S \subseteq \omega_1$ such that $\operatorname{span}\{\mu_\gamma\}_{\gamma \in S}$ is λ -norming for \mathcal{Y} ; insert in Mazur's technique.
 - So, norming M-bases are 'stronger than' long basic sequences.
- ▶ John-Zizler, 1974. Do WCG spaces have a norming M-basis?

Theorem (Hájek, 2019)

There exists a WCG $\mathcal{C}(\mathcal{K})$ space with no norming M-basis. Actually, \mathcal{K} is uniform Eberlein, so $\mathcal{C}(\mathcal{K})$ is also Hilbert-generated.

Broad introduction

Around the main results

Q-functions and Theorem E

Semi-Eberlein compacta (very briefly)

Towards the main result

- Properties of M-bases can characterise classes of Banach spaces: weakly compact, shrinking, countably norming, ...
- ► What about norming M-bases?

 ${\it Def}: {\mathcal X}$ is **Asplund** if every its separable subspace has separable dual.

- $ightharpoonup \mathcal{C}(\mathcal{K})$ is Asplund iff \mathcal{K} is scattered.
- Troyanski, John-Zizler, Orihuela-Valdivia, Fabian, ... TFAE:
 - (i) \mathcal{X} has a shrinking M-basis;
 - (ii) \mathcal{X} is WCG and Asplund;
 - (iii) \mathcal{X} is WLD and Asplund;
 - (iv) \mathcal{X} is WLD and \mathcal{X}^* admits a dual LUR norm.
- Ex : $\ell_1(\Gamma)$ admits a 1-norming M-basis.
 - Norming M-basis \implies WCG, or Asplund $(\ell_1(\omega_1))$;
 - Norming M-basis and WCG \implies Asplund (ℓ_1).
 - ▶ Godefroy \sim 1990. Let $\mathcal X$ be an Asplund space with a norming M-basis. Is $\mathcal X$ WCG?

Theorem A

There exists an Asplund space $\mathcal X$ with a 1-norming M-basis $\{f_\gamma;\mu_\gamma\}_{\gamma<\omega_1}$ such that $\mathcal X$ is not WCG.

- $\{f_{\gamma}; \mu_{\gamma}\}_{\gamma<\omega_{1}}$ is additionally Auerbach, i.e., $\|f_{\gamma}\|=\|\mu_{\gamma}\|=$ 1.
- We can also assume that $(f_{\gamma})_{\gamma<\omega_1}$ is a monotone long Schauder basis.

Proof: Recall the folklore fact: there is $\Lambda \subseteq \omega_1$ uncountable s.t. $(f_\gamma)_{\gamma \in \Lambda}$ is a monotone long basic sequence.

► The space $\mathcal{X}_{\Lambda} := \overline{\operatorname{span}}\{f_{\gamma}\}_{\gamma \in \Lambda}$ also satisfies Th A.

 \mathcal{X} is constructed as a subspace of a $\mathcal{C}(\mathcal{K})$ space, \mathcal{K} scattered.

- \triangleright We shall explain how to build \mathcal{K} , cf. Th B in the next slide.
 - ightharpoonup Our example is a subspace of an Asplund $\mathcal{C}(\mathcal{K})$ (that is not WCG).
- **Problem.** Is there a $\mathcal{C}(\mathcal{K})$ example?

A peculiar compact space

- $ightharpoonup \mathcal{P}(\Gamma) \equiv \{0,1\}^{\Gamma} \text{ by } A \leftrightarrow 1_A;$
- ▶ This gives a compact 'product' topology on $\mathcal{P}(\Gamma)$;
- ▶ If $A \in \mathcal{P}(\Gamma)$, $a_0, \ldots, a_n \in A$, $b_0, \ldots, b_n \notin A$

$$\mathcal{U} := \{B \in \mathcal{P}(\Gamma) \colon a_0, \dots, a_n \in B, \, b_0, \dots, b_n \notin B\}$$

is a nghd of A in $\mathcal{P}(\Gamma)$.

