Università degli studi di Milano Department of Mathematics 'Federigo Enriques'

On some open problems in Banach space theory

Tommaso Russo

Ph.D. thesis advised by: Proff. Clemente Zanco and Petr Hájek

> Milano February 1, 2019

References

- [GMZ] A.J. Guirao, V. Montesinos, and V. Zizler, *Open problems in the geometry and analysis of Banach spaces*, Springer, 2016.
- [HKR1] P. Hájek, T. Kania, and T. Russo, Symmetrically separated sequences in the unit sphere of a Banach space, J. Funct. Anal. 275 (2018), 3148–3168.
- [HKR2] P. Hájek, T. Kania, and T. Russo, Separated sets and Auerbach systems in Banach spaces, preprint (2018), arXiv:1711.05149.
 - [HR1] P. Hájek and T. Russo, Some remarks on smooth renormings of Banach spaces, *J. Math. Anal. Appl.* **455** (2017), 1272–1284.
 - [HR2] P. Hájek and T. Russo, An uncountable version of Pták's combinatorial lemma, *J. Math. Anal. Appl.* **470** (2019), 1070–1080.

Overview

- [HR1] Is dedicated to the problem of smooth approximation of norms in separable Banach spaces.
 - ► **Hájek–Talponen, 2014:** If a separable Banach space admits a *C*^k smooth norm, then every equivalent norm can be approximated by *C*^k smooth ones.
 - We sharpen this result by obtaining an 'asymptotically optimal' approximation, which, in particular, preserves every asymptotic property of the underlying Banach space.
- [HR2] Is dedicated to a well known lemma due to Vlastimil Pták.
 - Pták's lemma asserts the validity of a combinatorial property for the cardinal number ω .
 - ▶ We show that the analogous property for the cardinal ω_1 is undecidable in ZFC.
 - We also give sufficient conditions on a cardinal number κ for the validity of Pták's lemma for κ .

Table of contents

Symmetric Separation in Separable Banach spaces

Non-separable Reflexive Banach Spaces

Systems of coordinates

Separated unit vectors

Hereinafter, X is an **infinite-dimensional** Banach space.

A subset A of X is δ -separated (resp. $(\delta+)$ -separated) if $\|x-y\| \ge \delta$ (resp. $\|x-y\| > \delta$) for distinct $x,y \in A$.

The Riesz lemma (1916). The unit sphere of X contains a 1-separated sequence. (Consequently, B_X is not compact.)

Kottman's theorem (1975). The unit sphere of X contains a (1+)-separated sequence.

The Elton–Odell theorem (1981). S_X contains a $(1 + \varepsilon)$ -separated sequence (for some $\varepsilon > 0$, that depends on X).

Symmetric separation

Actually, in Riesz' lemma $||x_n \pm x_k|| \ge 1$ for $n \ne k \in \mathbb{N}$.

Definition

A sequence $(x_n)_{n=1}^\infty$ in a normed space X is symmetrically $(\delta+)$ -separated (respectively, symmetrically δ -separated) if $\|x_n \pm x_k\| > \delta$ (respectively, $\|x_n \pm x_k\| \geqslant \delta$) for distinct n,k.

The symmetric Kottman's constant

$$K^{s}(X) := \sup \Big\{ \sigma > 0 \colon \exists (x_n)_{n=1}^{\infty} \subset B_X \colon ||x_n \pm x_k|| \geqslant \sigma \ \forall n \neq k \Big\}.$$

Problem (J.M.F. Castillo and P.L. Papini, 2011): Is $K^s(X) > 1$ for every infinite-dimensional Banach space?

Towards a symmetric Elton-Odell theorem

Theorem, [HKR1]

Let X be an infinite-dimensional Banach space. Then the unit sphere of X contains a symmetrically (1+)-separated sequence.

Theorem, [HKR1]

Let X be a Banach space that contains a boundedly complete basic sequence. Then, for some $\varepsilon>0$, the unit sphere of X contains a symmetrically $(1+\varepsilon)$ -separated sequence.

Consequences. Let X be infinite-dimensional. Then $K^s(X) > 1$ if:

- X is reflexive;
- X contains a (subspace isomorphic to a) separable dual;
- ▶ in particular, X has RNP (or, more generally, PCP);
- X contains an unconditional basic sequence.

Some quantitative results

- $ightharpoonup K^s(\ell_p) = 2^{1/p}$, for $p \in [1, \infty)$;
- $K^s(X) = 2$, if X contains c_0 or ℓ_1 (James' non-distortion theorem);
- $K^s(X) = 2$, if X has a c_0 (or ℓ_1) quotient;
- ▶ Castillo–Papini (2011). If X is a \mathcal{L}_{∞} -space, then $K^{s}(X) = 2$;
- ▶ **Delpech (2010).** $K^s(X) \ge 1 + \delta_X(1)$;
- ▶ **[HKR1].** $K^s(X) = 2$, if X has an ℓ_1 spreading model;
- ► [HKR1]. In particular, $K^s(X) = 2$ for every renorming X of Tsirelson's space T;
- ▶ [HKR1]. If X has non-trivial cotype q, then $K^s(X) \geqslant 2^{1/q}$.

Uncountable separated sets

Henceforth, X is a **non-separable** Banach space. Therefore B_X contains an uncountable ε -separated subset, for some $\varepsilon > 0$.

