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Abstract

Immediate predecessors of this work were a paper on two-dimensional dead-
beat observers by Bisiacco and Valcher (Multidim. Systems and Signal Processing
19(2008), 287-306) and one on one-dimensional functional observers by Blumtha-
ler (Linear Algebra and its Applications 432(2010), 1560-1577) (compare also
Fuhrmann’s comprehensive paper Linear Algebra Appl. 428(2008), 44-136). The
present paper extends Blumthaler’s results to continuous or discrete multidimen-
sional behaviors, i.e., constructs and parametrizes all controllable observers of a
given multidimensional behavior, and for this purpose also discusses the required
multidimensional stability. Such an observer produces a signal that approximates
or estimates a desired component of the behavior such that the signal difference
is negligible in a suitable sense. This definition thus presupposes that of negli-
gible or stable autonomous systems. In the standard one-dimensional case these
are the asymptotically stable behaviors. We define and investigate the character-
istic variety of an autonomous behavior in the needed generality of this paper and
define stability, as in the one-dimensional case, by the spectral condition that the
characteristic variety is contained in a preselected stability region of an appro-
priate multidimensional affine space. This stability is equivalent to the property
that all polynomial-exponential trajectories in the behavior have frequencies in the
stability region only. The stability region gives rise to a Serre category or class
of modules over the relevant ring of operators that, by definition, is closed under
isomorphisms, submodules, factor modules, extensions and direct sums and that
determines the stability region. The spectral condition for stability is equivalent to
the algebraic condition that the system module belongs to the associated Serre cat-
egory. This category, in turn, gives rise to an associated Gabriel localization that is
indispensable for the construction and parametrization of controllable observers.

∗Financial support from the Austrian Science Foundation (FWF) through project P22535 is gratefully
acknowledged.

1



1 INTRODUCTION 2

AMS-classification: 93B07, 93B25, 93C05, 93C20, 39A14
Keywords: multidimensional observer, multidimensional stability, characteristic vari-
ety, Serre category, Gabriel localization

1 Introduction
The paper’s main result Thm. 4.4 whose principal special case is exposed in Thm. 1.1
concerns the existence, construction and parametrization of all controllable functional
observers of a given multidimensional discrete behavior. The definition of a multi-
dimensional observer presupposes that of a suitable multidimensional stability as in
dimension one where different stability notions lead, for instance, to exact, deadbeat,
tracking and asymptotic observers [9]. We define the stability of an autonomous be-
havior by a spectral condition on its characteristic variety and establish the analytic
significance of this condition. The algebraic counterpart of any chosen stability notion
is the corresponding Serre category of modules; an autonomous behavior is stable if
and only if its dual module belongs to the corresponding Serre category. The mathe-
matical theory of multidimensional stability, its analytic significance and its associated
Serre category under the general assumptions of this paper is developed in Section 5.
The proof of our main theorem requires the Gabriel localization functor associated
with the Serre category and hence with the chosen stability notion. Section 3 devel-
ops this localization theory as far as needed. In Section 2 we explain, without proofs,
the stability theory with a multidimensional standard example and the standard one-
dimensional theory.
The paper is an elaboration of [25]. Immediate predecessors of our work were the paper
[3] on two-dimensional deadbeat observers by Bisiacco and Valcher and the paper [6]
by Blumthaler on one-dimensional functional observers. These recent papers and the
present one continue and extend the one-dimensional observer constructions of many
prominent researchers, see [9] and the references of [6].
The goal of the following more precise description of the data introduced above is to
enable the understanding of our main Thm. 1.1 on the existence, construction and
parametrization of multidimensional observers without going into all details of the
technical Sections 3 and 5. We also compare the multidimensional concepts with the
standard one-dimensional ones from [7], [11], [24]. In the most important cases of
this paper the signal spaces and corresponding rings of operators are the following:
As base field F we choose the complex field C or the real field R. The theory for the
real field R is more complicated as shown in Section 5. Let m = mI +mII ∈ N be an
additive decomposition. As discrete domain of the independent variables of the signals
we use the sublattice of Zm

N := NmI ×ZmII ∋ µ = (µ1, · · · ,µm) = (µI ,µII), µI = (µ1, · · · ,µmI ). (1)

The cases N = N×Z from [3], [4] and N = Z2 from [32] and [17] are special cases
and motivated this generality. The lattice N gives rise to the signal F-space

F := FN := {w : N → F} ∋ w = (w(µ))µ∈N . (2)

Let s = (s1, · · · ,sm) = (sI ,sII), sI = (s1, · · · ,smI ), be a list of indeterminates. The
monoid algebra of the monoid or lattice N is the factorial F-affine integral domain

A := F [N] =⊕µ∈NFsµ = F [sI ,sII ,s−1
II ], s−1

II := (s−1
mI+1, · · · ,s

−1
m ). (3)
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Obviously the ring A is a mixed Laurent polynomial algebra. The ring A = F [N] acts
on F = FN by the usual shift or translation action ◦ defined by

(sµ ◦w)(ν) := w(µ +ν), w ∈ FN , µ,ν ∈ N, (4)

and makes F an A-module and indeed a large injective cogenerator. Hence there is a
strong duality

M ↔ B :=U⊥ :=
{

w ∈ F ℓ; R◦w = 0
}

∼=
Malgrange 1962

D(M) := HomA(M,F ),

R ∈ Ak×ℓ, U := A1×kR, M := A1×ℓ/U
(5)

between finitely generated A-modules M and their associated behaviors B. The mod-
ules U resp. M are called the equation module resp. the system module of B. The
behavior is autonomous if and only if rank(R) = ℓ or M is a torsion module. In the
sequel we will often abbreviate the terms ’finitely generated’ resp. ’finite-dimensional’
by ’f.g.’ resp. ’f.d.’. Stability and stabilization in the case F =C, N =Nm and A =C[s]
were first treated in [20, §5] with the technique of the present paper.
We construct observers for a multidimensional behavior B ⊆ F ℓ with two additional
matrices (operators) P ∈ Am×ℓ and Q ∈ Aq×ℓ. (Here the row dimension m of P is not
the number of components of N, the correct interpretation of m follows from the con-
text.) Often P ◦w resp. Q ◦w are called the measurable part resp. the relevant part
of a trajectory w of B [3]. A (functional) observer of Q ◦w from P ◦w, w ∈ B, is an
input/output (IO) behavior Bobs with trajectories ( y

u) ∈ F q+m that accepts the image
P ◦w of a trajectory w ∈ B as input u and outputs an approximation y of Q ◦w. This
signifies that y−Q◦w is small or negligible in a sense that has to be defined. In other
words, the error behavior

Berr :=
{

y−Q◦w; w ∈ B,
( y

P◦w

)
∈ Bobs

}
(6)

should be (autonomous and) small (negligible, stable), again in a sense that has to be
defined in the multidimensional situation. The interconnection diagram of B and Bobs
is shown in Figure 1.

Q

P

F l ⊇ B ∋ w

Bobs
P◦w

∈ F m

y

∈ F q

y ≈ Q◦w
Q◦w

∈ F q

Figure 1: The interconnection diagram.

