Asplund Banach spaces and norming M-bases

Tommaso Russo (Joint with P. Hájek, J. Somaglia, and S. Todorčević)

Institute of Mathematics Czech Academy of Sciences June 23, 2020

- **1** Introduction and main results
- 2 ρ -functions and Theorem B
- 3 Proof of Theorem A
- 4 Semi-Eberlein compacta (*very* briefly)

- Introduction and main results
- 2 *Q*-functions and Theorem B
- 3 Proof of Theorem A
- 4 Semi-Eberlein compacta (very briefly)

Markuševič bases

A system $\{u_{\alpha}; \varphi_{\alpha}\}_{{\alpha} \in \Gamma} \subseteq X \times X^*$ is a **Markuševič basis** (**M-basis**, for short) for X if

- $\langle \varphi_{\beta}, u_{\alpha} \rangle = \delta_{\alpha,\beta}$,
- span $\{u_{\alpha}\}_{{\alpha}\in\Gamma}$ is dense in X,
- span $\{\varphi_{\alpha}\}_{{\alpha}\in \Gamma}$ is w^* -dense in \mathcal{X}^* .

$$\{\langle \varphi_{\alpha}, x \rangle : \alpha \in \Gamma\} \qquad \text{are the coordinates of } x \in X$$
$$\{\langle \psi, x_{\alpha} \rangle : \alpha \in \Gamma\} \qquad \text{are the coordinates of } \psi \in X^*.$$

It is tempting to ask if span $\{\varphi_{\alpha}\}_{{\alpha}\in \Gamma}$ exhausts ${\mathcal X}^*$ in a stronger sense.

Definition

An M-basis $\{u_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is λ -norming $(0 < \lambda \le 1)$ if

$$\lambda \|x\| \le \sup\{\langle \varphi, x \rangle \colon \varphi \in \operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}, \|\varphi\| \le 1\}.$$

 $\{u_{\alpha}; \varphi_{\alpha}\}_{{\alpha} \in \Gamma}$ is **shrinking** if span $\{\varphi_{\alpha}\}_{{\alpha} \in \Gamma}$ is dense in X^* .

Existence of Norming M-bases

- Markuševič, 1943. Every separable Banach space has a 1-norming M-basis.
- Amir-Lindenstrauss, 1968. Every WCG Banach space has an M-basis;
 - ⇒ Every reflexive space has a shrinking M-basis; def: X is WCG if it contains a linearly dense weakly compact subset.
- Properties of M-bases can characterise classes of Banach spaces: weakly compact, shrinking, countably norming, ...
- What about norming M-bases?
- **John–Zizler, 1974.** Do WCG spaces have a norming M-basis?

Theorem (Hájek, 2019)

There exists a WCG C(K) space with no norming M-basis. Actually, K is uniform Eberlein, so C(K) is also Hilbert-generated.

Towards the main result

- *def*: X is **Asplund** if every its separable subspace has separable dual.
 - C(K) is Asplund iff K is scattered.
 - Troyanski, John–Zizler, Orihuela–Valdivia, Fabian, ... TFAE:
 - (i) X has a shrinking M-basis;
 - (ii) X is WCG and Asplund;
 - (iii) X is WLD and Asplund;
 - (iv) X is WLD and X^* admits a dual LUR norm.
 - $\ell_1(\Gamma)$ admits a 1-norming M-basis.
 - Norming M-basis \implies WCG, or Asplund $(\ell_1(\omega_1))$;
 - Norming M-basis and WCG \implies Asplund (ℓ_1) .
 - Godefroy ~1990. Let X be an Asplund space with a norming M-basis. Is X WCG?

Theorem A

There exists an Asplund space X with a 1-norming M-basis such that X is not WLD.

A peculiar compact space

- $\mathcal{P}(\Gamma) \equiv \{0, 1\}^{\Gamma}$ by $A \leftrightarrow 1_A$;
- This gives a compact 'product' topology on $\mathcal{P}(\Gamma)$;
- If $A \in \mathcal{P}(\Gamma)$, $a_0, \ldots, a_n \in A$, $b_0, \ldots, b_n \notin A$

$$\mathcal{U} := \{ B \in \mathcal{P}(\Gamma) : a_0, \dots, a_n \in B, b_0, \dots, b_n \notin B \}$$

is a nghd of A in $\mathcal{P}(\Gamma)$.

