Faculty of Electrical Engineering Czech Technical University in Prague

What do dense subspaces of Hilbert spaces look like?

Tommaso Russo

P. Hájek and T. Russo, On densely isomorphic normed spaces. Preprint available at arXiv:1910.01527.

> Analysis Seminar Innsbruck, Austria November 15–17, 2019

International Mobility of Researchers in CTU Project number: CZ.02.2.69/0.0/0.0/16_027/0008465

Smoothness and structure

- ► The existence of a smooth norm on a Banach space bears several geometric consequences. Just to name a few:
 - ▶ If a separable Banach space X has a C^1 norm, X^* is separable;
 - ▶ **Deville (1989).** If X has a C^{∞} -smooth norm, either it contains c_0 , or it is super-reflexive, with exact cotype 2k, and it contains ℓ_{2k} .
- ► It was asked several times if the existence of a smooth norm on some dense subspaces has similar consequences:
 - Benyamini–Lindenstrauss, Geometric Nonlinear Functional Analysis;
 - Guirao-Montesinos-Zizler, Open problems in the geometry and analysis of Banach spaces.
- ▶ There exists a dense subspace of ℓ_{∞} with a C^{∞} -smooth norm;
 - Is there a dense subspace of ℓ_∞ no whose dense subspace has a smooth norm?
- ▶ How different can two dense subspaces of a Banach space be?

Separable Banach spaces

In every separable Banach space there is a canonical (smallest) dense subspace, that is densely contained in every other dense subspace. More precisely:

(Folklore?) Proposition

Let $\{e_j; e_j^*\}_{j=1}^{\infty}$ be an M-basis for a separable Banach space X. Then every dense subspace of X contains a dense subspace isomorphic to $\operatorname{span}\{e_j\}_{j=1}^{\infty}$.

- ▶ $\operatorname{span}\{e_j\}_{j=1}^{\infty}$ is this 'minimal' dense subspace;
- This feature breaks down completely in many non-separable Banach spaces;
- ▶ In the talk, we will see this in Hilbert spaces;
- ► Closed subspaces of Hilbert spaces are what they are, but dense subspaces can be quite diverse.

Inner product spaces

For an orthonormal system $\{e_{\gamma}\}_{{\gamma}\in\Gamma}$ in an inner produce space H, TFAE:

- (i) $\{e_{\gamma}\}_{{\gamma}\in\Gamma}$ is complete (i.e., linearly dense);
- (ii) $\{e_{\gamma}\}_{\gamma\in\Gamma}$ is a Schauder basis;
- (iii) Parseval's equality $\|x\|^2 = \sum_{\gamma \in \Gamma} |\langle e_\gamma, x \rangle|^2$ holds for every $x \in H$.

(iv) $\{e_{\gamma}\}_{\gamma\in\Gamma}$ is maximal.

Gudder (1974). There exists a non-separable inner product space that contains no uncountable orthonormal system.

[See Halmos, A Hilbert space problem book, Problem 54.]

Buhagiar, Chetcuti, and Weber (2008). If dens $H \ge c^+$, H contains an uncountable orthonormal system (actually, of cardinality c^+).

Different dense subspaces

Theorem A

Let H be a non-separable Hilbert space. Then there are two dense subspaces Y and Z of H whose every dense subspaces are non-isomorphic.

- In $\ell_2(\mathfrak{c})$ there exist two dense subspaces Y and Z such that no non-separable subspace of Y is isomorphic to a subspace of Z;
- A 'minimal' subspace as before has to be separable.

Definition

Two normed spaces X and Y are densely isomorphic if there exist dense subspaces X_0 of X and Y_0 of Y such that X_0 and Y_0 are isomorphic.

Th A (restated). Every non-separable Hilbert space contains two dense subspaces that are not densely isomorphic.

Biorthogonal systems

Theorem B

(CH) There exists a dense subspace of the Hilbert space $\ell_2(\omega_1)$ that contains no uncountable biorthogonal system.

Recall: Every inner product space with density at least \mathfrak{c}^+ contains an uncountable orthonormal system (Buhagiar–Chetcuti–Weber).

Lemma

Let $\{e_{\alpha}\}_{\alpha<\mathfrak{c}}$ be the canonical basis for $\ell_2(\mathfrak{c})$. Then every non-separable subspace of $Z:=\mathrm{span}\{e_{\alpha}\}_{\alpha<\mathfrak{c}}$ contains an uncountable biorthogonal system.

Again, a common subspace is separable.

★ Thm^s A and B are valid, more generally, for WLD Banach spaces.

Thank you for your attention!