Università degli studi di Milano Department of Mathematics 'Federigo Enriques'

Separated families of unit vectors

Tommaso Russo
(Joint work with P. Hájek and T. Kania)

Analysis Seminar Traunkirchen, Austria June 8–10, 2018

A separable overture

Hereinafter, X is an **infinite-dimensional** Banach space.

The Riesz lemma (1916). There exists a sequence $(x_n)_{n=1}^{\infty}$ in the unit sphere S_X with $||x_n - x_k|| \ge 1$ for $n \ne k$.

In plain words: S_X contains a 1-separated sequence.

Kottman's theorem (1975). There exists a sequence $(x_n)_{n=1}^{\infty}$ in the unit sphere S_X such that $||x_n - x_k|| > 1$ for $n \neq k$.

In plain words: S_X contains a (1+)-separated sequence.

The Elton–Odell theorem (1981). S_X contains a $(1+\varepsilon)$ -separated sequence $(x_n)_{n=1}^{\infty}$ (for some $\varepsilon > 0$, that depends on X).

And its non-separable counterpart

General problem: How large can separated subsets of S_X be?

- ▶ If X is separable, they are at most countable!
- ▶ If X is non-separable, S_X contains (for some $\delta > 0$) a δ -separated subset of cardinality dens X.
- ▶ Does S_X contain a (1+)-separated subset of cardinality dens X?
- ▶ What about $(1 + \varepsilon)$ -separation?

A few reassuring examples:

- ▶ In $S_{\ell_{\infty}(\Gamma)}$ we have a 2-separated set of cardinality $2^{|\Gamma|}$; \checkmark
- ▶ In $\ell_p(\Gamma)$, the canonical basis suffices; \checkmark
- $ightharpoonup S_{c_0(\omega_1)}$ contains an uncountable (1+)-separated set. $ightharpoonup S_{c_0(\omega_1)}$

Limitations: $c_0(\Gamma)$ spaces

Remark (J. Elton and E. Odell, 1981)

Let $\mathcal{F}\subseteq \mathcal{S}_{c_0(\Gamma)}$ be $(1+\varepsilon)$ -separated, for some $\varepsilon>0$. Then \mathcal{F} is countable.

The proof is a simple exercise for students. They may want to have the hint that the Δ -system lemma is the key.

Theorem A

Let $\mathcal{F} \subseteq S_{c_0(\Gamma)}$ be (1+)-separated. Then $|\mathcal{F}| \leqslant \omega_1$.

A main question: Let X be non-separable. Does the unit sphere of X contain an uncountable (1+)-separated subset?

The rôle of Auerbach systems

Theorem B

- ▶ Assume that X is a 'large' Banach space (more precisely, assume w^* -dens $X^* > \exp_2 \mathfrak{c}$). Then both S_X and S_{X^*} contain an uncountable (1+)-separated family.

 In particular, the assumption is satisfied whenever dens $X > \exp_2 \mathfrak{c}$.
- ▶ Let X be a WLD space with dens $X \ge c^+$. Then S_X and S_{X^*} contain uncountable (1+)-separated families.

For this, we need to prove general results concerning the existence of Auerbach systems in Banach spaces. But this is another story (*i.e.*, talk). **(Sub-)Question:** What about X WLD with dens $X = \omega_1$?

Time flies

(credits to Marco Russo)

A glimpse at the literature

Non-separable C(K) spaces:

- ▶ The unit sphere of C(K) contains an uncountable (1+)-separated set (Kania–Kochanek; significantly improved by Cúth–Kurka–Vejnar);
- ▶ The existence of an uncountable $(1 + \varepsilon)$ -separated family in the unit sphere of C(K) is independent of ZFC (Koszmider).

Theorem (T. Kania and T. Kochanek, 2016)

- ▶ Let X be a non-separable, reflexive Banach space. Then there is an uncountable (1+)-separated family $\mathcal{F} \subseteq S_X$;
- Let X be super-reflexive and $\lambda \leqslant \operatorname{dens} X$ have uncountable cofinality. Then, for some $\varepsilon > 0$, S_X contains a $(1 + \varepsilon)$ -separated family with cardinality λ .

Reflexive spaces

Theorem C

- ▶ Let X be a reflexive Banach space. Then there is a (1+)-separated family $\mathcal{F} \subseteq S_X$ such that $|\mathcal{F}| = \operatorname{dens} X$;
- ▶ Let X be reflexive and $\lambda \leq \operatorname{dens} X$ have uncountable cofinality. Then, for some $\varepsilon > 0$, S_X contains a $(1 + \varepsilon)$ -separated family with cardinality λ .
- We obtain both clauses by means of the same argument;
- ▶ The same circle of ideas covers, e.g., RNP spaces: if X has RNP,
 - ▶ there is a (1+)-separated family $\mathcal{F} \subseteq S_X$ with $|\mathcal{F}| = w^*$ -dens X^* ;
 - ▶ for every $\lambda \leq w^*$ -dens X^* with $\operatorname{cf}(\lambda) > \omega$, S_X contains a $(1 + \varepsilon)$ -separated family with cardinality λ .

Super-reflexivity

Example (Kania-Kochanek): the unit sphere of

$$X := \left(\bigoplus_{n \in \mathbb{N}} \ell_{p_n}(\omega_n)\right)_{\ell_2} \qquad (p_n)_{n=1}^{\infty} \subseteq (1, \infty), \ p_n \nearrow \infty$$

does not contain $(1+\varepsilon)$ -separated subsets of cardinality $\omega_{\omega}=\mathrm{dens}\,X.$ However, X is not super-reflexive.

Theorem D

Let X be a super-reflexive Banach space. Then there exist $\varepsilon > 0$ and a $(1+\varepsilon)$ -separated subset of S_X of cardinality $\operatorname{dens} X$.

Thank you for your attention!