Theorem B

There exists a family $\mathcal{F}_{\varrho} \subseteq [\omega_1]^{<\omega}$ of finite subsets of ω_1 such that $\mathcal{K}_{\varrho} := \overline{\mathcal{F}_{\varrho}}$ has the following properties:

- (i) $\{\alpha\} \in \mathcal{K}_{\alpha}$ for every $\alpha < \omega_1$,
- (ii) $[0, \alpha) \in \mathcal{K}_{\rho}$ for every $\alpha \leq \omega_1$,
- (iii) if $A \in \mathcal{K}_{\mathcal{Q}}$ is an infinite set, then $A = [0, \alpha)$ for some $\alpha \leq \omega_1$,
- (iv) \mathcal{K}_o is scattered.

- 2 ρ -functions and Theorem B
- 3 Proof of Theorem A
- 4 Semi-Eberlein compacta (*very* briefly)

Todorčević's ρ-functions

- S. Todorčević, Partitioning pairs of countable ordinals, *Acta Math.* 159 (1987), 261–294.
- S. Todorčević, Walks on ordinals and their characteristics. Birkhäuser Verlag, Basel, 2007.
- We consider functions $\rho: [\omega_1]^2 \to \omega$.
- We identify $[\omega_1]^2 = \{(\alpha, \beta) \in \omega_1^2 : \alpha < \beta\}.$
 - Thus, we write $\varrho(\alpha, \beta)$, with $\alpha < \beta$, for $\varrho(\{\alpha, \beta\})$.
- We also add the 'boundary condition' $\varrho(\alpha, \alpha) = 0$.

Definition (Todorčević)

A ϱ -function on ω_1 is a function $\varrho \colon [\omega_1]^2 \to \omega$ such that:

- $(\varrho 1) \ \{\xi \leq \alpha : \varrho(\xi, \alpha) \leq n\}$ is finite, for every $\alpha < \omega_1$ and $n < \omega$,
- $(\varrho 2) \ \varrho(\alpha, \gamma) \leq \max\{\varrho(\alpha, \beta), \varrho(\beta, \gamma)\} \text{ for } \alpha < \beta < \gamma < \omega_1,$
- $(\varrho 3) \ \varrho(\alpha, \beta) \leq \max\{\varrho(\alpha, \gamma), \varrho(\beta, \gamma)\} \text{ for } \alpha < \beta < \gamma < \omega_1.$

Definition of the compact \mathcal{K}_{o}

Proposition (Todorčević)

There exists a function $\varrho : [\omega_1]^2 \to \omega$ such that $(\alpha < \beta < \gamma < \omega_1)$:

- $\rho(\alpha,\beta) > 0$;
- $\rho(\alpha, \gamma) \leq \max\{\rho(\alpha, \beta), \rho(\beta, \gamma)\};$
- $\rho(\alpha, \gamma) \neq \rho(\beta, \gamma)$.

$$F_n(\alpha) := \{ \xi \leqslant \alpha : \varrho(\xi, \alpha) \leqslant n \}$$

$$\mathcal{F}_{\varrho} := \{ F_n(\alpha) : n < \omega, \alpha < \omega_1 \} \quad \text{and} \quad \mathcal{K}_{\varrho} := \overline{\mathcal{F}_{\varrho}}.$$

Fact

- $F_0(\alpha) = {\alpha};$
- $|F_n(\alpha)| \le n+1$;
- $(F_n(\alpha))_{n<\omega}$ converges to $[0,\alpha]$.

Th B again, aka \mathcal{K}_{o} verifies Th B

The compact space \mathcal{K}_{ϱ} has the following properties:

- (i) $\{\alpha\} \in \mathcal{K}_{\varrho}$ for every $\alpha < \omega_1$,
- (ii) $[0, \alpha) \in \mathcal{K}_{\rho}$ for every $\alpha \leq \omega_1$,
- (iii) if $A \in \mathcal{K}_{\varrho}$ is an infinite set, then $A = [0, \alpha)$ for some $\alpha \leq \omega_1$,
- (iv) \mathcal{K}_o is scattered.