Already in [7, p.357] and [11, p.522] Luenberger’s state observer from input and
output is motivated by a special case of (6). Up to the more involved multidimensional
stability the definition of a functional observer by (6) coincides with that of Fuhrmann
[9] and Blumthaler [6] in dimension 1.
In the standard one-dimensional case the negligible autonomous behaviors are the
asymptotically stable ones that are defined by spectral conditions on the characteristic
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frequencies of the behaviors. The set of characteristic frequencies of a multidimen-
sional autonomous behavior B is the characteristic variety char(B). This variety and
its potential usefulness for multidimensional stability in the continuous case were al-
ready discussed in [18, pp.157-161 ] where it was quoted from [5, ch.8, §1.7], but only
in the discrete case F = C, N = Nm and A = C[s] and the standard continuous case.
Shankar [28, §4] applied it to multidimensional continuous stability. Special instances
of the characteristic variety appeared in [2] as variety of rank singularities, in [32, Prop.
3.2] for N = Z2 as Laurent variety of maximal order minors, in [4, p.3] for N = N×Z
as time/space(TS)-variety, in [17, Introd.] for N = Z2 as the set of zeros of the deter-
minant of the square polynomial matrix describing the system and in [1, Introd.] as set
of characteristic frequencies. For its definition in the general situation of this paper we
first define the global space

ΛN := CmI × (C\{0})mII = {λ = (λI ,λII) ∈ Cm; ∀i = mI +1, · · · ,m : λi ̸= 0} ⊂ Cm

(7)
of all complex vectors λ that can be substituted into all Laurent polynomials f ∈ A,
i.e., for which f (λ ) is defined. If the autonomous behavior B is given by a matrix
R ∈ Ak×ℓ as in (5) the characteristic variety of B or M is defined as

char(B) := char(M) := {λ ∈ ΛN ; rank(R(λ ))< ℓ= rank(R)} . (8)

It coincides with the variety, vanishing set or set of zeros

VΛN (a) := {λ ∈ ΛN ; ∀ f ∈ a : f (λ ) = 0} , a⊆ A, (9)

of the annihilator ideal

a := annA(M) := { f ∈ A; f M = 0} (10)

of the system module M = A1×ℓ/A1×kR of B, see (86), (87). This implies in particular
that char(B) depends on B only and not on the special choice of R. If in dimension
m = 1 with N = N, A = C[s], F = CN the autonomous behavior has the state space
form

B =
{

w ∈ F ℓ; s◦w = Gw
}
=
{

w ∈ F ℓ; R◦w = 0
}
, G ∈ Fℓ×ℓ, R := s idℓ−G, then

char(B) = {λ ∈ C; rank(λ idℓ−G)< ℓ}= {λ ∈ C; det(λ idℓ−G) = 0}
(11)

is the spectrum or set of eigenvalues of G, i.e., the set of roots of its characteristic poly-
nomial det(s idℓ−G), whence the term characteristic variety. In higher dimensions the
characteristic variety replaces the spectrum of a complex matrix. A one-dimensional
transfer matrix H ∈ C(s)p×m has a unique controllable or irreducible [7, Thm. 6-2],
[11, p.574] input/output realization

B :=
{
( y

u) ∈ F p+m; P◦ y = Q◦u
}
, (P,−Q) ∈ Ap×(p+m), det(P) ̸= 0, H = P−1Q,

A1×pP =
{

ξ ∈ A1×p; ξ H ∈ A1×m} , Q := PH,

B0 := {y ∈ F p; P◦ y = 0} , char(B0) = {λ ∈ C; det(P(λ )) = 0} .
(12)

Then det(P) is called the characteristic polynomial [7, Def. 6-1’] and char(B0) the set
of (finite) poles of H [7, p.443], [11, §6.5.3, §8.3.2].
Spectral conditions on B are conditions on char(B). To introduce these we choose a
disjoint stability decomposition

ΛN = Λ1 ⊎Λ2 with Λ2 ̸= /0 (13)
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where Λ1 resp. Λ2 are called the stable (stability) region resp. the unstable (instability)
region. In the real case F = R we assume as usual that the Λi are invariant under the
complex conjugation λ 7→ λ := (λ1 · · · ,λm). In the one-dimensional discrete standard
case Λ1 is the interior of the unit disc. With these data Λ1-stability or Λ1-negligibility
of the autonomous behavior B is defined by the spectral condition char(B)⊆ Λ1. An-
alytically this spectral condition signifies that the polynomial-exponential trajectories
of B have frequencies in Λ1 only (Thms. 5.8, 5.11). This explains the systems theo-
retic relevance of the spectral condition. Here a signal w ∈ FN is called polynomial-
exponential or finite if the cyclic module A ◦w is F-finite-dimensional. These finite
signals are described in Results 5.7 and 5.10 that are quoted from [19]. In the simplest
case N = Zn, F =C a signal is finite if and only if it is a finite C-linear combination of
signals (p(µ)λ µ)µ∈Zn where p is a polynomial function and λ a frequency vector in
ΛZn = (C\{0})n . An ideal a resp. an element f of A are called Λ1-stable if the cyclic
modules A/a resp. A/A f have this property or, equivalently, if the varieties VΛN (a)
resp. VΛN ( f ) := VΛN (A f ) are contained in Λ1. In the one-dimensional discrete stan-
dard case a polynomial is stable if its roots have absolute value less than 1. An element
h in the quotient field quot(A) = F(s) = F(s1, · · · ,sn) of rational functions is called Λ1-
stable if it admits a representation h = f

g with f ,g ∈ A and Λ1-stable g. Properness of
Λ1-stable rational functions or matrices as in [33, Ch.2] is not discussed in this paper.

Serre categories appear if one looks for algebraic characterizations of f.g. A-
modules M whose dual behaviors B ∼= D(M) are Λ1-stable. By definition, such a
category is a class C of A-modules that is closed under isomorphisms, submodules,
factor modules, extensions and direct sums. These defining properties enable vari-
ous constructions with and inside C that we employ in connection with stability and
our main theorem on observers. Especially every module M has a largest submodule
RaC(M) in C, its C-radical. In [27, Ch. I] Serre introduced Serre categories of abelian
groups under the name classes and already called the groups in such a class negligi-
ble. In Thms. 5.8 and 5.11 we construct such a category C(Λ1) for every stability
decomposition (13) and show that Λ1 is determined by C(Λ1) and that the spectral
condition char(B) ⊆ Λ1 for B ∼= D(M) is indeed equivalent to the algebraic condi-
tion M ∈ C(Λ1). In the one-dimensional situation of (12) the f.g. modules in C(Λ1)
occur as system modules M0 := C[s]1×p/C[s]1×pP of the autonomous parts B0 with
Λ1-stable determinant det(P). Most books on one-dimensional systems theory study
and construct Λ1-stable square matrices P instead of M0, for instance for the design of
stabilizing compensators [7, Thms. 9-6, 9-9], [11, §7.5]. That P can be chosen square
follows from the Smith form of univariate polynomial matrices. For multivariate poly-
nomials such a form does not exist and therefore the study of f.g. polynomial modules
is often more natural and simpler than that of polynomial matrices. The f.g modules M
in a Serre category C and their dual behaviors D(M) are suggestively called C-small,
C-negligible or C-stable. We show that a behavior is C-negligible if and only if it itself
belongs to C. Thus a behavior B is Λ1-stable or Λ1-negligible (spectral condition)
if and only if it is C(Λ1)-stable or -negligible (algebraic condition). There are Serre
categories C of systems theoretic interest that are not of the form C(Λ1), for instance
the class Cfin (see (64)) of all A-modules M whose cyclic submodules Ax, x ∈ M, are
F-finite-dimensional (f.d.). The corresponding Cfin-negligible f.g. modules M or dual
behaviors D(M) are precisely the F-f.d. ones and were studied, in particular with re-
spect to their negligibility, in [31] and [15]. Therefore we often use Serre categories
for the definition of stability and derive the spectral characterization as special case.
Every Serre category C gives rise to a specific Gabriel localization functor QC on A-
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modules with the property that C= ker(QC) := {C; QC(C) = 0}. Gabriel localization
arises naturally when one wants to study A-modules up to negligible ones. In the proof
of our main Thm. 4.4 we apply QC to negligible trajectories and modules and thereby
annihilate them. This simplifies all equations considerably. The most important special
case of the theorem is

