# Auerbach systems in WLD spaces

(Joint work with P. Hájek and T. Kania)

Tommaso Russo

russotom@fel.cvut.cz

Faculty of Electrical Engineering Czech Technical University in Prague Banach Spaces and their Applications Lviv June 26-29, 2019



## References and Acknowledgements



P. Hájek, T. Kania, and T. Russo Separated sets and Auerbach systems in Banach spaces Preprint available on arXiv: 1803.11501

International Mobility of Researchers in CTU
Project number: CZ.02.2.69/0.0/0.0/16\_027/0008465





## Systems of coordinates

▶ A collection  $\{x_{\gamma}; x_{\gamma}^*\}_{\gamma \in \Gamma} \subseteq X \times X^*$  is a biorthogonal system if

$$\langle \mathbf{x}_{\alpha}^*, \mathbf{x}_{\beta} \rangle = \delta_{\alpha,\beta} \qquad (\alpha, \beta \in \Gamma).$$

- ▶ If  $||x_{\gamma}|| = ||x_{\gamma}^*|| = 1$ , the system is said to be an *Auerbach system*.
- An M-basis is a biorthogonal system such that:

$$\overline{\operatorname{span}}\{x_{\gamma}\}_{\gamma\in\Gamma}=X\qquad \&\qquad \overline{\operatorname{span}}^{w^*}\{x_{\gamma}^*\}_{\gamma\in\Gamma}=X^*.$$

► An Auerbach basis is an M-basis with  $||x_{\gamma}|| = ||x_{\gamma}^*|| = 1$ .

**Auerbach (1934).** Every finite-dimensional normed space contains an Auerbach basis.

**Day (1962).** Every infinite-dimensional Banach space contains an infinite-dimensional subspace with an Auerbach basis, in particular it contains an infinite Auerbach system.

## And spaces with few of them

- Kunen (1975). (CH) There exists a non-separable Banach space that contains no uncountable biorthogonal system.
  - ➤ Other examples: (♣) Ostaszewski (1975), (♦) Shelah (1985).
  - Todorčević (2006). (MM) Every non-separable Banach space contains uncountable biorthogonal systems.
- ▶ **Johnson (1970).**  $\ell_{\infty}$  has no M-basis.
- ▶ Plichko (1986).  $c_0[0, 1] + C[0, 1]$  has no Auerbach basis.
- ► Godun-Lin-Troyanski (1993). Every non-separable Banach space X with B<sub>X\*</sub> w\*-separable, admits an equivalent norm with no Auerbach basis.
  - ▶ **Godun (1990).** The particular case  $X = \ell_1(\mathfrak{c})$ .

#### Problem (1): Guirao, Montesinos, and Zizler (2016), Open problems...

Does there exist a non-separable Banach space X with unconditional basis such that no non-separable subspace of X has an Auerbach basis?

## Existence of Auerbach systems

#### Theorem A

Let  $\kappa \geqslant \mathfrak{c}$  be a cardinal number and let X be a Banach space with  $w^*$ -dens  $X^* > \exp_2 \kappa$ . Then X admits a subspace Y with Auerbach basis and such that dens  $Y = \kappa^+$ .

A Banach space X is weakly Lindelöf determined (hereinafter, WLD) if the dual ball  $B_{X^*}$  is a Corson compact in the relative  $w^*$ -topology. Reflexive Banach spaces,  $c_0(\Gamma)$ , and WCG Banach spaces are WLD.

#### Theorem B

Every WLD Banach space X with  $dens X > \omega_1$  contains a subspace Y with Auerbach basis and such that dens Y = dens X.

**Problem (2):** What happens if dens  $X = \omega_1$ ?

#### The main result

## Theorem C (Birthday's theorem)

(CH) There exists a renorming  $|||\cdot|||$  of the space  $c_0(\omega_1)$  such that the space  $(c_0(\omega_1), |||\cdot|||)$  contains no uncountable Auerbach systems.

### Consequently, assuming the Continuum Hypothesis:

- There exists a non-separable Banach space with unconditional basis whose no non-separable subspace admits an Auerbach basis.
- ► There exists a WLD Banach space X with dens  $X = \omega_1$  every whose non-separable subspace fails to have an Auerbach basis.

Therefore, under CH, we can answer both Problems (1) and (2).

### Construction of $\|\cdot\|$ .

- ▶ For  $\alpha < \omega_1$ , let  $\sigma_\alpha$  be an enumeration of the set  $[0, \alpha)$ .
- ▶ Select  $\lambda \in (0, 1/6)$  and define  $\varphi_{\alpha} \in \ell_1(\omega_1)$  by

$$\varphi_{\alpha}(\eta) = \begin{cases} 1 & \text{if } \eta = \alpha \\ 0 & \text{if } \eta > \alpha \\ \lambda^{k} & \text{if } \eta < \alpha, \ \eta = \sigma_{\alpha}(k). \end{cases}$$

▶ Define a new (equivalent) norm on  $c_0(\omega_1)$  to be

$$|||x||| := \sup_{\alpha < \omega_1} |\langle \varphi_\alpha, x \rangle| \qquad (x \in c_0(\omega_1)).$$

- 1.  $(\varphi_{\alpha})_{\alpha<\omega_1}$  is a boundary for  $(c_0(\omega_1), \|\cdot\|)$ ;
- 2.  $(\varphi_{\alpha})_{\alpha<\omega_1}$  is a Schauder basis of  $(c_0(\omega_1), \|\cdot\|)^*$ , isometrically equivalent to the  $\ell_1(\omega_1)$ -basis.
- 3. If  $\psi \in (c_0(\omega_1), \|\cdot\|)^*$  is a norm-attaining functional, then  $\psi$  is <u>finite</u> linear combination of the  $\varphi_{\alpha}$ 's.

#### The main property.

If  $u \in c_0(\omega_1) \setminus \{0\}$  and supp  $u < \alpha$ , then

$$\langle \varphi_{\alpha}, u \rangle := \sum_{\beta < \alpha} u(\beta) \langle \varphi_{\alpha}, e_{\beta} \rangle = \sum_{k=1}^{\infty} u(\sigma_{\alpha}(k)) \lambda^{k}$$

is a (non-trivial) analytic function of  $\lambda$  and therefore it has countably many zeros.

Consequently, for every countable subset  $(u_n)_{n=1}^{\infty}$  of  $c_0(\omega_1) \setminus \{0\}$ , we may select  $\lambda$  such that  $\langle \varphi_{\alpha}, u_n \rangle \neq 0$  for every  $n \in \mathbb{N}$ .

#### The use of CH.

Clearly,  $c_0(\omega_1) \setminus \{0\}$  is a set of cardinality  $\mathfrak{c}$ . CH therefore allows us to well order the non-zero vectors of  $c_0(\omega_1)$  in an  $\omega_1$ -sequence  $(v_\alpha)_{\alpha<\omega_1}$ .

This allows to choose parameters  $(\lambda_{\alpha})_{\alpha<\omega_1}$  by transfinite induction, taking into account only countably many vectors from  $c_0(\omega_1)\setminus\{0\}$ .

Happy Birthday Anatolij

Thank you for your attention!