Theorem B

There exists a family $\mathcal{F}_{\varrho} \subseteq [\omega_1]^{<\omega}$ of finite subsets of ω_1 such that $\mathcal{K}_{\varrho} := \overline{\mathcal{F}_{\varrho}}$ has the following properties:

- (i) $\{\alpha\} \in \mathcal{K}_{\varrho}$ for every $\alpha < \omega_1$,
- (ii) $[0, \alpha) \in \mathcal{K}_{\varrho}$ for every $\alpha \leqslant \omega_1$,
- (iii) if $A \in \mathcal{K}_{\varrho}$ is an infinite set, then $A = [0, \alpha)$ for some $\alpha \leqslant \omega_1$,
- (iv) \mathcal{K}_{ρ} is scattered.

• We define a biorthogonal system $\{f_{\gamma}; \mu_{\gamma}\}_{\gamma < \omega_{1}}$ in $\mathcal{C}(\mathcal{K}_{\varrho})$:

$$f_{\gamma} \in \mathcal{C}(\mathcal{K}_{\varrho}) \qquad f_{\gamma}(A) = \begin{cases} 1 & \gamma \in A \\ 0 & \gamma \notin A \end{cases} \quad (A \in \mathcal{K}_{\varrho})$$

$$\mu_{\gamma} := \delta_{\{\gamma\}} \in \mathcal{M}(\mathcal{K}_{\varrho}) \qquad \mu_{\gamma}(S) = \begin{cases} 1 & \{\gamma\} \in S \\ 0 & \{\gamma\} \notin S \end{cases} \quad (S \subseteq \mathcal{K}_{\varrho}).$$

- $\blacktriangleright \langle \mu_{\alpha}, f_{\gamma} \rangle = f_{\gamma}(\{\alpha\}) = \delta_{\alpha, \gamma}$, so it is biorthogonal.
- The space that we are looking for is

$$\mathcal{X}_{\varrho} := \overline{\operatorname{span}}\{f_{\gamma}\}_{\gamma < \omega_{1}} \subseteq \mathcal{C}(\mathcal{K}_{\varrho}).$$

Broad introduction

Around the main results

Q-functions and Theorem B

Semi-Eberlein compacta (very briefly

Todorčević's *Q*-functions

S. Todorčević, Partitioning pairs of countable ordinals, *Acta Math.* **159** (1987), 261–294.

S. Todorčević, *Walks on ordinals and their characteristics*. Birkhäuser Verlag, Basel, 2007.

- We consider functions $\varrho : [\omega_1]^2 \to \omega$.
- We identify $[\omega_1]^2 = \{(\alpha, \beta) \in \omega_1^2 : \alpha < \beta\}.$
 - ▶ Thus, we write $\varrho(\alpha, \beta)$, with $\alpha < \beta$, for $\varrho(\{\alpha, \beta\})$.
- We also add the 'boundary condition' $\varrho(\alpha, \alpha) = 0$.

Definition (Todorčević)

A ϱ -function on ω_1 is a function $\varrho \colon [\omega_1]^2 \to \omega$ such that:

(
$$\varrho$$
1) $\{\xi \leqslant \alpha : \varrho(\xi, \alpha) \leqslant n\}$ is finite, for every $\alpha < \omega_1$ and $n < \omega$,

(
$$\varrho$$
2) $\varrho(\alpha, \gamma) \leqslant \max\{\varrho(\alpha, \beta), \varrho(\beta, \gamma)\}\$ for $\alpha < \beta < \gamma < \omega_1$,

(
$$\varrho$$
3) $\varrho(\alpha, \beta) \leqslant \max\{\varrho(\alpha, \gamma), \varrho(\beta, \gamma)\}\$ for $\alpha < \beta < \gamma < \omega_1$.