Theorem 1.1. (Main theorem) For a given stability decomposition (13) consider the
associated Serre category C(Λ1), three matrices R ∈ Ak×ℓ, P ∈ Am×ℓ, Q ∈ Aq×ℓ and the
behavior B :=

{
w ∈ F ℓ; R◦w = 0

}
. Compute a matrix R′ ∈ Ak′×ℓ by Algorithm 3.1

such that

A1×k′R′ ⊇ A1×kR and RaC(Λ1)

(
A1×ℓ/A1×kR

)
= A1×k′R′/A1×kR. (14)

There is an input/output observer behavior Bobs with Λ1-stable error behavior Berr as
in (6) if and only if there are Λ1-stable rational matrices (with Λ1-stable entries)

X ∈ F(s)q×k′ and Hobs ∈ F(s)q×m such that Q = XR′+HobsP. (15)

For each such equation the unique controllable realization Bobs of the (transfer) matrix
Hobs, i.e., the input/output behavior

Bobs :=
{
( y

u) ∈ F q+m; Pobs ◦ y = Qobs ◦u
}
, (Pobs,−Qobs) ∈ Akobs×(q+m), with

A1×kobs Pobs =
{

ξ ∈ A1×q; ξ Hobs ∈ A1×m} , Qobs := PobsHobs,
(16)

is a (controllable) observer of Q◦w from P◦w, w ∈B. All controllable observers with
Λ1-stable error behavior (6) are obtained in this fashion.

Remark 1.2. The set Λ2 is called ideal-convex [29] if each Λ1-stable ideal contains a
Λ1-stable f ∈ A or, equivalently, if the Gabriel localization QC(Λ1)(M) of every module
AM coincides with the standard quotient module MT with respect to the multiplicatively
closed set T of Λ1-stable polynomials. If this property holds the matrix R′ in (14) can
be replaced by R, the proof of Thms. 4.4 and 1.1 can be simplified and the existence
of an observer is equivalent to the usual detectability condition that the negligibility of
P ◦w, w ∈ B, implies that of Q ◦w. In dimension m > 2 ideal convexity rarely holds
and is hard to check.

The linear equation Q = XR′+HobsP in Thm. 1.1 for observer constructions was
stimulated by its one-dimensional predecessors (see [9] and [6] for one-dimensional
observer results, their literature and principal contributors) and by the two-dimensional
deadbeat observers of [3], see Example 4.6.
Section 3 furnishes a simpler and more comprehensive introduction to the Gabriel lo-
calization functor QC than that given in [20] and contains the indispensable technical
preparations for the proof of the main theorem in Section 4. Its most important new
results are Algorithm 3.1 for the computation of RaC(M) for a f.g. A-module M, Algo-
rithm 3.9 for the computation of QC

(
A1×kR

)
for R ∈ Ak×ℓ and Thm. 3.2 on the direct

sum decomposition of the signal module into its steady state part and its negligible
part. The algorithms make Computer Algebra applicable to the theorems of this paper
as discussed in Section 7. Remark 3.10 on Willems closures is a side result of this paper
and not used otherwise, but nevertheless interesting since, for instance, Shankar et al.
[28], [16] and Sasane [26] have derived special results in this direction.
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Several results of this paper, for instance those in Section 4 on the construction of ob-
servers, can be and are derived for any F-affine domain A = F [s]/I of operators with a
polynomial prime ideal I and any injective cogenerator signal module AF . Even arbi-
trary commutative noetherian domains A could be admitted. Already in [18, Chs. 2,7]
multidimensional behavioral systems theory, in particular the module-behavior dual-
ity, were developed for signal spaces AF of this generality. For Section 5 and the
consideration of polynomial-exponential signals the large injective cogenerator

A∗ := HomF(A,F)∼=
{

w ∈ FNm
; I ◦w = 0

}
(17)

has to be used. The recent paper [1] applies the signal space (17) in a very interesting
special case and mentions the significance of polynomial-exponential solutions and of
the set of characteristic frequencies as developed in Section 5.
In Section 6 we consider an arbitrary finitely generated submonoid N ⊆ Zn with Zn =
N −N w.l.o.g. as discrete domain of the independent variables and its monoid alge-
bra F [N] that acts on the large injective F [N]-cogenerator FN =F [N]∗ by translation. In
systems theory examples of such domains are N :=H0 :=

{
(µ1,µ2) ∈ Z2; µ1 +µ2 ≥ 0

}
in [3, p.2] and the cones C ⊂ Z2 of [14, Def. 5] that were used for causal input/output
representations of two-dimensional behaviors. The connection of the algebraic proper-
ties of F [N] with the combinatorial properties of N are investigated in the monograph
[13]. The rings F [N] are F-affine domains, but not factorial in general. This creates
problems in the application of Gabriel localization in Section 4 and suggests the con-
struction of Serre categories CN of F [N]-torsion modules that are induced from Serre
categories CZn of F [Zn]-torsion modules over the factorial Laurent polynomial algebra
F [Zn]. The main results are Thms. 6.3 and 6.4. The least Serre category CN of this kind
is that whose CN-negligible trajectories resp. behaviors are the deadbeat resp. nilpotent
ones from [3], [4], but here for general N ⊆ Zn instead of N = N×Z⊂ Z2. That F [N]
is not factorial in general or, in other words, not a unique factorization domain was also
observed in [14, Remark on p.1544] and created difficulties in the proof of [14, Thm.
7].
Acknowledgment: We thank the three reviewers and two editors for their efforts and
their criticism and suggestions that led to substantial changes and improvements of the
paper’s presentation.

