Faculty of Electrical Engineering Czech Technical University in Prague

On densely isomorphic normed spaces

Tommaso Russo
(Joint project with S. Dantas and P. Hájek)

Banach spaces and optimization Métabief, France June 16–21, 2019

International Mobility of Researchers in CTU Project number: CZ.02.2.69/0.0/0.0/16_027/0008465

The starting question

Problem

How different can two dense subspaces of a Banach space be?

In this talk, subspaces are NOT assumed to be closed.

Example 1: c_{00} and c_0 (as dense subspaces of c_0).

- $ightharpoonup c_{00}$ is meager, has a countable Hamel basis, is 'very small';
- $ightharpoonup c_0$ is a Baire space.

Example 2: An incomplete normed space X and its completion X.

Example 3: c_{00} and $(\ell_1, \|\cdot\|_{\infty})$ (as dense subspaces of c_0).

- ▶ There is a (non-equivalent) complete norm on $(\ell_1, \|\cdot\|_{\infty})$;
- ▶ There is no complete norm on c_{00} .

Setting the scene

Definition

Two normed spaces X and Y are *densely isomorphic* if there exist dense subspaces X_0 of X and Y_0 of Y such that X_0 and Y_0 are isomorphic.

- Isomorphic normed spaces are densely isomorphic, a fortiori;
- Every normed space X is densely isomorphic to its completion X;
- ▶ If X and Y are densely isomorphic, then \widetilde{X} and \widetilde{Y} are isomorphic;
- ► Two densely isomorphic <u>Banach</u> spaces are isomorphic.

In particular, given densely isomorphic normed spaces, we can assume that they are dense subspaces of the same Banach space.

Problem

Let Y and Z be dense subspaces of a Banach space X. Must Y and Z be densely isomorphic?

The separable case

Theorem A

Let Y and Z be dense subspaces of a <u>separable</u> Banach space X. Then Y and Z are densely isomorphic.

Proof. We apply a perturbation argument to an M-basis of X.

- ▶ Let $\{e_j; e_j^*\}_{j=1}^{\infty}$ be a bounded M-basis for X and $(\varepsilon_j)_{j=1}^{\infty} \searrow 0$;
- ▶ Find $(y_j)_{j=1}^{\infty} \subseteq Y$ and $(z_j)_{j=1}^{\infty} \subseteq Z$ with $||y_j e_j||, ||z_j e_j|| < \varepsilon_j$;
- As in the proof of the small perturbation lemma, we prove that $Y_0 := \operatorname{span}(y_j)_{j=1}^\infty$ and $Z_0 := \operatorname{span}(z_j)_{j=1}^\infty$ are isomorphic;
- ▶ Finally, Y_0 and Z_0 are dense in X.

Remark

Any two dense subspaces Y and Z of $\ell_1(\Gamma)$ are densely isomorphic.

The non-separable nature of the problem

A Banach space X is weakly Lindelöf determined (hereinafter, WLD) if the dual ball B_{X^*} is a Corson compact in the relative w^* -topology.

For our purposes, X is WLD if it admits an M-basis $\{x_\gamma; x_\gamma^*\}_{\gamma \in \Gamma}$ that countably supports X^* , i.e.,

$$\operatorname{supp} x^* := \{ \gamma \in \Gamma \colon \langle x^*, x_\gamma \rangle \neq 0 \}$$

is a countable subset of Γ , for every $x^* \in X^*$.

Theorem B

Let X be a WLD Banach space such that $\omega_1 \leqslant \operatorname{dens} X \leqslant \mathfrak{c}$. Then there exists a closed subspace X_0 of X, with $\operatorname{dens} X_0 = \operatorname{dens} X$, that contains two dense subspaces Y and Z which are not densely isomorphic.

Corollary. There exist two dense subspaces Y and Z of the Hilbert space $\ell_2(\omega_1)$ that are not densely isomorphic.

Finding the subspaces

- ▶ Let $\{e_{\gamma}; e_{\gamma}^*\}_{{\gamma}<{\Gamma}}$ be a normalised M-basis for X ($\Gamma := \operatorname{dens} X$);
- ▶ Pick an injective long sequence $(q_{\gamma})_{\omega \leqslant \gamma < \Gamma}$ in (0,1);
- Set

$$\widetilde{e}_{\gamma} := e_{\gamma} + \sum_{j=1}^{\infty} (q_{\gamma})^{j} \cdot e_{j} \qquad (\omega \leqslant \gamma < \Gamma);$$

- $ightharpoonup X_0 := \overline{\operatorname{span}}\{\tilde{e}_{\gamma}\}_{\omega \leqslant \gamma < \Gamma}$ (a WLD Banach space);
- $Y := \operatorname{span}\{\tilde{e}_{\gamma}\}_{\omega \leqslant \gamma < \Gamma};$
- $ightharpoonup Z := \operatorname{span}\{v_{\alpha}\}_{{\alpha}<{\Gamma}}$, where $\{v_{\alpha}; \varphi_{\alpha}\}_{{\alpha}<{\Gamma}}$ is an M-basis for X_0 ;
- ▶ Fact 1. $(e_n^*)_{n=1}^{\infty}$ separates points on Y (Vandermonde matrices);
- ► Fact 2. No dense subspace of Z admits a separating sequence of functionals.

Therefore, Y and Z are not densely isomorphic.

A stronger result, under CH

Theorem C

(CH) Let X be a WLD Banach space with $\operatorname{dens} X = \omega_1$. Then there exists a dense subspace Y of X that contains no uncountable biorthogonal system.

Particular case. (CH) There exists a dense subspace of the Hilbert space $\ell_2(\omega_1)$ that contains no uncountable biorthogonal system.

Lemma

Let $\{e_{\alpha};e_{\alpha}^*\}_{\alpha\in\Gamma}$ be an M-basis for a Banach space X. Then every non-separable subspace of $Z:=\operatorname{span}\{e_{\alpha}\}_{\alpha\in\Gamma}$ contains an uncountable biorthogonal system.

Therefore, no non-separable subspace of Y is isomorphic to a subspace of Z (and, in particular, Y and Z are not densely isomorphic).

Thank you for your attention!