Definition of the compact \mathcal{K}_{arrho}

Proposition (Todorčević)

There exists a function $\varrho \colon [\omega_1]^2 \to \omega$ such that ($\alpha < \beta < \gamma < \omega_1$):

- $\triangleright \varrho(\alpha,\beta) > 0;$

$$\begin{split} F_n(\alpha) &:= \{\xi \leqslant \alpha \colon \varrho(\xi,\alpha) \leqslant n\} \\ \mathcal{F}_\varrho &:= \{F_n(\alpha) \colon n < \omega, \, \alpha < \omega_1\} \qquad \text{and} \qquad \mathcal{K}_\varrho := \overline{\mathcal{F}_\varrho}. \end{split}$$

Fact

- $ightharpoonup F_o(\alpha) = \{\alpha\};$
- $|F_n(\alpha)| \leq n+1;$
- $ightharpoonup (F_n(\alpha))_{n<\omega}$ converges to $[0,\alpha]$.

Th B again, aka \mathcal{K}_{o} verifies Th B

Th B (again, but smaller).

The compact space \mathcal{K}_{ρ} has the following properties:

- (i) $\{\alpha\} \in \mathcal{K}_{\rho}$ for every $\alpha < \omega_1$,
- (ii) $[0, \alpha) \in \mathcal{K}_{\rho}$ for every $\alpha \leq \omega_1$,
- (iii) if $A \in \mathcal{K}_{\alpha}$ is an infinite set, then $A = [0, \alpha)$ for some $\alpha \leq \omega_1$,
- (iv) \mathcal{K}_{ρ} is scattered.

Proof. (i)
$$\{\alpha\} = F_o(\alpha) \in \mathcal{K}_{\varrho}$$
. \checkmark

(ii) If
$$\alpha = \alpha' + 1$$
, $[0, \alpha) = [0, \alpha'] = \lim_{n < \omega} F_n(\alpha') \in \mathcal{K}_{\varrho}$.
If α is limit, $([0, \beta + 1))_{\beta < \alpha}$ converges to $[0, \alpha)$.

$(iii) \Longrightarrow (iv)$

- Let $\mathcal{D} \subseteq \mathcal{K}_{\alpha}$ be closed. Pick $D_0 \in \mathcal{D}$ s.t. $\exists \alpha < \beta, \alpha \notin D_0, \beta \in D_0$.
- Pick a maximal element $M \in \mathcal{D}$ with $\alpha \notin M$, $D_0 \subseteq M$.
- M is a finite set, by (iii).
- $\mathcal{U} := \{ D \in \mathcal{D} : \alpha \notin D, M \subseteq D \} = \{ M \}$, so M is isolated in \mathcal{D} .

Proof of (iii), $|A| = \omega$

(iii) if $A \in \mathcal{K}_{\varrho}$ is infinite, then $A = [0, \alpha)$ for some $\alpha \leqslant \omega_1$;

Def:
$$F_n(\alpha) := \{ \xi \leqslant \alpha : \varrho(\xi, \alpha) \leqslant n \}.$$

Assume first $|A| = \omega$.

- Pick $\alpha \in A$ and $\tilde{\alpha} < \alpha$; we need $\tilde{\alpha} \in A$.
- Pick a sequence $(F_{n_k}(\alpha_k))_{k<\omega}\to A$ (Fréchet-Urysohn property).
- ▶ If $(n_k)_{k<\omega}$ is bounded, then $|F_{n_k}(\alpha_k)| \leq M$; so, A is finite.
- ▶ WLOG, $\varrho(\tilde{\alpha}, \alpha) \leq n_k$.
- Also, assume $\alpha \in F_{n_k}(\alpha_k)$, namely $\alpha \leqslant \alpha_k$ and $\varrho(\alpha, \alpha_k) \leqslant n_k$.
- By triangle inequality,

$$\varrho(\tilde{\alpha}, \alpha_k) \leqslant \max\{\varrho(\tilde{\alpha}, \alpha), \varrho(\alpha, \alpha_k)\} \leqslant \mathsf{n}_k,$$

so $\tilde{\alpha} \in F_{n_k}(\alpha_k)$. Passing to the limit, $\tilde{\alpha} \in A$.

