On Auerbach systems in Banach spaces

(Joint work with P. Hájek and T. Kania)

Tommaso Russo

tommaso.russo@unimi.it

Università degli studi di Milano Department of Mathematics 'Federigo Enriques' Geometrical Aspects of Banach Spaces Birmingham June 25-29, 2018

Systems of coordinates

▶ A collection $\{x_{\gamma}; x_{\gamma}^*\}_{{\gamma} \in {\Gamma}} \subseteq X \times X^*$ is a *biorthogonal system* if

$$\langle \mathbf{x}_{\alpha}^*, \mathbf{x}_{\beta} \rangle = \delta_{\alpha,\beta} \qquad (\alpha, \beta \in \Gamma).$$

- ▶ If $||x_{\gamma}|| = ||x_{\gamma}^*|| = 1$, the system is said to be an *Auerbach system*.
- ► An *M-basis* is a biorthogonal system such that:

$$\overline{\operatorname{span}}\{x_\gamma\}_{\gamma\in\varGamma}=X\qquad \&\qquad \overline{\operatorname{span}}^{w^*}\{x_\gamma^*\}_{\gamma\in\varGamma}=X^*.$$

► An Auerbach basis is an M-basis with $||x_{\gamma}|| = ||x_{\gamma}^*|| = 1$.

Auerbach (1934). Every finite-dimensional normed space contains an Auerbach basis.

Day (1962). Every infinite-dimensional Banach space contains am infinite-dimensional subspace with an Auerbach basis, in particular it contains an infinite Auerbach system.

And spaces with few of them

- Kunen (1975). (CH) There exists a non-separable Banach space that contains no uncountable biorthogonal system.
 - Other examples: (♣) Ostaszewski (1975), (♦) Shelah (1985).
 - Todorčević (2006). (MM) Every non-separable Banach space contains uncountable biorthogonal systems.
- ▶ Johnson (1970). ℓ_{∞} has no M-basis.
- ▶ Plichko (1986). $c_0[0, 1] + C[0, 1]$ has no Auerbach basis.
- ▶ Godun–Lin–Troyanski (1993). Every non-separable Banach space X with B_{X*} w*-separable, admits an equivalent norm with no Auerbach basis.
 - ▶ **Godun (1990).** The particular case $X = \ell_1(\mathfrak{c})$.

Problem (1): Guirao, Montesinos, and Zizler (2016), Open problems...

Does there exist a non-separable Banach space *X* with unconditional basis such that no non-separable subspace of *X* has an Auerbach basis?

'Large' Banach spaces

Theorem A

Let $\kappa \geqslant \mathfrak{c}$ be a cardinal number and let X be a Banach space with w^* -dens $X^* > \exp_2 \kappa$. Then X admits a subspace Y with Auerbach basis and such that dens $Y = \kappa^+$.

Proof. Set $\lambda := w^*$ -dens X^* . By transfinite induction, find unit vectors $(e_{\alpha})_{\alpha < \lambda}$ and unit functionals $(\varphi_{\alpha,\beta})_{\alpha < \beta < \lambda}$ such that:

- (i) $\varphi_{\alpha,\beta}$ is a norming functional for $e_{\alpha} e_{\beta} \neq 0$ ($\alpha < \beta < \lambda$);
- (ii) $e_{\gamma} \in \ker \varphi_{\alpha,\beta}$ ($\alpha < \beta < \gamma < \lambda$).

We invoke the Erdős-Rado theorem, for the colouring

$$\{\alpha, \beta, \gamma\} \mapsto \langle \varphi_{\beta, \gamma}, \boldsymbol{e}_{\alpha} \rangle \qquad (\alpha < \beta < \gamma < \lambda).$$

We can build the desired Auerbach system out of a monochromatic set of cardinality κ^+ .