2 A multidimensional example
We explain the stability notions of the Introduction for one important example, but refer
to the following sections for the proofs. We use the complex base field for simplicity.
With the notations from the Introduction we consider the case

F := C, m > 0, mI := 1, mII = m−1, N = N×Zm−1, t := µ1, A = C[s1,sII ,s−1
II ],

F = CN×Zm−1
=
(
CZm−1

)N
∋ w = (w(µ))µ∈N = (w(0),w(1), · · ·) with

w(t) ∈ CZm−1
and w(t)(µII) = w(t,µII), t ∈ N, µII ∈ Zm−1

ΛN := C× (C\{0})m−1 .
(18)

The number t = µ1 is interpreted as a discrete time instant and the signal w as a time-
series of signals w(t) ∈ CZm−1

at the time t. For m = 1, mII = 0, these data are the
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standard ones of one-dimensional discrete systems theory for the time axis N.
For each λ ∈ ΛN we consider the character or substitution homomorphism χλ and its
kernel m(λ ) defined by

χλ : A → C, f 7→ f (λ ), m(λ ) := ker(χλ ) = { f ∈ A; f (λ ) = 0}=
m

∑
i=1

A(si −λi).

(19)
Hilbert’s Nullstellensatz implies that the m(λ ), λ ∈ ΛN , are precisely all maximal ide-
als of A. A signal w ∈ F is finite or polynomial-exponential if the cyclic submodule
A ◦w ⊂ F is C-finite-dimensional (f.d.). The A-submodule Ffin of F of all finite
signals admits a direct sum decomposition into A-submodules F (λ ):

Ffin =⊕λ∈ΛN F (λ ) where F (λ ) :=
{

w ∈ F ; ∃k ∈ N with m(λ )k ◦w = 0
}
=

⊕α∈NmCeλ ,α , α = (α1,αII) ∈ Nm = N×Nm−1, µ = (t,µII) ∈ N = N×Zm−1,

eλ ,α(t,µII) := eλ1,α1(t)
( µII

αII

)
λ µII

II , eλ1,α1(t) :=

{( t
α1

)
λ t

1 if λ1 ̸= 0
δα1,t if λ1 = 0

.

(20)
As functions of t resp. µII the factors λ t

1 and λ µII
II are powers (exponentials) whereas( t

α1

)
and

( µII
αII

)
are multinomial coefficients and thus polynomial functions. This ex-

plains the term polynomial-exponential for the signals in Ffin. The growth of these
signals is, of course, determined by their exponential factors. The decomposition (20)
is a standard result for one-dimensional discrete systems theory (m = 1) (cf. [24, Thm.
3.2.5] in the continuous case). If in (5) M and B are C-f.d., necessarily of the same di-
mension, then, of course, B contains finite trajectories only, i.e., B ⊂ F ℓ

fin. This holds
for all autonomous systems in dimension m= 1. We choose the stability decomposition
(cf. [17, Thm. 10] for m = 2)

ΛN = Λ1 ⊎Λ2 with Λ2 := {λ ∈ ΛN ; |λ1| ≥ 1, ∀i = 2, · · · ,m : |λi|= 1} . (21)

Consider the data from above in dimension m = 1:

N = N, s = s1, A = C[s], F = CN, ΛN = C, Λ1 = {λ ∈ C; |λ |< 1} . (22)

In dimension m = 1 the autonomous behavior B from (5) can always be described by a
square matrix R ∈ Aℓ×ℓ of rank(R) = ℓ (cf. [24, Thm. 2.5.23]) that is unique up to row
equivalence and gives rise to the characteristic polynomial det(R) ∈ C[s] of B. The
characteristic variety or (finite) set of characteristic frequencies is

char(B) = {λ ∈ C; rank(R(λ ))< ℓ}= {λ ∈ C; det(R(λ )) = 0} . (23)

The behavior admits the direct sum decomposition

B =⊕λ∈char(B)B(λ ), B(λ ) := B
∩

F (λ )ℓ, (24)

(cf. [24, Thm. 3.2.16 and proof, pp.77-79] in the continuous case). For autonomous
systems B in the state space form (11) the decomposition (24) is called the modal
decomposition of B and the elements of B(λ ) are called the modes of (complex)
frequency λ [11, §2.5.2], [7, p.145]. The mathematical background of the modal de-
composition is the Jordan decomposition of the matrix G. Moreover it is shown [7,
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Thm. 8-15], [11, p.176-177], [24, Thm. 7.2.2,(i) and proof, Ex. 7.8 on p.271] that the
following conditions are equivalent:

char(B)⊂ Λ1, i.e., B is Λ1-stable ⇐⇒ B ⊂⊕λ∈Λ1F (λ )ℓ ⇐⇒
B is asymptotically or internally stable, i.e., ∀w ∈ B : lim

t→∞
w(t) = 0.

(25)

The second equivalence follows from a simple analytic argument with geometric se-
quences. It is also customary (cf. [33, p.14] in the continuous case) to diminish Λ1
to obtain better convergence properties and even to choose a finite set Λ1 and thus to
prescribe the characteristic frequencies of the behavior (cf. [7, Thm. 7-7, p.367], [11,
p.511], [24, Thm. 10.3.1] in the continuous case).
All results of Section 5 are generalizations of the quoted theorems from [7], [11], [24],
and of (23)-(25) to higher dimensions, additional fields and more general rings of op-
erators. Their use in the papers [32], [4], [17] shows that they are significant in the
context of multidimensional stability and not only for the observer definition and con-
structions of the present paper. For λ ∈ ΛN and m(λ ) from (19) one has to consider

B0(λ ) := B
∩

Cℓeλ ,0 ⊆ B(λ ) := B
∩

F (λ )ℓ ⊆ F ℓ
fin

and the quotient module Mm(λ ) =

{
x
f

; x ∈ M, f ∈ A, f (λ ) ̸= 0
} (26)

over the local quotient ring Am(λ ). In Section 5 it is then proven that

B
∩

F ℓ
fin =⊕λ∈char(B)B(λ ) and

char(B) = {λ ∈ ΛN ; B0(λ ) ̸= 0}= {λ ∈ ΛN ; B(λ ) ̸= 0}=
{

λ ∈ ΛN ; Mm(λ ) ̸= 0
}
.

(27)
The second equation shows again that char(B) is indeed independent of the spe-
cial choice of R, the first establishes a direct sum decomposition of the module of
polynomial-exponential trajectories in B. But note that for m ≥ 2 an autonomous be-
havior contains, in general, many trajectories that are not polynomial-exponential. Like
in dimension 1 the first equation in (27) implies the equivalence

char(B)⊆ Λ1 ⇐⇒ B
∩

F ℓ
fin ⊆⊕λ∈Λ1F (λ )ℓ (28)

and thus the description of Λ1-stability of B by the equivalent property that all poly-
nomial-exponential trajectories in B have frequencies in Λ1 only. The second equation
of (27) suggests to define the class of A-modules

C(Λ1) :=
{

C; C A-module, ∀λ ∈ Λ2 : Cm(λ ) = 0
}
. (29)

Standard properties of the functors C 7→ Cm(λ ) imply that this class C(Λ1) is a Serre

category. For λ ,λ ′ ∈ ΛN the equivalence
(
(A/m(λ ))m(λ ′) ̸= 0 ⇐⇒ λ = λ ′

)
implies

that Λ1 = {λ ∈ ΛN ; A/m(λ ) ∈ C(Λ1)} so that the associated Serre category C(Λ1)
determines the stability region Λ1. Equation (27) also implies the equivalence

char(B)⊆ Λ1 ⇐⇒ M ∈ C(Λ1) (where B ∼= D(M)) (30)

and therefore the equivalence of the spectral and the algebraic definition of Λ1-stability.
Whether the analytic condition lim

t→∞
w(t) = 0 in (25) has also a multidimensional
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counterpart was discussed in [17, Thm. 10] for m = 2 for the special stability de-
composition from (21), but Λ1-stability is not equivalent to the appropriate analytic
condition. Predecessors of [17] were [8], [2] and [32]. The paper [23] extends [17]
to arbitrary dimensions m and more general autonomous behaviors and contains the
following result (see [23] for the details): Consider the Hilbert space

