Smooth approximations of norms with asymptotic improvement

Tommaso Russo (joint work with Petr Hájek)

Università degli Studi di Milano

Septièmes Journées Besançon-Neuchâtel d'analyse fonctionnelle 20- 23 June 2017

Smooth bumps and structure

- Meshkov (1978). If X and X^* admit a C^2 -smooth bump, then X is isomorphic to a Hilbert space.
- Fabian, Whitfield, Zizler (1983). If X admits a bump with locally uniformly continuous derivative, then either X contains a copy of c₀ or it is super-reflexive.
 If X admits a bump with locally Lipschitz derivative and it contains no copy of c₀, then X is (super-reflexive) with type 2.
- Deville (1989). Assume that X admits a C^{∞} -smooth bump and it contains no copy of c_0 . Then X is of exact cotype 2k, for some integer k, and it contains a copy of ℓ_{2k} .

Density of smooth norms

- If X admits a C¹-smooth norm and X* admits a dual LUR norm (e.g. if X is WCG), then every equivalent norm on X can be approximated by a C¹-smooth one.
- **Hájek, Talponen (2014).** If X is separable and it admits a C^k -smooth norm, then every equivalent norm on X can be approximated by a C^k -smooth one.
- Bible, Smith (2016). Every equivalent norm on $c_0(\Gamma)$ can be approximated by a C^{∞} -smooth one.

Here, "approximated" stands for approximated uniformly on bounded sets and with arbitrary precision.

Asymptotic behavior

Assume that the Banach space X admits a Schauder basis $\{e_i\}_{i\geq 1}$. Let X^N be

$$X^N := \overline{\operatorname{span}} \{e_i\}_{i>N+1} = \ker P_N.$$

Here, P_N is the natural projection onto span $\{e_i\}_{i=1}^N$. We also denote by $P^N := I - P_N$ the complementary projection onto X^N .

Problem (Guirao, Montesinos, Zizler)

Can an approximating norm be chosen so that the approximation improves on X^N ?

The main result

Theorem (Hájek, R.)

Assume that X admits a C^k -smooth renorming. Then for every equivalent norm $\|\cdot\|$ on X and every sequence $\{\varepsilon_N\}_{N\geq 0}$ of positive numbers, there is a C^k -smooth renorming $||\cdot|||$ of X such that

$$|||\cdot|||-||\cdot||| \le \varepsilon_N ||\cdot||$$
 on X^N .

In other words, we can approximate every equivalent norm with a C^k -smooth one in a way that on the "tail vectors" the approximation improves as fast as we wish.

Sketch of the proof 1/3: a geometric lemma

Lemma

Let $(X, \|\cdot\|)$ be a Banach space with Schauder basis $\{e_i\}_{i\geq 1}$ with basis constant K. Denote the unit ball of X by B, fix $k\in\mathbb{N}$, a parameter $\lambda>0$, and consider the sets

$$D := \left\{ x \in X : \left\| P^k x \right\| \le 1/2 \right\} \cap (1 + \lambda) \cdot B,$$

$$C := \overline{\mathsf{conv}} \left\{ D, B \right\}.$$

Then

$$C \cap X^k \subseteq \left(1 + \lambda \frac{K}{K + 1/2}\right) \cdot B.$$

The picture doesn't fit in here. ③

Sketch of the proof 2/3: iteration

Applying iteratively the lemma (and doing something else, in fact), we find a sequence of norms $\{||\cdot|||_n\}_{n\geq 0}$ (all close to $\|\cdot\|$) such that, for some $\gamma_n\in(0,1)$:

• for every $x \in X$ there is n_0 such that for $n \ge n_0$

$$|||x|||_n = \frac{1 + \lambda_n \frac{1 + \gamma_n}{2}}{1 + \lambda_n} |||x|||_{n-1};$$

• if $x \in X^N$, then for n = 1, ..., N we have

$$|||x|||_n = \frac{1 + \lambda_n \frac{1 + \gamma_n}{2}}{1 + \lambda_n \gamma_n} |||x|||_{n-1}.$$

Sketch of the proof 3/3: gluing together

Let $|||\cdot|||_{(s),n}$ be a C^k -smooth approximation of $|||\cdot|||_n$, with

$$|||\cdot|||_n \le |||\cdot|||_{(s),n} \le (1+\delta_n)|||\cdot|||_n$$
.

Now find $\varphi_n:[0,\infty)\to[0,\infty)$ to be C^∞ -smooth, convex and such that $\varphi_n(1)=1$ and $\varphi_n=0$ on $[0,1-\delta_n]$. Define $\Phi:X\to[0,\infty]$ by

$$\Phi(x) := \sum_{n>0} \varphi_n \left(|||x|||_{(s),n} \right).$$

Then the Minkowski functional $|||\cdot|||$ of $\{\Phi \leq 1\}$ is the desired norm.

Two polyhedral remarks

Theorem (Deville, Fonf, Hájek; 1998)

Let X be a separable polyhedral Banach space. Then every equivalent norm on X can be approximated by:

- a polyhedral norm.
- $\circled{2}$ a C^{∞} -smooth LFC norm.

"Proposition" (Hájek, R.)

In the above, the approximations can be chosen to improve on the tail vectors.