Università degli studi di Milano Department of Mathematics "Federigo Enriques"

Symmetrically separated sequences in the unit sphere of a Banach space

Tommaso Russo (Joint work with P. Hájek and T. Kania)

January 13–20, 2018 46th Winter School in Abstract Analysis Svratka, Czech Republic

Proem

Hereinafter, X is an **infinite-dimensional** Banach space.

The Riesz lemma (1916). There exists a sequence $(x_n)_{n=1}^{\infty}$ in the unit sphere S_X with $||x_n - x_k|| \ge 1$ for $n \ne k$ (i.e. a 1-separated sequence).

Kottman's theorem (1975). The unit sphere S_X contains a (1+)-separated sequence $(x_n)_{n=1}^{\infty}$, *i.e.* $||x_n - x_k|| > 1$ for $n \neq k$.

A very short proof: J. Diestel Sequences and series in Banach spaces, pp. 7-8.

The Elton–Odell theorem (1981). S_X contains a $(1 + \varepsilon)$ -separated sequence $(x_n)_{n=1}^{\infty}$ (for some $\varepsilon > 0$).

Kryczka–Prus (2000). If X is non-reflexive, the unit sphere of X contains a $\sqrt[5]{4}$ -separated sequence.

Symmetric separation

Actually, in Riesz' lemma $||x_n \pm x_k|| \ge 1$ for $n \ne k \in \mathbb{N}$.

Definition

A sequence $(x_n)_{n=1}^{\infty}$ in a normed space X is symmetrically $(\delta+)$ -separated (respectively, symmetrically δ -separated) if $\|x_n \pm x_k\| > \delta$ (respectively, $\|x_n \pm x_k\| \geqslant \delta$) for distinct n, k.

The symmetric Kottman's constant

$$K^{s}(X) := \sup \Big\{ \sigma > 0 \colon \exists (x_n)_{n=1}^{\infty} \subset B_X \colon \|x_n \pm x_k\| \geqslant \sigma \ \forall n \neq k \Big\}.$$

Problem (J. M. F. Castillo and P. L. Papini, 2011): Is $K^s(X) > 1$ for every infinite-dimensional Banach space?

Some quantitative results

- $K^s(\ell_p) = 2^{1/p} \text{ for } p \in [1, \infty);$
- $ightharpoonup K^s(X) = 2$ if X contains c_0 or ℓ_1 (James' non-distortion theorem);
- $K^s(X) = 2$ if X has a c_0 (or ℓ_1) quotient;
- ▶ $K^s(X) = 2$ if X has an ℓ_1 spreading model;
- ▶ Castillo–Papini (2011). If X is a \mathcal{L}_{∞} -space, then $K^{s}(X) = 2$;
- ▶ **Delpech (2010).** $K^s(X) \ge 1 + \overline{\delta}_X(1)$.

Symmetry and cotype

Prus (2010). If X has cotype $q < \infty$, then $K(X) \geqslant 2^{1/q}$.

Problem: What about $K^s(X)$?

Theorem (P. Hájek, T. Kania, and R.)

Let X be an infinite-dimensional Banach space. If X contains a normalized basic sequence with a *lower q-estimate*, then $K^s(X) \geqslant 2^{1/q}$.

In particular, if X has non-trivial cotype q, then $K^s(X) \ge 2^{1/q}$.

A sequence $(x_n)_{n=1}^{\infty}$ is a normed space X has a *lower q-estimate* if

$$c \cdot \left(\sum_{i=1}^N |a_i|^q\right)^{1/q} \leqslant \left\|\sum_{i=1}^N a_i x_i\right\|.$$

Symmetric Kottman's theorem

Theorem (P. Hájek, T. Kania, and R.)

Let X be an infinite-dimensional Banach space. Then the unit sphere of X contains a symmetrically (1+)-separated sequence $(x_n)_{n=1}^{\infty}$, *i.e.* $\|x_n \pm x_k\| > 1$ for $n \neq k$.

Time flies

Towards a symmetric Elton-Odell theorem

Theorem (P. Hájek, T. Kania, and R.)

Let X be a Banach space that contains a boundedly complete basic sequence. Then, for some $\varepsilon>0$, the unit sphere of X contains a symmetrically $(1+\varepsilon)$ -separated sequence.

Consequences. Let X be infinite-dimensional. Then $K^s(X) > 1$ if:

- X is reflexive;
- X contains a (subspace isomorphic to a) separable dual;
- in particular, X has RNP (or, more generally, PCP);
- ➤ X contains an unconditional basic sequence (or, more generally, an infinite-dimensional subspace isomorphic to a Banach lattice).

A non-separable interlude

Theorem (P. Hájek, T. Kania, and R.)

Let *X* be a reflexive Banach space. Then:

- ▶ the unit sphere of X contains a symmetrically (1+)-separated family with cardinality dens(X);
- for every cardinal $\lambda \leqslant \operatorname{dens}(X)$ with $\operatorname{cf}(\lambda)$ uncountable there exists ($\varepsilon > 0$ and) a symmetrically $(1 + \varepsilon)$ -separated family of unit vectors with cardinality λ .

The same circle of ideas also provides us with (weaker) assertions concerning Radon–Nikodym spaces, duals to weak-Asplund spaces, strictly convex spaces, and something else.

Proof of the symmetric Kottman

For $\tilde{X}\subseteq X$, $\dim(\tilde{X})=\infty$, we say that

$$\tilde{X}$$
 has (\square) if: $\exists x \in S_{\tilde{X}}, \exists Y \subseteq \tilde{X}, \dim(Y) = \infty \colon \forall y \in S_Y \|x + y\| > 1$.

Case 1: Every $\tilde{X} \subseteq X$, $\dim(\tilde{X}) = \infty$, has (\square). This is very easy.

Case 2: WLOG, X has $(\neg \Box)$. This is easily equivalent to:

$$(\blacksquare) \quad \forall x \in B_X, \forall Y \subseteq X, \dim(Y) = \infty, \ \exists y \in S_Y \colon \|x + y\| \leqslant 1$$

Thank you for your attention!

(Ph: Marco Russo)