Proof. (i)
$$\{\alpha\} = F_0(\alpha) \in \mathcal{K}_{\rho}$$
. \checkmark

(ii) If $\alpha = \alpha' + 1$, $[0, \alpha) = [0, \alpha'] = \lim_{n < \omega} F_n(\alpha') \in \mathcal{K}_{\varrho}$. If α is limit, $([0, \beta + 1))_{\beta < \alpha}$ converges to $[0, \alpha)$.

$(iii) \Longrightarrow (iv)$

- Let $\mathcal{D} \subseteq \mathcal{K}_{\varrho}$ be closed. Pick $D_0 \in \mathcal{D}$ s.t. $\exists \alpha < \beta, \alpha \notin D_0, \beta \in D_0$.
- Pick a maximal element $M \in \mathcal{D}$ with $\alpha \notin M$, $D_0 \subseteq M$.
- *M* is a finite set, by (iii).
- $\mathcal{U} := \{D \in \mathcal{D} : \alpha \notin D, M \subseteq D\} = \{M\}$, so M is isolated in \mathcal{D} .

Proof of (iii), $|A| = \omega$

(iii) if $A \in \mathcal{K}_{\varrho}$ is infinite, then $A = [0, \alpha)$ for some $\alpha \leq \omega_1$; def $F_n(\alpha) := \{ \xi \leq \alpha : \rho(\xi, \alpha) \leq n \}$.

Assume first $|A| = \omega$.

- Pick $\alpha \in A$ and $\tilde{\alpha} < \alpha$; we need $\tilde{\alpha} \in A$.
- Pick a sequence $(F_{n_k}(\alpha_k))_{k<\omega} \to A$ (Fréchet–Urysohn property).
- If $(n_k)_{k<\omega}$ is bounded, then $|F_{n_k}(\alpha_k)| \leq M$; so, A is finite.
- WLOG, $\varrho(\tilde{\alpha}, \alpha) \leq n_k$.
- Also, assume $\alpha \in F_{n_k}(\alpha_k)$, namely $\alpha \leq \alpha_k$ and $\varrho(\alpha, \alpha_k) \leq n_k$.
- By triangle inequality,

$$\varrho(\tilde{\alpha}, \alpha_k) \leq \max\{\varrho(\tilde{\alpha}, \alpha), \varrho(\alpha, \alpha_k)\} \leq n_k$$

so $\tilde{\alpha} \in F_{n_k}(\alpha_k)$. Passing to the limit, $\tilde{\alpha} \in A$.

Proof of (iii), $|A| = \omega_1$

 $\Sigma(\Gamma) := \{x \in [0, 1]^{\Gamma} : \operatorname{supp}(x) \text{ is countable} \}.$

Theorem (Deville-Godefroy, Kalenda)

Let $\mathcal{K} \subseteq [0,1]^{\omega_1}$ be a compact set such that $\mathcal{K} \cap \Sigma(\omega_1)$ is dense in \mathcal{K} .

Let $x \in \mathcal{K} \setminus \Sigma(\omega_1)$. Then there exists an embedding $\varphi \colon [0, \omega_1] \to \mathcal{K}$:

- (i) $\varphi(\alpha) \in \mathcal{K} \cap \Sigma(\omega_1)$, for $\alpha < \omega_1$,
- (ii) $supp(\varphi(\alpha)) \subseteq supp(\varphi(\beta))$, for $\alpha < \beta \leq \omega_1$,
- (iii) $\varphi(\omega_1) = x$.
 - In our case, there is $\varphi \colon [0, \omega_1] \to \mathcal{K}_{\varrho}$ with
 - (i) $|\varphi(\alpha)| \leq \omega$, for $\alpha < \omega_1$,
 - (ii) $\varphi(\alpha) \subseteq \varphi(\beta)$, for $\alpha < \beta \leq \omega_1$,
 - (iii) $\varphi(\omega_1) = A$, $\Longrightarrow \bigcup_{\alpha < \omega_1} \varphi(\alpha) = A$.
 - Hence, the sets $\varphi(\alpha)$ are infinite, for α large.
 - By the previous case, such $\varphi(\alpha)$ are initial intervals.

