Faculty of Electrical Engineering Czech Technical University in Prague

Projections onto spaces of polynomials

Tommaso Russo
(Joint work in progress with P. Hájek)

Workshop on Banach spaces and Banach lattices Madrid, Spain September 9–13, 2019

The starting point

- ▶ A Banach space X has the AP if for every compact set $K \subseteq X$ and $\varepsilon > 0$ there exists a finite-rank, bounded linear operator $T \colon X \to X$ such that $\|Tx x\| < \varepsilon \ (x \in K)$;
- ▶ X has λ -BAP if additionally $||T|| \leq \lambda$.

Theorem (Godefroy and Kalton, 2003)

A Banach space X has the λ -BAP if and only if $\mathcal{F}(X)$ has the λ -BAP.

▶ In particular, $\mathcal{F}(\ell_2)$ has the MAP (≡ 1-BAP).

Problem (Godefroy)

Does $Lip_0(\ell_2)$ have the AP?

- ▶ **Grothendieck (1955)**. The AP passes from X* to X;
- ▶ Hence, this would be a stronger result.

Our approach

For a Banach space X, $\mathcal{P}(^2X)$ is a subspace of $Lip_0(X)$.

- ▶ $\mathcal{P}(^2X)$ is the Banach space of bounded 2-homogeneous polynomials on X.
 - ▶ $P \in \mathcal{P}(^2X)$ if there is a bounded bilinear map $M: X \times X \to \mathbb{R}$ such that P(x) = M(x, x);
 - $||P||_{\mathcal{P}} = \sup_{x \in B_X} |P(x)|.$
- ▶ But polynomials are **not** Lipschitz functions!
- However, they are Lipschitz on the unit ball.
 - ▶ Therefore, $\mathcal{P}(^2X)$ is a natural subspace of $Lip_0(B_X)$;
 - ▶ Moreover, $\|\cdot\|_{\mathcal{P}}$ is equivalent to $\|\cdot\|_{\mathit{Lip}}$.
- ▶ Consequently, $\mathcal{P}(^2X)$ is naturally isomorphic to a subspace of $Lip_0(B_X)$, via the restriction map

$$P \mapsto P \upharpoonright_{B_{\mathbf{x}}}$$

Why such approach?

- ▶ The AP passes to complemented subspaces;
- ▶ Dineed and Mujica (2015). $\mathcal{P}(^2\ell_2)$ does not have the AP;
- ▶ So, if $\mathcal{P}(^2\ell_2) \subseteq Lip_0(B_{\ell_2})$ is complemented, then $Lip_0(B_{\ell_2})$ fails to have the AP.

Question

Is $\mathcal{P}(^2\ell_2)\subseteq Lip_0(B_{\ell_2})$ a complemented subspace?

- **Kaufmann (2015).** $Lip_0(X)$ is isomorphic to $Lip_0(B_X)$;
- ▶ Thus, a positive answer to this question would yield that $Lip_0(\ell_2)$ fails to have the AP.

Some more motivation

Question (Repetita iuvant)

Is $\mathcal{P}(^2\ell_2)\subseteq \mathit{Lip}_0(B_{\ell_2})$ a complemented subspace?

Theorem (Lindenstrauss, 1964)

 X^* is a 1-complemented subspace of $Lip_0(X)$.

- ▶ Evidently, $X^* = \mathcal{P}(^1X)$;
- ► The above question is also about the possibility to extend Lindenstrauss' result to polynomials;
- ▶ If 'yes', we can answer in the negative Godefroy's question;
- ▶ If 'no', Lindenstrauss' result admits no polynomial version.

Sooo..., Yes or no?

Theorem (Hájek and R.)

NO. $\mathcal{P}(^2\ell_2)\subseteq Lip_0(B_{\ell_2})$ is not complemented.

- ▶ We didn't solve the problem we started with;
- ▶ But, at least, we can tell that this is not the correct approach.
- ▶ Aron and Schottenloher (1976). $\mathcal{P}(^{n}\ell_{1})$ is isomorphic to ℓ_{∞} .

The result follows from a finite-dimensional, quantitative counterpart.

Theorem (Hájek and R.)

Let E_n be \mathbb{R}^n with euclidean norm. If Q is any projection from $Lip_0(B_{E_n})$ onto $\mathcal{P}(^2E_n)$, then

$$\|Q\| \geqslant c \cdot \left(n - 2\sqrt{2}\right)^{1/5}.$$

A few consequences

- ▶ If a Banach space X contains $(\ell_2^n)_{n=1}^\infty$ uniformly complemented, then $\mathcal{P}(^2X)$ is not complemented in $Lip_0(B_X)$;
- ▶ **Tzafriri (1974).** If a Banach space admits an unconditional basis, then there is $p \in \{1, 2, \infty\}$ such that $(\ell_p^n)_{n=1}^\infty$ is uniformly complemented in X;
- ▶ If, additionally, X has non-trivial type, it must be p = 2.

Corollary/Theorem (Hájek and R.)

If a Banach space X an unconditional basis and non-trivial type, then $\mathcal{P}(^2X)$ is not complemented in $Lip_0(B_X)$.

- $\blacktriangleright \ell_p \ (1$
- ▶ L_p (1 < p < ∞);
- ▶ Recall: $\mathcal{P}(^2\ell_1)$ is complemented in $Lip_0(B_{\ell_1})$ (Aron–Schottenloher).