Proof of (iii), $|A| = \omega_1$

 $\Sigma(\Gamma) := \{x \in [0,1]^{\Gamma} : \operatorname{supp}(x) \text{ is countable} \}.$

Theorem (Deville-Godefroy, Kalenda)

Let $\mathcal{K} \subseteq [0,1]^{\omega_1}$ be a compact set such that $\mathcal{K} \cap \Sigma(\omega_1)$ is dense in \mathcal{K} . Let $x \in \mathcal{K} \setminus \Sigma(\omega_1)$. Then there exists an embedding $\varphi \colon [0,\omega_1] \to \mathcal{K}$:

- (i) $\varphi(\alpha) \in \mathcal{K} \cap \Sigma(\omega_1)$, for $\alpha < \omega_1$,
- (ii) $\operatorname{supp}(\varphi(\alpha)) \subseteq \operatorname{supp}(\varphi(\beta))$, for $\alpha < \beta \leqslant \omega_1$,
- (iii) $\varphi(\omega_1) = x$.
- ▶ In our case, there is φ : $[0, \omega_1] \to \mathcal{K}_{\rho}$ with
 - (i) $|\varphi(\alpha)| \leq \omega$, for $\alpha < \omega_1$,
 - (ii) $\varphi(\alpha) \subseteq \varphi(\beta)$, for $\alpha < \beta \leqslant \omega_1$,
 - (iii) $\varphi(\omega_1) = A$, $\Longrightarrow \bigcup_{\alpha < \omega_1} \varphi(\alpha) = A$.
- \blacktriangleright Hence, the sets $\varphi(\alpha)$ are infinite, for α large.
- \blacktriangleright By the previous case, such $\varphi(\alpha)$ are initial intervals.

Broad introduction

Around the main results

Q-functions and Theorem E

Semi-Eberlein compacta (very briefly)

Semi-Eberlein spaces

Definition (Kubiś and Leiderman, 2004)

A compact space is **semi-Eberlein** if it is homeomorphic to a compact $\mathcal{K} \subseteq [0,1]^{\Gamma}$ such that $c_o(\Gamma) \cap \mathcal{K}$ is dense in \mathcal{K} .

Recall that $\Sigma(\Gamma) := \{x \in [0,1]^{\Gamma} : \operatorname{supp}(x) \text{ is countable} \}.$

A compact space is ...

if it is homeomorphic to $\mathcal{K}\subseteq [0,1]^\Gamma$ such that ...

and P-points

Theorem (Kubiś and Leiderman, 2004)

No semi-Eberlein compact space has a P-point.

- ▶ Used to show that there is K Corson, not semi-Eberlein.
- ▶ A point $p \in \mathcal{K}$ is a **P-point** if it is not isolated and for every choice of $(U_j)_{j<\omega}$ nghds of p, $\cap U_j$ is a nghd of p.

Question (Kubiś and Leiderman, 2004)

Can a semi-Eberlein compact space have weak P-points?

- A point $p \in \mathcal{K}$ is a **weak P-point** if it is not isolated and no sequence in $\mathcal{K} \setminus \{p\}$ converges to p.
- ▶ The compact space \mathcal{K}_{ϱ} in Theorem B is semi-Eberlein and it has a weak P-point.

Theorem A

There exists an Asplund space $\mathcal X$ with a 1-norming M-basis such that $\mathcal X$ is not WLD.

Theorem B

There exists a family $\mathcal{F}_{\varrho} \subseteq [\omega_1]^{<\omega}$ of finite subsets of ω_1 such that $\mathcal{K}_{\varrho} := \overline{\mathcal{F}_{\varrho}}$ has the following properties:

- (i) $\{\alpha\} \in \mathcal{K}_{\varrho}$ for every $\alpha < \omega_{\mathsf{1}}$,
- (ii) $[0, \alpha) \in \mathcal{K}_{\varrho}$ for every $\alpha \leqslant \omega_1$,
- (iii) if $\mathbf{A} \in \mathcal{K}_{\varrho}$ is an infinite set, then $\mathbf{A} = [\mathbf{0}, \alpha)$ for some $\alpha \leqslant \omega_{\mathbf{1}}$,
- (iv) \mathcal{K}_{ϱ} is scattered.

Thank you for your attention!