WLD spaces

A Banach space X is weakly Lindelöf determined (hereinafter, WLD) if the dual ball B_{X^*} is a Corson compact in the relative w^* -topology. For our purposes, X is WLD if it admits an M-basis $\{x_\gamma; x_\gamma^*\}_{\gamma \in \Gamma}$ that countably supports X^* , i.e.,

$$\operatorname{supp} \mathbf{x}^* := \{ \gamma \in \Gamma : \langle \mathbf{x}^*, \mathbf{x}_\gamma \rangle \neq \mathbf{0} \}$$

is a countable subset of Γ , for every $x^* \in X^*$.

Theorem B

Every WLD Banach space X with dens $X > \omega_1$ contains a subspace Y with Auerbach basis and such that dens Y = dens X.

Problem (2): What happens if dens $X = \omega_1$?

The main result

Theorem C

(CH) There exists a renorming $\|\cdot\|$ of the space $c_0(\omega_1)$ such that the space $(c_0(\omega_1), \|\cdot\|)$ contains no uncountable Auerbach systems.

Consequently, assuming the Continuum Hypothesis:

- There exists a non-separable Banach space with unconditional basis whose no non-separable subspace admits an Auerbach basis.
- ► There exists a WLD Banach space X with dens $X = \omega_1$ every whose non-separable subspace fails to have an Auerbach basis.

Therefore, under CH, we can answer both Problems (1) and (2).

- For $\alpha < \omega_1$, let σ_α be an enumeration of the set $[0, \alpha)$.
- ▶ Select $\lambda \in (0, 1/6)$ and define $\varphi_{\alpha} \in \ell_1(\omega_1)$ by

$$\varphi_{\alpha}(\eta) = \begin{cases} 1 & \text{if } \eta = \alpha \\ 0 & \text{if } \eta > \alpha \\ \lambda^{k} & \text{if } \eta < \alpha, \, \eta = \sigma_{\alpha}(k). \end{cases}$$

▶ Define a new (equivalent) norm on $c_0(\omega_1)$ to be

$$|||x||| := \sup_{\alpha < \omega_1} |\langle \varphi_\alpha, x \rangle| \qquad (x \in c_0(\omega_1)).$$

The main property.

If $u \in c_0(\omega_1) \setminus \{0\}$ and supp $u < \alpha$, then

$$\langle \varphi_{\alpha}, u \rangle := \sum_{\beta < \alpha} u(\beta) \langle \varphi_{\alpha}, e_{\beta} \rangle = \sum_{k=1}^{\infty} u(\sigma_{\alpha}(k)) \lambda^{k}$$

is a (non-trivial) real-analytic function of λ and therefore it has countably many zeros.

Consequently, for every countable subset $(u_n)_{n=1}^{\infty}$ of $c_0(\omega_1) \setminus \{0\}$, we may select λ such that $\langle \varphi_{\alpha}, u_n \rangle \neq 0$ for every $n \in \mathbb{N}$.

Application to (1+)-separated sets

Theorem D

If X contains an Auerbach system with cardinality c^+ , then the unit sphere of X (and therefore that of X^*) contains an uncountable (1+)-separated subset.

Consequences:

- Assume that w*-dens X* > exp₂ c. Then both S_X and S_{X*} contain an uncountable (1+)-separated subset.
 In particular, the assumption is satisfied whenever dens X > exp₃ c.
- ▶ Let X be a WLD space with dens $X > \mathfrak{c}$. Then S_X and S_{X^*} contain uncountable (1+)-separated subsets.

Recapitulation

For every WLD Banach space X with $\operatorname{dens} X > \mathfrak{c}$, S_X and S_{X^*} contain uncountable (1+)-separated subsets.

Note: This is somewhat sharp, the conclusion can not be improved.

Theorem E

Let $\mathcal{F} \subseteq S_{c_0(\kappa)}$ be (1+)-separated. Then $|\mathcal{F}| \leqslant \omega_1$.

Open problem: What about WLD spaces with density character ω_1 ? In other words, if X is a WLD Banach space and dens $X = \omega_1$, does S_X contain an uncountable (1+)-separated subset?