- Introduction and main results
- 2 *Q*-functions and Theorem B
- 3 Proof of Theorem A
- 4 Semi-Eberlein compacta (very briefly)

Working in the space $C(\mathcal{K}_{\!arrho})$

By Th B, pick $\mathcal{F}_{\rho} \subseteq [\omega_1]^{<\omega}$ such that $\mathcal{K}_{\rho} := \overline{\mathcal{F}_{\rho}}$ satisfies:

- (i) $\{\alpha\} \in \mathcal{K}_{\rho}$ for every $\alpha < \omega_1$,
- (ii) $[0, \alpha) \in \mathcal{K}_{\varrho}$ for every $\alpha \leq \omega_1$,
- (iii) ... (Sth we don't need anymore)
- (iv) \mathcal{K}_o is scattered.

We define a biorthogonal system $\{f_{\gamma}; \mu_{\gamma}\}_{{\gamma}<{\omega_1}}$ in $C(\mathcal{K}_{\varrho})$:

$$f_{\gamma} \in C(\mathcal{K}_{\varrho}) \qquad f_{\gamma}(A) = \begin{cases} 1 & \gamma \in A \\ 0 & \gamma \notin A \end{cases} \quad (A \in \mathcal{K}_{\varrho})$$

$$\mu_{\gamma} := \delta_{\{\gamma\}} \in \mathcal{M}(\mathcal{K}_{\varrho}) \qquad \mu_{\gamma}(S) = \begin{cases} 1 & \{\gamma\} \in S \\ 0 & \{\gamma\} \notin S \end{cases} \quad (S \subseteq \mathcal{K}_{\varrho}).$$

• $\langle \mu_{\alpha}, f_{\gamma} \rangle = f_{\gamma}(\{\alpha\}) = \delta_{\alpha, \gamma}$, so *it is* biorthogonal.

The Banach space \mathcal{X}_{ϱ}

The space that we are looking for is

$$\mathcal{X}_{\varrho} := \overline{\operatorname{span}} \{ f_{\gamma} \}_{\gamma < \omega_1} \subseteq C(\mathcal{K}_{\varrho}).$$

What do we know already?

- \mathcal{X}_{ϱ} is Asplund (as \mathcal{K}_{ϱ} is scattered);
- $\{f_{\gamma}; \mu_{\gamma} \upharpoonright_{\chi_{\varrho}}\}_{{\gamma}<\omega_1}$ is a biorthogonal system in X_{ϱ} .

What do we still need?

- X_{ϱ} is not WLD;
- span $\{\mu_{\gamma} \upharpoonright_{\chi_{\varrho}}\}_{\gamma < \omega_1}$ is a 1-norming subspace for X_{ϱ} ;
- In particular, span $\{\mu_{\gamma} \upharpoonright_{\chi_{\varrho}}\}_{\gamma < \omega_1}$ is w^* dense, so $\{f_{\gamma}; \mu_{\gamma} \upharpoonright_{\chi_{\varrho}}\}_{\gamma < \omega_1}$ is an M-basis for χ_{ϱ} .

\mathcal{X}_o is not WLD

- We shall show that $[0, \omega_1]$ embeds in $(B_{\chi_0^*}, w^*)$.
- Define $\iota: [0, \omega_1] \to \mathcal{K}_{\varrho}$ by $\alpha \mapsto [0, \alpha)$ (recall that $[0, \alpha) \in \mathcal{K}_{\varrho}$).

$$[0,\omega_{1}] \xrightarrow{\iota} \mathcal{K}_{\varrho} \xrightarrow{\delta} (B_{\mathcal{M}(\mathcal{K}_{\varrho})}, w^{*})$$

$$\downarrow^{q} \qquad \qquad \downarrow^{q} (B_{\mathcal{X}_{\varrho}^{*}}, w^{*})$$

- **Claim.** *e* is injective.
 - Note that $e(A) := \delta_A \upharpoonright_{X_a}$;
 - Let $A \neq B \in \mathcal{K}_{\wp}$ and pick $\gamma \in A \setminus B$;
 - $\langle \delta_A \upharpoonright_{X_\alpha}, f_{\gamma} \rangle = \langle \delta_A, f_{\gamma} \rangle = f_{\gamma}(A) = 1;$
 - $\langle \delta_B \upharpoonright_{X_\alpha}, f_{\gamma} \rangle = f_{\gamma}(B) = 0.$