L2(Zm−1) :=

{
u ∈ CZm−1

; ∑
ν∈Zm−1

|u(ν)|2 < ∞

}
(31)

of square-summable multisequences with its standard inner product. Assume that
the autonomous behavior B is Λ1-stable and that B is time-autonomous (ta) (=time-
relevant in [17]) in the sense that there is a time instant d ∈ N such that the map

B →
(
(CZm−1

)ℓ
)d

, w 7→ (w(0), · · · ,w(d −1)), (32)

is injective so that w ∈ B is fully determined by its d initial data w(0), · · · ,w(d −

1) ∈
(
CZm−1

)ℓ
. Time-autonomy can be constructively checked by [22, Thm. 3.7 and

Cor. 3.8]. If the initial data w(0), · · · ,w(d−1) belong to L2(Zm−1)ℓ and if a weak addi-
tional condition is satisfied then all w(t), t ∈N, belong to L2(Zm−1)ℓ and lim

t→∞
w(t) = 0

in the Hilbert space topology. We call this analytic stability L2-stability. We conjecture
that the weak additional condition is superfluous, but have not yet proven this. An ex-
ample in [23] shows that time-autonomy and L2-stability do not imply Λ1-stability. At
present we know of no analytic condition that is equivalent to Λ1-stability of a time-
autonomous behavior.
The L2-stability of the error behavior Berr from (6) as a consequence of its Λ1-stability
and time-autonomy is, of course, very important for the usefulness of the correspond-
ing observer Bobs. The algebraic construction and parametrization of the observers,
however, proceed via the Serre category C(Λ1) and its associated Gabriel localization
and the L2-stability is useless for this purpose.

3 Serre categories and Gabriel localization
Gabriel developed Serre’s ideas from [27] into a comprehensive theory of quotient cat-
egories, quotient modules and quotient rings in his thesis [10]. Gabriel localization as
used here is well exposed in [30, ch.VII, IX,X,XI]. We use standard notions and results
concerning commutative noetherian rings, especially on prime ideals and primary de-
composition, that are exposed in [12, ch. 1-2], for instance.
In the whole paper let F be a field, A an F-affine integral domain of the form A=F [s]/I
with s = (s1, · · · ,sm) and a prime ideal I. Let ModA be the category of A-modules and
spec(A) resp. max(A) the set of prime resp. of maximal ideals of A. For M ∈ ModA
and p ∈ spec(A) the quotient module Mp :=

{ x
t ; x ∈ M, t ∈ A\p

}
is a module over

the local quotient ring Ap. Let supp(M) := {p ∈ spec(A); Mp ̸= 0} be the support of
M and ass(M) := {p ∈ spec(A); A/p⊆ M(up to isomorphism)} its associator or set of
associated prime ideals. These sets are related via

supp(M) = {q ∈ spec(A); ∃p ∈ ass(M) with p⊆ q} . (33)

The support of a cyclic module M = A/a is

V (a) := supp(A/a) = {p ∈ spec(A); a⊆ p} . (34)
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If AM is finitely generated with annihilator ideal

a := annA(M) := { f ∈ A; f M = 0} then supp(M) =V (a). (35)

We use an injective cogenerator signal module F that is large, i.e., satisfies ass(F ) =
spec(A), as in all standard cases [18, Thm. 2.54]. For a matrix R∈Ak×ℓ, its row module
U := A1×kR ⊆ A1×ℓ and factor module M := A1×ℓ/U the dual behavior is (cf. (5))

D(M) := HomA(M,F )∼=

B :=U⊥ =
{

w ∈ F ℓ; U ◦w = 0
}
=
{

w ∈ F ℓ; R◦w = 0
} (36)

where F ℓ denotes column vectors with entries in F .
Gabriel localization is associated with a given Serre subcategory C of ModA. We as-
sume C ̸= ModA and therefore C consists of torsion modules only. The largest sub-
module in C of M ∈ ModA is the C-radical RaC(M). It consists of the elements x ∈ M
that are annihilated by some ideal a with A/a ∈ C, i.e., ax = 0, and are called C-
negligible. As defined in the Introduction modules in C and their dual autonomous
behaviors are also called C-small, C-negligible or C-stable. The closure under ex-
tensions of C also implies that the radical RaC(M) is the least submodule U ∈ C of
M with RaC(M/U) = 0. The Serre categories C ̸= ModA are in one-one correspon-
dence with disjoint decompositions spec(A) = P1 ⊎P2, P2 ̸= /0, with the property
that p,q ∈ spec(A), p⊆ q and p ∈P1 imply q ∈P1:

P1 := {p ∈ spec(A); A/p ∈ C} , C= {C ∈ ModA; ass(C)⊆P1} ,
hence C= {C ∈ ModA; supp(C)⊆P1}= {C ∈ ModA; ∀p ∈P2 : Cp = 0} .

(37)

This connection between C and the Pi and the properties of C also furnish the equiva-
lence

RaC(M) = 0 ⇐⇒ ass(M)⊆P2 (38)

for M ∈ ModA. The set

TC := {a⊆ A; a ideal, A/a ∈ C}= {a⊆ A; V (a)⊆P1} (39)

is called the Gabriel topology induced from C. The properties of C imply immediately
that an A-module M belongs to C if and only if each element of M is annihilated by
some ideal in TC and therefore TC determines C uniquely. Likewise, if M is f.g. with
annihilator ideal

a := annA(M) then (M ∈ C ⇐⇒ A/a ∈ C ⇐⇒ V (a)⊆ P1) . (40)

The next algorithm uses standard properties of the associator and of primary de-
compositions [12, p.41].

Algorithm 3.1. (Computation of the radical) Let M ∈ ModA be finitely generated and
let 0=

∩
p∈ass(M)U(p)⊆M be an irredundant primary decomposition of 0 in M. Define

Ui :=
∩

p∈ass(M)∩Pi
U(p) for i = 1,2. Then

U2 = RaC(M), M/U1 ∈ C, RaC(M/U2) = 0, D(M) = D(M/U1)+D(M/RaC(M)).
(41)

Hence, if this primary decomposition can be computed and if the membership problem
p ∈P1 or p ∈P2 can be decided for prime ideals p of A then all modules in (40) can
be computed too.
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Proof. The irredundant primary decomposition is characterized by ass(M/U(p)) =
{p} for p ∈ ass(M). Then 0 =U1

∩
U2 and the induced diagonal homomorphisms

M → M/U1 ×M/U2,x 7→ (x+U1,x+U2), and

M/Ui → ∏
p∈ass(M)∩Pi

M/U(p), i = 1,2,and also U2 → M/U1, x 7→ x+U1,

are injective which implies ass(U2)⊆ ass(M/U1) and

ass(M)⊆ ass(M/U1)∪ ass(M/U2)

⊆ ass

(
∏

p∈ass(M)∩P1

M/U(p)

)∪
ass

(
∏

p∈ass(M)∩P2

M/U(p)

)

=

 ∪
p∈ass(M)∩P1

ass(M/U(p))

∪ ∪
p∈ass(M)∩P2

ass(M/U(p))


= (ass(M)∩P1)

⊎
(ass(M)∩P2) = ass(M),

thus ass(M/Ui) = ass(M) ∩Pi. The inclusions ass(U2) ⊆ ass(M/U1) ⊆ P1 and
ass(M/U2)⊆P2 and equations (37) and (38) imply

M/U1 ∈ C, U2 ∈ C, hence U2 ⊆ RaC(M) and RaC(M/U2) = 0, thus U2 = RaC(M).

