An uncountable version of Pták's lemma

(Joint work with P. Hájek)

Tommaso Russo

Faculty of Electrical Engineering Czech Technical University in Prague 47th Winter School in Abstract Analysis Svratka January 12-19, 2019

References and Acknowledgements

P. Hájek and T. Russo, An uncountable version of Pták's combinatorial lemma, *J. Math. Anal. Appl.* **470** (2019), 1070–1080.

International Mobility of Researchers in CTU
Project number: CZ.02.2.69/0.0/0.0/16_027/0008465

Convex means

Given a set S, a *convex mean* λ on S is a function $\lambda: S \to [0, \infty)$ such that:

- (i) the set $supp(\lambda) := \{s \in S : \lambda(s) \neq 0\}$ is finite
- (ii)

$$\sum_{s=0}^{\infty} \lambda(s) = 1.$$

A family $\mathcal{F} \subseteq 2^{\mathcal{S}}$ is hereditary if $G \subseteq F \in \mathcal{F}$ yields $G \in \mathcal{F}$.

Pták's combinatorial lemma, 1959

Let S be an infinite set and let $\mathcal{F} \subseteq [S]^{<\omega}$ be an hereditary family. If

(†)
$$\delta := \inf \left\{ \sup_{F \in \mathcal{F}} \lambda(F) : \lambda \text{ is a convex mean on } S \right\} > 0,$$

there exists an infinite subset M of S such that every finite subset of M is in \mathcal{F} .

- V. Pták, A combinatorial theorem on systems of inequalities and its application to analysis, *Czechoslovak Math. J.* **84** (1959), 629–630.
- V. Pták, A combinatorial lemma on the existence of convex means and its application to weak compactness, *Proc. Sympos. Pure Math.* **7** (1963), 437–450.
- S. Simons, A theorem on lattice ordered groups, results of Ptak, Namioka and Banach, and a front-ended proof of Lebesgue's theorem, *Pacific J. Math.* **20** (1967), 149–153.
- S. Simons, On Ptak's combinatorial lemma, *Pacific J. Math.* **40** (1972), 719–721.
- S.F. Bellenot, R. Haydon, and E. Odell, Quasi-reflexive and tree spaces constructed in the spirit of R.C. James, *Contemp. Math.* 85 (1989), 19–43.
- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler, A quantitative version of Krein's theorem, *Rev. Mat. Iberoamericana* **21** (2005), 237–248.

Applications of the lemma: Krein Theorem

A subset *A* of a Banach space *X* interchanges limits if for every pair of sequences $(x_n) \subseteq A$ and $(x_k^*) \subseteq B_{X^*}$ the existence of

$$\lim_{n\to\infty}\lim_{k\to\infty}\langle x_k^*,x_n\rangle \qquad \lim_{k\to\infty}\lim_{n\to\infty}\langle x_k^*,x_n\rangle$$

implies their equality.

Grothendieck, **1952**: A bounded subset *A* of a Banach space *X* is relatively weakly compact if and only if it interchanges limits.

Theorem (Pták, 1963)

If a bounded subset A of a Banach space interchanges limits, then so does conv A.

Krein's theorem then follows immediately.

Applications of the lemma: Mazur Theorem

Mazur Theorem

Let $(f_n)_{n=1}^{\infty} \subseteq C(K)$ be a bounded sequence of continuous functions that converge pointwise to a continuous function f. Then f can be uniformly approximated by convex combinations of the f_n .

The classical proof depends on the Hahn–Banach and Riesz Representation Theorems. Pták's lemma allows for a self-contained simple proof, which, in particular, involves no measure theory whatsoever.

▶ Assume that f = 0 and $||f_n|| \le 1$. Consider, for $x \in K$, the finite set

$$F_X := \{ n \in \mathbb{N} : |f_n(x)| \geqslant \varepsilon/2 \}.$$

- ▶ Let \mathcal{F} comprise all subsets of F_x , $x \in K$.
- ▶ Pták's lemma yields a convex mean λ on $\mathbb N$ such that $\lambda(F_x) < \varepsilon/2$ whenever $x \in K$.
- ▶ The function $\sum_{n=1}^{\infty} \lambda(n) f_n$ is then as desired.

A couple of ideas from the proof (S.F. Bellenot, R. Haydon, and E. Odell)

► Condition (†) implies that

$$||x|| := \sup_{F \in \mathcal{F}} \left| \sum_{s \in F} x(s) \right| \qquad x \in c_{00}(S)$$

is equivalent to the $\ell_1(S)$ -norm. Therefore, the completion X of $(c_{00}(S), \|\cdot\|)$ is isomorphic to $\ell_1(S)$.

- ▶ $F \in \mathcal{F}$ naturally defines a functional $F^* \in B_{X^*}$ by $x \mapsto \sum_{s \in F} x(s)$; since $\mathcal{F}^* := \{F^* : F \in \mathcal{F}\}$ is 1-norming for X, X embeds in $C\left(\overline{\mathcal{F}^*}^{w^*}\right)$.
- ▶ $\overline{\mathcal{F}^*}^{w^*}$ can be identified with the closure $\overline{\mathcal{F}}$ of \mathcal{F} in the pointwise topology of 2^S .

Consequently, $C(\overline{\mathcal{F}})$ contains a copy of $\ell_1(S)$.

Uncountable extensions

Let κ be an infinite cardinal number. We say that $Pt\acute{a}k$'s lemma holds true for κ if for every set S with $|S| \geqslant \kappa$ and every hereditary family $\mathcal{F} \subseteq [S]^{<\omega}$ such that

$$(\dagger) \qquad \delta := \inf \left\{ \sup_{F \in \mathcal{F}} \lambda(F) \colon \lambda \ \text{ is a convex mean on } \mathcal{S} \right\} > 0,$$

there is a subset M of S, with $|M| = \kappa$, such that every finite subset of M belongs to \mathcal{F} .

Theorem (Hájek and R., JMAA 2019)

The validity of Pták's lemma for ω_1 is independent of ZFC.

- (i) (MA_{ω_1}) Pták's lemma holds true for ω_1 ;
- (ii) (CH) Pták's lemma fails to hold for ω_1 .

If κ is regular and $\lambda^\omega < \kappa$ whenever $\lambda < \kappa$, then Pták's lemma is true for κ .

A closely related problem

Let K be a Corson compact and τ be an uncountable cardinal.

Problem: Does $\ell_1(\tau)$ embed in C(K)?

- ▶ MA_{ω_1} implies that C(K) is WLD, whence the answer is no;
- ▶ Under CH, $\ell_1(\omega_1)$ may embed in C(K) (Erdős' space);
- \blacktriangleright $\ell_1(\mathfrak{c}^+)$ does not embed in C(K) (Haydon);
- ▶ Is it consistent that $\ell_1(\omega_2)$ embeds in C(K)?

Thank you for your attention!