The Banach space \mathcal{X}_{ϱ}

The space that we are looking for is

$$\mathcal{X}_{\varrho} := \overline{\operatorname{span}}\{f_{\gamma}\}_{\gamma < \omega_1} \subseteq \mathcal{C}(\mathcal{K}_{\varrho}).$$

What do we know already?

- \triangleright \mathcal{X}_{ϱ} is Asplund (as \mathcal{K}_{ϱ} is scattered);
- $\blacktriangleright \ \{f_{\gamma}; \mu_{\gamma} \upharpoonright_{\mathcal{X}_{\varrho}}\}_{\gamma < \omega_{1}} \text{ is a biorthogonal system in } \mathcal{X}_{\varrho}.$

What do we still need?

- $ightharpoonup \mathcal{X}_{\varrho}$ is not WLD;
- ▶ $\operatorname{span}\{\mu_{\gamma}|_{\mathcal{X}_{\varrho}}\}_{\gamma<\omega_{1}}$ is a 1-norming subspace for \mathcal{X}_{ϱ} ;
- In particular, $\operatorname{span}\{\mu_{\gamma}\!\!\upharpoonright_{\mathcal{X}_{\varrho}}\}_{\gamma<\omega_{1}}$ is w^{*} dense, so $\{f_{\gamma};\mu_{\gamma}\!\!\upharpoonright_{\mathcal{X}_{\varrho}}\}_{\gamma<\omega_{1}}$ is an M-basis for \mathcal{X}_{ϱ} .

\mathcal{X}_o is not WLD

- ▶ We shall show that $[o, \omega_1]$ embeds in $(B_{\mathcal{X}_o^*}, \mathbf{w}^*)$.
- ▶ Define ι : $[o, \omega_1] \to \mathcal{K}_{\varrho}$ by $\alpha \mapsto [o, \alpha)$ (recall that $[o, \alpha) \in \mathcal{K}_{\varrho}$).

- Claim. e is injective.
 - Note that $e(A) := \delta_A \upharpoonright_{\mathcal{X}_a}$;
 - ▶ Let $A \neq B \in \mathcal{K}_{\varrho}$ and pick $\gamma \in A \setminus B$;

 - $\langle \delta_B |_{\mathcal{X}_0}, f_{\gamma} \rangle = f_{\gamma}(B) = 0.$

$\operatorname{span}\{\mu_{\gamma}\!\!\upharpoonright_{\mathcal{X}_{o}}\}_{\gamma<\omega_{\mathbf{1}}}$ is 1-norming

Claim. Let $A \in \mathcal{F}_{\rho}$. Then

$$\delta_{\mathsf{A}} \upharpoonright_{\mathcal{X}_{\varrho}} = \sum_{\alpha \in \mathsf{A}} \delta_{\{\alpha\}} \upharpoonright_{\mathcal{X}_{\varrho}}.$$

Proof. Just check that $\langle \delta_{\mathsf{A}}, f_{\gamma} \rangle = \left\langle \sum_{\alpha \in \mathsf{A}} \delta_{\{\alpha\}}, f_{\gamma} \right\rangle$. \checkmark In particular,

$$(\dagger) \qquad \{\delta_{\mathsf{A}} \upharpoonright_{\mathcal{X}_{\varrho}} \colon \mathsf{A} \in \mathcal{F}_{\varrho}\} \subseteq \operatorname{span}\{\mu_{\gamma} \upharpoonright_{\mathcal{X}_{\varrho}}\}_{\gamma < \omega_{1}}.$$

Finally, for every $f \in \mathcal{X}_{\varrho}$ we have

$$||f|| = \max_{A \in \mathcal{K}_{\varrho}} |f(A)| = \sup_{A \in \mathcal{F}_{\varrho}} |f(A)| = \sup_{A \in \mathcal{F}_{\varrho}} |\langle \delta_A, f \rangle|$$

$$\overset{(\dagger)}{\leqslant} \sup \left\{ |\langle \mu, \mathbf{f} \rangle| \colon \mu \in \operatorname{span}\{\mu_{\gamma} \! \upharpoonright_{\mathcal{X}_{\varrho}} \}_{\gamma < \omega_{1}}, \|\mu\| \leqslant \mathbf{1} \right\}.$$