By duality the diagonal monomorphism M → M/U1 ×M/U2 induces the surjection

D(M/U1)×D(M/U2)
+−→ D(M), thus D(M/U1)+D(M/U2) = D(M).

The following results are exposed in [30, §IX.1, §X.1-2]. For M ∈ ModA the maps

M → HomA(a,M), x 7→ (a 7→ ax), a ∈ TC, (42)

are injective if RaC(M) = 0. If they are isomorphisms for all a ∈ TC the module M
is called C-closed. The full subcategory ModA,C of all C-closed modules is closed
under kernels, direct products and direct sums in ModA and abelian. In particular, the
inclusion injC : ModA,C ⊂ ModA is left exact, but in general epimorphisms in ModA,C
are not surjective. The functor injC has the left adjoint Gabriel localization functor
QC : ModA → ModA,C with its associated functorial morphism ηM : M →QC(M), i.e.,
the map

HomA(QC(M),N)→ HomA(M,N), g 7→ gηM, M ∈ ModA,N ∈ ModA,C, (43)

is a functorial isomorphism. The functor QC is exact and moreover

ker(ηM) = RaC(M), cok(ηM) ∈ C,
(
M ∈ ModA,C ⇐⇒ ηM : M ∼= QC(M)

)
.

Thus M
ident.
⊆ QC(M) if RaC(M) = 0.

(44)

If V ⊆ N are C-closed modules their factor object in ModA,C is denoted by N/CV . The
exactness of QC and (44) imply N/CV = QC(N/V ) where N/V is the standard factor
module in ModA.



3 SERRE CATEGORIES AND GABRIEL LOCALIZATION 13

The next theorem is a consequence of Matlis’ theory of injective modules over com-
mutative noetherian rings [12, pp.145-152] that was essentially used in [18] already. A
direct sum of injective modules is injective, and each injective module admits a direct
decomposition into (directly) indecomposable injectives. A submodule M ⊆E is called
large or essential if for each nonzero submodule U ⊆ E also M ∩U is nonzero. This
implies ass(M) = ass(E). If in addition E is injective then it is called an injective hull
of M. Each A-module M has an injective hull which is unique up to isomorphism and
denoted by E(M). The map

p 7→ E(A/p) with ass(E(A/p)) = ass(A/p) = {p} (45)

is a bijection from spec(A) onto the set of isomorphism classes of indecomposable
injectives. For each t ∈ A\p the multiplication t : E(A/p)→ E(A/p) is bijective, i.e.,
E(A/p) is a module over the local ring Ap, and is indeed the least injective cogenerator
over this ring.

Theorem and Definition 3.2. Let C( ModA be a Serre subcategory.
(i) If E is an indecomposable injective with ass(E) = {p} then

RaC(E) =

{
E if p ∈P1

0 if p ∈P2
.

(ii) The large (with ass(F ) = spec(A)) injective cogenerator F admits a non-unique
direct decomposition

F = RaC(F )⊕F2 with RaC(F2) = 0, ass(RaC(F )) =P1, ass(F2) =P2. (46)

In particular, RaC(F ) and F2 are injective as direct summands of F . If w=w1+w2 ∈
F = RaC(F )⊕F2 then w1 resp. w2 are suggestively called the C-negligible part resp.
the C-steady state of the trajectory w.
(iii) For C ∈ ModA : C ∈ C ⇐⇒ HomA(C,F2) = 0.
(iv) The module F2 is C-closed and F2 ∼= F/RaC(F )∼= QC(F ), hence

HomA(M,F2)∼= HomA (QC(M),F2)∼= HomA (QC(M),QC(F )) .

(v) The module F2 ∼= QC(F ) is an injective cogenerator in ModA,C.
(vi) The radical RaC(F ) is an injective cogenerator in the abelian category C and thus
induces the behavioral duality C 7→ HomA(C,RaC(F )) = HomA(C,F ) between f.g.
C-negligible modules and behaviors.

Proof. (i) This follows directly from equations (37) and (38).
(ii) The module F admits a direct decomposition F = ⊕i∈IEi into indecomposable
injectives Ei with ass(Ei) = {pi} and spec(A) = ass(F ) = {pi; i ∈ I} because F is a
large injective cogenerator, Therefore, by (i),

RaC(Ei) =

{
Ei if pi ∈P1

0 if pi ∈P2
and

RaC(F ) = RaC (⊕i∈IEi) =⊕i∈I RaC(Ei) =⊕i∈I,pi∈P1Ei,

F = RaC(F )⊕F2 with F2 :=⊕i∈I,pi∈P2 Ei, RaC(F2) = RaC(F )∩F2 = 0.
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As direct summands of F the submodules RaC(F ) and F2 are injective. By equations
(37) and (38) their associators satisfy

ass(RaC(F ))⊆P1 and ass(F2)⊆P2. But
spec(A) = ass(RaC(F )⊕F2) = ass(RaC(F ))∪ ass(F2)⊆P1 ⊎P2 = spec(A),

hence ass(RaC(F )) =P1 and ass(F2) =P2.

(iii) Let C ∈ ModA. If C ∈ C any linear map f : C → F2 maps C = RaC(C) into
RaC(F2) = 0, hence HomA(C,F2) = 0.
Assume, conversely, HomA(C,F2) = 0. For p ∈ spec(A) the module E(A/p) is the
least injective cogenerator over Ap, hence

for C ∈ ModA : HomA(C,E(A/p))∼= HomAp(Cp,E(A/p)) and

(Cp = 0 ⇐⇒ HomA(C,E(A/p)) = 0) .

By (ii) we have F2 = ⊕pi∈P2Ei, Ei ∼= E(A/pi), and ass(F2) = {pi; i ∈ I,pi ∈P2} =
P2. If in addition C is finitely generated this implies

0 = HomA(C,F2) = HomA(C,⊕pi∈P2Ei) ∼=
C f.g

⊕pi∈P2 HomA(C,Ei) =⇒

∀pi ∈P2 : HomA(C,E(A/pi)) = 0 =⇒∀p ∈P2 : Cp = 0 ⇐⇒
(37)

C ∈ C.

In general, a f.g. submodule C′ of C and the injectivity of F2 induce the surjection

0 = HomA(C,F2)→ HomA(C′,F2), f 7→ f |C′, hence
∀C′ ⊆C, C′ f.g. : HomA(C′,F2) = 0 =⇒∀C′ ⊆C, C′ f.g. : C′ ∈ C ⇐⇒ C ∈ C.

