Separated Families of Unit Vectors

Tommaso Russo

Università degli studi di Milano, Department of Mathematics "Federigo Enriques" (Joint project with Petr Hájek and Tomasz Kania)

Proem

Hereinafter, X is an **infinite-dimensional** Banach space.

The Riesz lemma (1916). There exists a sequence $(x_n)_{n=1}^{\infty}$ in the unit sphere S_X with $||x_n - x_k|| \ge 1$ for $n \ne k$ (i.e. a 1-separated sequence).

Kottman's theorem (1975). The unit sphere S_X contains a (1+)-separated sequence $(x_n)_{n=1}^{\infty}$, i.e. $||x_n - x_k|| > 1$ for $n \neq k$.

The Elton-Odell theorem (1981). The unit sphere S_X contains a $(1 + \varepsilon)$ -separated sequence $(x_n)_{n=1}^{\infty}$ (for some $\varepsilon > 0$).

Kottman's constant

Definition

$$K(X) := \sup \left\{ \begin{aligned} \sigma > 0 &: \exists (x_n)_{n=1}^{\infty} \subset B_X \\ \|x_n - x_k\| \geqslant \sigma \ \forall n \neq k \end{aligned} \right\}$$

- Elton-Odell. K(X) > 1 for every X;
- Kryczka–Prus (2000). $K(X) \geqslant \sqrt[5]{4}$ for non-reflexive X;
- Maluta-Papini (2009). $K(X) \leq 2 2\delta_X(1)$;

Main goals of the project

- Obtain symmetric analogues to the above results, i.e. with $||x_n \pm x_k|| \ge 1 + \varepsilon$;
- Investigate the symmetric analogue to Kottman's constant:

$$K^{s}(X) := \sup \left\{ \begin{matrix} \sigma > 0 \colon \exists (x_{n})_{n=1}^{\infty} \subset B_{X} \colon \\ \|x_{n} \pm x_{k}\| \geqslant \sigma \ \forall n \neq k \end{matrix} \right\};$$

• Is it possible to obtain uncountable (1+) (resp. $(1+\varepsilon)$)-separated families if the space X is non-separable?

Symmetric separation

Theorem (Hájek, Kania, and R.)

Let X be an infinite-dimensional Banach space. Then the unit sphere of X contains a symmetrically (1+)-separated sequence $(x_n)_{n=1}^{\infty}$, i.e. $||x_n \pm x_k|| > 1$ for $n \neq k$.

- $K^{s}(\ell_{p}) = 2^{1/p} \text{ for } p \in [1, \infty);$
- $K^s(X) = 2$ if X contains c_0 or ℓ_1 (James' non-distortion theorem);
- $K^s(X) = 2$ if X has a c_0 (or ℓ_1) quotient;
- $K^s(X) = 2$ if X has an ℓ_1 spreading model;
- Castillo–Papini (2011). If X is a \mathcal{L}_{∞} -space, then $K^s(X)=2$;
- **Delpech** (2010). $K^{s}(X) \geqslant 1 + \overline{\delta}_{X}(1)$.
- **Hájek, Kania, and R.** $K^s(X) \ge 2^{1/q}$ if X has nontrivial cotype q.

$(1+\varepsilon)$ -separation

Theorem (Hájek, Kania, and R.)

Let X be a Banach space that contains a boundedly complete basic sequence. Then, for some $\varepsilon > 0$, the unit sphere of X contains a symmetrically $(1 + \varepsilon)$ -separated sequence.

Consequences. Let X be infinite-dimensional. Then $K^s(X) > 1$ if:

- X is reflexive;
- X contains a (subspace isomorphic to a) separable dual;
- in particular, X has RNP (or, more generally, PCP);
- X contains an unconditional basic sequence (or, more generally, an infinite-dimensional subspace isomorphic to a Banach lattice).

Around reflexivity

Kania–Kochanek (2016)

- Let X be a reflexive Banach space. Then there is an uncountable (1+)-separated family $\mathcal{F} \subseteq S_X$;
- Let X be super-reflexive and $\lambda \leq \operatorname{dens}(X)$ have uncountable cofinality. Then, for some $\varepsilon > 0$, S_X contains a $(1 + \varepsilon)$ -separated family with cardinality λ ;

Theorem (Hájek, Kania, and R.)

- Let X be a reflexive Banach space. Then:
 - (i) the unit sphere of X contains a (1+)separated family with cardinality dens(X);
 - (ii) for every cardinal $\lambda \leq \operatorname{dens}(X)$ with uncountable cofinality there exists $(\varepsilon > 0)$ and a $(1+\varepsilon)$ -separated family of unit vectors with cardinality λ ;
- (iii) if X is super-reflexive, there exist $\varepsilon > 0$ and a symmetrically $(1+\varepsilon)$ -separated subset of S_X of cardinality dens(X).

Strategy of the proof

- If $\varphi \in S_{X^*}$ exposes $x \in S_X$, then for every unit vector $y \in \ker \varphi$ one has ||x + y|| > 1;
- The unit ball of a reflexive space contains plenty of exposed points (Lindenstrauss–Troyanski);
- Proceed by transfinite induction to reach (i).
- If $\varphi \in S_{X^*}$ strongly exposes $x \in S_X$, then for every unit vector $y \in \ker \varphi$ one has $||x+y|| \geqslant 1 + \varepsilon$ (for some $\varepsilon > 0$);
- A cofinality argument then proves (ii).

The same circle of ideas also applies to other classes of Banach spaces including Radon–Nikodym spaces, duals to weak-Asplund spaces, strictly convex spaces, LUR spaces.

The rôle of Auerbach systems

A simple lemma

If X contains an Auerbach system with cardinality \mathfrak{c}^+ , then the unit sphere of X (and therefore that of X^*) contains an uncountable (1+)-separated subset.

- Let $\{e_{\alpha}; e_{\alpha}^*\}$ be one such system;
- Find an uncountable homogeneous subset for the colouring

$$\{\alpha, \beta\} \mapsto \begin{cases} (>) & \|e_{\alpha} - e_{\beta}\| > 1 \\ (\leqslant) & \|e_{\alpha} - e_{\beta}\| \leqslant 1; \end{cases}$$

• In case (>) we are fine, otherwise we replace e_{α} with some \tilde{e}_{α} adding some small 'front tails'.

Corollary (cf. Petr's talk)

- Let X be a WLD space with $dens(X) \geqslant \mathfrak{c}^+$. Then S_X and S_{X^*} contain uncountable (1+)-separated families.
- Let X be a 'large' Banach space. Then S_X contains an uncountable (1+)-separated family.

The above can not be improved

Theorem (Hájek, Kania, and R.)

Let $A \subseteq S_{c_0(\Gamma)}$ be a (1+)-separated set. Then $|A| \leqslant \omega_1$.

References

- [1] P. Hájek, T. Kania, and T. Russo, Symmetrically separated sequences in the unit sphere of a Banach space, to appear in *J. Funct. Anal.*; arXiv:1711.05149v2.
- [2] P. Hájek, T. Kania, and T. Russo, in preparation (the title too!).