- ▶ Does S_X contain an uncountable (1+)-separated subset?
- ▶ Can we find a (1+)-separated subset with cardinality dens(X)?
- ▶ What about $(1 + \varepsilon)$ -separated?

Elton–Odell (1981). Let $\mathcal{F} \subseteq S_{c_0(\Gamma)}$ be $(1+\varepsilon)$ -separated, for some $\varepsilon > 0$. Then \mathcal{F} is countable.

Theorem, [HKR2]

Let $\mathcal{F} \subseteq S_{c_0(\Gamma)}$ be (1+)-separated. Then $|\mathcal{F}| \leqslant \omega_1$.

A main question: Let X be non-separable. Does the unit sphere of X contain an uncountable (1+)-separated subset?

A glimpse at the literature

Non-separable C(K) spaces:

- ▶ The unit sphere of C(K) contains an uncountable (1+)-separated set (Kania–Kochanek; significantly improved by Cúth–Kurka–Vejnar);
- ▶ The existence of an uncountable $(1 + \varepsilon)$ -separated subset of the unit sphere of C(K) is independent of ZFC (Koszmider).

Theorem (Kania-Kochanek, 2016)

- ▶ Let X be a non-separable, reflexive Banach space. Then there is an uncountable (1+)-separated subset $\mathcal{F} \subseteq S_X$;
- Let X be super-reflexive and $\lambda \leqslant \operatorname{dens} X$ have uncountable cofinality. Then, for some $\varepsilon > 0$, S_X contains a $(1 + \varepsilon)$ -separated subset with cardinality λ .

Reflexivity

Theorem, [HKR2]

Let X be a reflexive Banach space. Then:

- ► The unit sphere of X contains a (1+)-separated subset of cardinality dens X;
- ► For every $\lambda \leq \operatorname{dens} X$ with $\operatorname{cf} \lambda$ uncountable, S_X contains a $(1 + \varepsilon)$ -separated subset with cardinality λ .
- We have better and optimal results, with simpler proofs;
- We obtain both clauses by means of the same argument;
- ▶ The same circle of ideas covers further classes of Banach spaces, most notably, Banach spaces with the Radon–Nikodym property.

Super-reflexivity

Example (Kania-Kochanek): the unit sphere of

$$X := \left(\bigoplus_{n \in \mathbb{N}} \ell_{p_n}(\omega_n)\right)_{\ell_2} \qquad (p_n)_{n=1}^{\infty} \subseteq (1, \infty), \ p_n \nearrow \infty$$

does not contain $(1+\varepsilon)$ -separated subsets of cardinality $\omega_{\omega}=\mathrm{dens}\,X.$ However, X is not super-reflexive.

Theorem, [HKR2]

Let X be a super-reflexive Banach space. Then there exist $\varepsilon>0$ and a $(1+\varepsilon)$ -separated subset of S_X of cardinality $\mathrm{dens}\, X$.

Large Banach spaces

Theorem, [HKR2]

- ▶ Assume that X is a 'large' Banach space (more precisely, assume w^* -dens $X^* > \exp_2 \mathfrak{c}$). Then both S_X and S_{X^*} contain an uncountable (1+)-separated subset.
 - In particular, the assumption is satisfied whenever $\operatorname{dens} X > \exp_3 \mathfrak{c}$.
- ▶ Let X be a WLD space with dens $X \ge c^+$. Then S_X and S_{X^*} contain uncountable (1+)-separated subsets.

Open problem: What about X WLD with dens $X = \omega_1$?

An important ingredient in these proofs is the use of Auerbach systems; in particular, the existence of a 'large' Auerbach system allows us to construct such separated sets.

Auerbach systems

An Auerbach system is a collection $\{x_{\gamma}; x_{\gamma}^*\}_{\gamma \in \Gamma} \subseteq X \times X^*$ such that $\langle x_{\alpha}^*, x_{\beta} \rangle = \delta_{\alpha,\beta}$ and $\|x_{\gamma}\| = \|x_{\gamma}^*\| = 1$.

Theorem, [HKR2]

- ▶ Let $\kappa \geqslant \mathfrak{c}$ be a cardinal number and let X be a Banach space with w^* -dens $X^* > \exp_2 \kappa$. Then X admits a subspace Y with Auerbach basis and such that dens $Y = \kappa^+$.
- ▶ Every WLD Banach space X with dens $X > \omega_1$ contains a subspace Y with Auerbach basis and such that dens Y = dens X.

For X separable, the result is a well-know theorem of M. Day.

Problem (1): What happens if X is WLD and dens $X = \omega_1$?

Renorming $c_0(\omega_1)$

Problem (2), [GMZ]. Does there exist a non-separable Banach space X with unconditional basis such that no non-separable subspace of X has an Auerbach basis?

Theorem, [HKR2]

(CH) There exists a renorming $\|\cdot\|$ of the space $c_0(\omega_1)$ such that the space $(c_0(\omega_1), \|\cdot\|)$ contains no uncountable Auerbach systems.

Consequently, assuming the Continuum Hypothesis:

- ► There exists a non-separable Banach space with unconditional basis whose no non-separable subspace admits an Auerbach basis.
- ► There exists a WLD Banach space X with dens $X = \omega_1$ every whose non-separable subspace fails to have an Auerbach basis.

Therefore, under CH, we can answer both Problems (1) and (2).

Thank you for your attention!