(iv) The maps (42) (with M =F2) are injective since RaC(F2) = 0 and surjective since
F2 is injective, hence F2 ∈ ModA,C. With (44) this implies QC(F2)∼= F2 and

QC(F ) = QC (RaC(F )⊕F2)∼= QC (RaC(F ))⊕QC(F2)∼= 0⊕F2 = F2.

(v) Since monomorphisms in ModA,C coincide with those in ModA and since F2 is
injective in ModA it is also injective in ModA,C. Further assume N ∈ ModA,C and
HomA(N,F2) = 0. From (iii) we infer N ∈ C, hence N ∈ C∩ModA,C = 0 and N = 0.
This is the cogenerator property of the injective object F2 ∈ ModA,C. The proof of (v)
also follows from [30, Prop. X.1.9].
(vi) Since RaC(F ) is injective in ModA and contained in C it is also injective in C.
The identity HomA(C,RaC(F )) = HomA(C,F ) for C = RaC(C) ∈ C and the injec-
tive cogenerator property of F , i.e., (C = 0 ⇐⇒ HomA(C,F ) = 0), imply the same
property for RaC(F ) ∈ C.

Corollary 3.3. If L is any A-module, for instance a submodule of the signal module
F , then the Serre subcategory C with P1 := supp(L ) (see (33), (37)) is the least one
that contains L . Behavioral duality is then valid according to Thm. 3.2,(vi).

Proof. If p⊆ q are prime ideals and M an A-module then Mp = (Mq)p, hence Mp ̸= 0
implies Mq ̸= 0 and P1 := supp(L ) satisfies the condition for P1 from (37) that also
implies that C is the least Serre subcategory with L ∈ C.
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The determination of supp(L ) is difficult in general.
For modules and behaviors as in (36) there are the canonical isomorphisms

B
∩

F ℓ
2 =

{
w ∈ F ℓ

2 ; R◦w = 0
}
∼= HomA(M,F2)∼= HomA(QC(M),F2) (47)

and the decomposition (46) induces the behavior decomposition

B =
(
B
∩

RaC(F )ℓ
)⊕(

B
∩

F ℓ
2

)
= RaC(B)

⊕(
B
∩

F ℓ
2

)
. (48)

A multiplicatively closed set T ⊆ A\{0} with the standard quotient ring AT and exact
quotient module functor M 7→ MT gives rise to a Serre subcategory [30, Ex.2 on p.200]

C(T ) := {C ∈ ModA; CT = 0} with T(T ) := TC(T ) = {a⊆ A; a∩T ̸= /0} ,
P1(T ) := {p ∈ spec(A); p∩T ̸= /0} , P2(T ) := {p ∈ spec(A); p∩T = /0} ,

RaT (M) := RaC(T )(M) = {x ∈ M; ∃t ∈ T : tx = 0} for M ∈ ModA,

ModA,C(T ) = ModAT , QC(T )(M) = MT .

(49)

Conversely, any (C,Pi) from (37) gives rise to the multiplicatively closed set

T (C) :=
∩

p∈P2

(A\p) = {t ∈ A; A/At ∈ C} with C(T (C))⊆ C. (50)

In general, the last inclusion is not an equality and QC(M) ̸= MT (C), but the isomor-
phism (42) and (50) imply that each module in ModA,C is an AT (C)-module.
In the sequel we fix a Serre subcategory with spec(A) =P1⊎P2 from (37) and use the
notations

Ra := RaC, Q := QC, T := T (C). (51)

Result 3.4. ([21, Thm. 2.4]) If M is a submodule of a C-closed module N then

M ⊆ Q(M)⊆ N and Q(M)/M = Ra(N/M) .

The proof in the quoted paper was given for a special C only, but holds for general C.

Corollary 3.5. ([20, Lemma 3.4]) The quotient field K := quot(A) of A is C-closed and
Q(A) =

∩
p∈P2

Ap.

Proof. That the maps (42) are bijective for M = K is easy to see, hence Q(A)/A =
Ra(K/A) by the preceding result. The local quotient rings Ap, p ∈P2, are contained
in K. Let U :=

∩
p∈P2

Ap, hence A ⊆U ⊆ K. For all p ∈P2 we conclude

(U/A)p =Up/Ap ⊆ (Ap)p/Ap = Ap/Ap = 0,

hence U/A ∈ C by (37) and U/A ⊆ Ra(K/U) = Q(A)/A or U ⊆ Q(A). Conversely,
we get for all p ∈P2:

0 = (Ra(K/A))p = (Q(A)/A)p = Q(A)p/Ap = 0 or Q(A)p = Ap.

This implies Q(A)⊆
∩

p∈P2
Q(A)p =

∩
p∈P2

Ap =U .

Since A is torsionfree, hence RaC(A)= 0, the inclusions A⊆AT ⊆Q(A)=
∩

p∈P2
Ap

hold, but in general the equality AT = Q(A) is not valid. For constructive and other
purposes this equality is, however, important. Therefore we make the
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Assumption 3.6. The affine domain A and the Serre subcategory C satisfy

Q(A) := AT , i.e.,
∩

p∈P2

Ap = AT , T :=
∩

p∈P2

(A\p).

For factorial A the assumption holds [20, Lemma 3.2]. In Section 6 non-factorial A
with Q(A) = AT play an important part.

Due to this assumption any A- or AT -submodule V of A1×ℓ
T induces

V ⊆VT = ATV ⊆ Q(V ) = Q(VT )⊆ Q(A)1×ℓ = A1×ℓ
T , and

V⊥2 :=
{

w ∈ F ℓ
2 ; V ◦w = 0

}
∼= HomA

(
A1×ℓ

T /V,F2

)
∼= HomA

(
Q
(

A1×ℓ
T /V

)
,F2

)
∼= HomA

(
A1×ℓ

T /CQ(V ),F2

)
∼= Q(V )⊥2 .

(52)

Thus V⊥2 is an F2-behavior and orthogonal to the C-closed submodule Q(V ) of A1×ℓ
T .

Here we used that F2 is C-closed. If

V = A1×k′
T R′ ⊆ A1×ℓ

T , R′ ∈ Ak′×ℓ
T , then V⊥2 =

{
w ∈ F ℓ

2 ; R′ ◦w = 0
}
. (53)

Notice that R′ ◦w is defined since F2 is an AT -module. For the special case of an
A-submodule U ⊆ A1×ℓ we get

U⊥2 = Q(U)⊥2 =U⊥∩F ℓ
2 , U ⊆ A1×ℓ. (54)

Since F2 is an injective cogenerator in the abelian category ModA,C standard argu-
ments imply the

Corollary 3.7. For A- or AT -submodules Vi ⊆A1×ℓ
T , i= 1,2, with Q(Vi)=A1×k′i

T R′
i, R′

i ∈
Ak′i×ℓ

T the following equivalences hold:

V⊥2
1 ⊆V⊥2

2 ⇐⇒ Q(V1)⊇ Q(V2) ⇐⇒ ∃X ∈ Ak′2×k′1
T with R′

2 = XR′
1.

