Università degli studi di Milano Department of Mathematics "Federigo Enriques"

Separated families of unit vectors An interplay of geometry and combinatorics

Tommaso Russo

January 11, 2018 Workshop in Abstract Analysis

Table of contents

Proem

Kottman's constant

K(X)
Spreading models
Two applications

Beyond the separability

Uncountable families
Learning from the Tomasz
The combinatorial side of the moon
And its geometric face

Proem

Hereinafter, X is an **infinite-dimensional** Banach space.

The Riesz lemma (1916). There exists a sequence $(x_n)_{n=1}^{\infty}$ in the unit sphere S_X with $||x_n - x_k|| \ge 1$ for $n \ne k$ (i.e. a 1-separated sequence).

Kottman's theorem (1975). The unit sphere S_X contains a (1+)-separated sequence $(x_n)_{n=1}^{\infty}$, i.e. $||x_n - x_k|| > 1$ for $n \neq k$.

The Elton–Odell theorem (1981). The unit sphere S_X contains a $(1 + \varepsilon)$ -separated sequence $(x_n)_{n=1}^{\infty}$ (for some $\varepsilon > 0$).

Kottman's constant

Definition

$$K(X) := \sup \Big\{ \sigma > 0 \colon \exists (x_n)_{n=1}^{\infty} \subset B_X : \|x_n - x_k\| \geqslant \sigma \ \forall n \neq k \Big\}.$$

- ▶ Elton–Odell. K(X) > 1 for every X;
- ▶ Kryczka–Prus (2000). $K(X) \geqslant \sqrt[5]{4}$ for non-reflexive X;
- ▶ **Delpech (2010).** $K(X) \ge 1 + \overline{\delta}_X(1)$ ($\ge 1 + \delta_X(1)$);
- ▶ Maluta–Papini (2009). $K(X) \le 2 2\delta_X(1)$;
- $K(\ell_p) = 2^{1/p}$ for $p \in [1, \infty)$ (note the equality!);
- ightharpoonup K(X) = 2 if X contains c_0 or ℓ_1 (James' non-distortion theorem).

Problem (E. Maluta and P. L. Papini, 2009)

Assume that $K(X, \|\cdot\|) = 2$ for every renorming $\|\cdot\|$ of X. Does it follow that X is non-reflexive?

- ▶ Mathematical folklore(?) If X admits a spreading model isomorphic to ℓ_1 , then K(X) = 2;
- Every spreading model of the Tsirelson's space T is isomorphic to ℓ_1 (and, of course, the same for every renorming of T).

Consequently, $K(T, ||\cdot||) = 2$ for every renorming $||\cdot||$ of T. Still, T is well known to be reflexive.

Definition

Let $\mathcal B$ denote the family of bounded, closed subsets of X. A map $\phi:\mathcal B\to [0,\infty)$ is a *measure of non-compactness* if:

- (i) $\phi(B) = 0$ iff B is relatively compact;
- (ii) $\phi(B) = \phi(\overline{B})$;
- (iii) $\phi(B_1 \cup B_2) = \max\{\phi(B_1), \phi(B_2)\}.$

Examples:

- $\chi(B) = \inf\{\varepsilon > 0 : B \text{ is covered by finitely many balls of radius } \varepsilon\};$
- ▶ $β(B) = \sup{σ > 0: B \text{ contains an infinite } σ\text{-separated set}}.$

Kirszbraun's theorem (1934). Let A be a subset of a Hilbert space H_1 and $f: A \to H_2$ be a Lipschitz map, where H_2 is a Hilbert space too. Then there exists an extension $\tilde{f}: H_1 \to H_2$ with $Lip(\tilde{f}) = Lip(f)$.

Theorem (N. J. Kalton, 2007)

Let X be an infinite-dimensional Banach space, A a subset of X and $f \colon A \to c_0$ a Lipschitz map. Then f admits an extension $\tilde{f} \colon X \to c_0$ such that $Lip(\tilde{f}) \leqslant K(X) \cdot Lip(f)$.

Moreover, K(X) is the optimal constant in the above bound.

Time flies

Uncountable families

Henceforth, *X* is a **non-separable** Banach space.

 B_X contains an uncountable ε -separated family, for some $\varepsilon > 0$.

- ▶ Does S_X contain an uncountable (1+)-separated subset?
- ▶ What about uncountable $(1 + \varepsilon)$ -separated subsets?
- ► Can we find a (1+)-separated subset with cardinality dens(X)?
- ▶ What about $(1 + \varepsilon)$ -separated?

Learning from the Tomasz

Theorem (T. Kania and T. Kochanek, 2016)

- ▶ Let *X* be a reflexive Banach space. Then there is an uncountable (1+)-separated family $\mathcal{F} \subseteq S_X$;
- Let X be super-reflexive and $\lambda \leq \operatorname{dens}(X)$ have uncountable cofinality. Then, for some $\varepsilon > 0$, S_X contains a $(1 + \varepsilon)$ -separated family with cardinality λ ;
- ► The unit sphere of a non-separable C(K)-space contains an uncountable (1+)-separated subset.

M. Cúth, O. Kurka, and B. Vejnar, 2017: for quite many compact spaces, there is a (1+)-separated subset of the unit sphere of C(K), whose cardinality equals dens(C(K)).

The combinatorial side of the moon

Theorem (J. Elton and E. Odell, 1981)

Let $\mathcal{F} \subseteq S_{c_0(\Gamma)}$ be $(1 + \varepsilon)$ -separated, for some $\varepsilon > 0$. Then \mathcal{F} is countable.

The Δ -system lemma. Let $\mathcal G$ be an uncountable family of finite subsets of a set $\mathcal S$. Then there are an uncountable subfamily $\mathcal G_0$ of $\mathcal G$ and a finite set $\Delta\subseteq \mathcal S$ such that

$$G \cap H = \Delta$$
 for $G \neq H \in \mathcal{G}_0$.

Theorem (P. Hájek, T. Kania, and R., 201?)

Let $\mathcal{F} \subseteq S_{c_0(\Gamma)}$ be (1+)-separated. Then $|\mathcal{F}| \leqslant \omega_1$.

And its geometric face

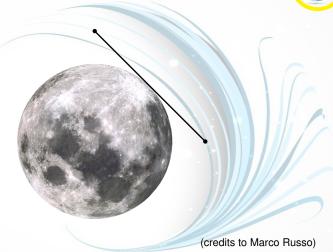
Theorem (P. Hájek, T. Kania, and R., 201?)

Let *X* be a reflexive Banach space. Then:

- ▶ the unit sphere of X contains a (1+)-separated family with cardinality dens(X);
- ▶ for every cardinal $\lambda \leq \operatorname{dens}(X)$ with uncountable cofinality there exists $(\varepsilon > 0$ and) a $(1 + \varepsilon)$ -separated family of unit vectors with cardinality λ .

The same circle of ideas also provides us with (weaker) assertions concerning Radon–Nikodym spaces, duals to weak-Asplund spaces, strictly convex spaces (and perhaps something else).

And its geometric face



Thank you for your attention!

(Ph: Marco Russo)