$\operatorname{span}\{\mu_{\gamma} \upharpoonright_{\mathcal{X}_{o}}\}_{\gamma < \omega_{1}} \text{ is } 1\text{-norming}$

Claim. Let $A \in \mathcal{F}_{\rho}$. Then

$$\delta_A \upharpoonright_{\mathcal{X}_{\mathcal{Q}}} = \sum_{\alpha \in A} \delta_{\{\alpha\}} \upharpoonright_{\mathcal{X}_{\mathcal{Q}}}.$$

Proof. Just check that $\langle \delta_A, f_{\gamma} \rangle = \langle \sum_{\alpha \in A} \delta_{\{\alpha\}}, f_{\gamma} \rangle$. In particular,

$$(\dagger) \qquad \{\delta_A \upharpoonright_{\mathcal{X}_{\varrho}} \colon A \in \mathcal{F}_{\varrho}\} \subseteq \operatorname{span}\{\mu_{\gamma} \upharpoonright_{\mathcal{X}_{\varrho}}\}_{\gamma < \omega_1}.$$

Finally, for every $f \in \mathcal{X}_{\varrho}$ we have

$$||f|| = \max_{A \in \mathcal{K}_{\varrho}} |f(A)| = \sup_{A \in \mathcal{F}_{\varrho}} |f(A)| = \sup_{A \in \mathcal{F}_{\varrho}} |\langle \delta_A, f \rangle|$$

$$\overset{(\dagger)}{\leqslant} \sup \left\{ |\langle \mu, f \rangle| \colon \mu \in \operatorname{span}\{\mu_{\gamma} \!\upharpoonright\! \chi_{\varrho}\}_{\gamma < \omega_{1}}, \|\mu\| \leqslant 1 \right\}.$$

- Introduction and main results
- 2 *Q*-functions and Theorem B
- 3 Proof of Theorem A
- 4 Semi-Eberlein compacta (*very* briefly)

Semi-Eberlein spaces

Definition (Kubiś and Leiderman, 2004)

A compact space is **semi-Eberlein** if it is homeomorphic to a compact $\mathcal{K} \subseteq [0,1]^{\Gamma}$ such that $c_0(\Gamma) \cap \mathcal{K}$ is dense in \mathcal{K} .

Recall that $\Sigma(\Gamma) := \{x \in [0, 1]^{\Gamma} : \operatorname{supp}(x) \text{ is countable} \}.$

A compact space is ...

if it is homeomorphic to $\mathcal{K} \subseteq [0,1]^{\Gamma}$ such that ...

and P-points

Theorem (Kubiś and Leiderman, 2004)

No semi-Eberlein compact space has a P-point.

- Used to show that there is \mathcal{K} Corson, not semi-Eberlein.
- A point $p \in \mathcal{K}$ is a **P-point** if it is not isolated and for every choice of $(U_j)_{j<\omega}$ nghds of p, $\cap U_j$ is a nghd of p.

Question (Kubiś and Leiderman, 2004)

Can a semi-Eberlein compact space have weak P-points?

- A point $p \in \mathcal{K}$ is a **weak P-point** if it is not isolated and no sequence in $\mathcal{K} \setminus \{p\}$ converges to p.
- The compact space \mathcal{K}_{ϱ} in Theorem B is semi-Eberlein and it has a weak P-point.

Theorem A

There exists an Asplund space X with a 1-norming M-basis such that X is not WLD.

Theorem B

There exists a family $\mathcal{F}_{\varrho} \subseteq [\omega_1]^{<\omega}$ of finite subsets of ω_1 such that $\mathcal{K}_{\varrho} := \overline{\mathcal{F}_{\varrho}}$ has the following properties:

- (i) $\{\alpha\} \in \mathcal{K}_{\rho}$ for every $\alpha < \omega_1$,
- (ii) $[0, \alpha) \in \mathcal{K}_{\varrho}$ for every $\alpha \leq \omega_1$,
- (iii) if $A \in \mathcal{K}_{\varrho}$ is an infinite set, then $A = [0, \alpha)$ for some $\alpha \leq \omega_1$,
- (iv) \mathcal{K}_{ρ} is scattered.

Thank you for your attention!