Consider especially an input/output (IO) behavior

B :=
{
( y

u) ∈ F p+m; P◦ y = Q◦u
}

with

(P,−Q) ∈ Ak×(p+m), rank(P,−Q) = rank(P) = p,

and transfer matrix H ∈ quot(A)p×m with PH = Q.

(55)

The IO property signifies that B0 := {y ∈ F p; P◦ y = 0} is autonomous and that for
every input u ∈ F m there is an output y ∈ F p such that ( y

u) ∈ B. The IO behavior is
called C-stable [20, Thm. and Def. 4.2] if its autonomous part B0 is C-negligible, i.e.,
belongs to C. This is equivalent to

B0 ∩F p
2 = ker(P◦ : F p

2 → F k
2 ) = 0 and implies H ∈ Ap×m

T . (56)

The last implication was shown in [20, Thm. and Def. 4.2] for factorial A only, but the
given proof remains valid if

∩
p∈P2

Ap = AT (Assumption 3.6).

Corollary 3.8. If the IO behavior from (55) is C-stable then

B∩F p+m
2 =

{
( y

u) ∈ F p+m
2 ; y = H ◦u

}
.
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Proof. This follows from (56). The rational matrix H ∈ Ap×m
T gives rise to the operator

H◦ : F m
2 → F p

2 . The equation PH = Q implies that for all

u ∈ F m
2 : P◦H ◦u = Q◦u, hence (H◦u

u ) ∈ B∩F p+m
2 .

Assume, conversely,

( y
u) ∈ B∩F p+m

2 =⇒ P◦ y = Q◦u = (PH)◦u = P◦H ◦u =⇒
P◦ (y−H ◦u) = 0 =⇒ y−H ◦u ∈ B0 ∩F p

2 =
(56)

0.

The second algorithm of this section computes the module Q(U) in the situation
of (36) under Assumption 3.6 and is applicable to arbitrary f.g. torsionfree modules U
since these are submodules of f.g. free modules. It extends and improves [21, Alg. 4.1]
with Algorithm 3.1 as essential tool.

Algorithm 3.9. ( Computation of Q(U) ) Under Assumption 3.6 let

R ∈ Ak×ℓ, U := A1×kR ⊆ A1×ℓ, hence Q(U) = Q(UT )⊆ Q(A)1×ℓ = A1×ℓ
T .

By means of Algorithm 3.1 compute R′ ∈ Ak′×ℓ with Ra(A1×ℓ/U) = (A1×k′R′)/U. Then
Q(U) = A1×k′

T R′.

Proof. All modules in the preceding equation are considered as A-modules and not as
AT -modules. Due to Assumption 3.6 the modules AT = Q(A) and A1×ℓ

T are C-closed.
From Result 3.4 we infer

Q(U)/UT = Q(UT )/UT =
Result 3.4

Ra
(

A1×ℓ
T /UT

)
=
(

Ra
(

A1×ℓ/U
))

T
=(

(A1×k′R′)/U
)

T
= (A1×k′

T R′)/UT , hence Q(U) = A1×k′
T R′.

Here we used the simple identity Ra(MT ) = Ra(M)T .

Remark 3.10. (Willems closures) Serre categories and their associated radical and
especially Algorithm 3.1 can also be fruitfully applied to the computation of Willems
closures with respect to arbitrary injective modules G ∼= ⊕r∈ass(G )E(A/r)(α(r)) where
α(r) is a nonzero cardinal number and E(A/r)(α(r)) a direct sum of α(r) copies of
E(A/r). Consider the Serre subcategory

C := {C ∈ ModA; ∀r ∈ ass(G ) : Cr = 0} with
P1 := {p ∈ spec(A); ∀r ∈ ass(G ) : (A/p)r = 0 or p∩ (A\ r) ̸= /0}
P2 := {p ∈ spec(A); ∃r ∈ ass(G ) : (A/p)r ̸= 0 or p⊆ r} , hence

ass(G )⊆P2 and C= {C; supp(C)⊆P1} .

(57)

For M ∈ ModA consider the Gelfand map

ρM : M → G HomA(M,G ), x 7→ (g(x))g∈HomA(M,G ) , (58)
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and its kernel ker(ρM) =
∩

g∈HomA(M,G ) ker(g). If M = A1×ℓ/U and if we identify
HomA(M,G ) with its G -behavior U⊥G =

{
w ∈ G ℓ; U ◦w = 0

}
as usual then

ker(ρM) =
∩

g∈HomA(M,G )

ker(g) =U⊥G ⊥/U ⊆ M = A1×ℓ/U with

U⊥G ⊥ :=
{

ξ ∈ A1×ℓ; ξ ◦U⊥G = 0
}
.

(59)

Shankar introduced the term Willems closure [28, Def. on p.1821] of U in A1×ℓ with
respect to G for U⊥G ⊥ and computed it in various cases [28, Thm. 2.1], [16]. Another
contribution is [26]. Let G be any injective A-module with the induced data from (57)
- (59). Then

1. ker(ρM) = RaC(M).

2. If M = A1×ℓ/U is finitely generated and U =
∩

p∈ass(M)U(p) is an irredundant
primary decomposition of U ⊆ A1×ℓ then the Willems closure of U with respect
to G is U⊥G ⊥ =

∩
p∈ass(M)∩P2

U(p).

The application of 1. and 2. requires the knowledge of ass(G ). Such computations are
contained in the quoted papers of Shankar et al.
The assertion 2. follows immediately from 1. and Algorithm 3.1. For the proof of 1.
we show first that C1 := ker(ρM)⊇C2 := RaC(M): Let x ∈C2, hence Ax ∈ C. Then

HomA(Ax,G ) = HomA

Ax,
⊕

r∈ass(G )

E(A/r)(α(r))

∼=
⊕

r∈ass(G )

HomA (Ax,E(A/r))(α(r)) .

But ∀r ∈ ass(G )⊆P2 : RaC(E(A/r)) =
Thm. 3.2,(i)

0 =⇒
Ax∈C

∀r ∈ ass(G )⊆P2 : HomA(Ax,E(A/r)) = 0 =⇒
HomA(Ax,G ) = 0 =⇒∀g ∈ HomA(M,G ) : g(x) = 0 =⇒ x ∈C1 =⇒C2 ⊆C1.

For the reverse inclusion C1 ⊆ RaC(M) =C2 we show C1 ∈ C: But

C1 ∈ C ⇐⇒ ∀r ∈ ass(G ) : (C1)r = 0 ⇐⇒
ArE(A/r) inj. cog.

∀r ∈ ass(G ) : 0 = HomAr((C1)r,E(A/r))∼= HomA(C1,E(A/r)).

But any f : C1 → E(A/r)⊆ G can be extended to g ∈ HomA(M,G ), hence f = g|C1 =
g|ker(ρM) = 0 and HomA(C1,E(A/r)) = 0.

4 Multidimensional observers
The general assumptions of Section 3 are in force, i.e., F is a field, A = F [s]/I with
s = (s1, · · · ,sm) and I ∈ spec(F [s]) is an F-affine integral domain and AF is a large
injective cogenerator signal module with ass(F ) = spec(F ). Moreover C ( ModA is
a Serre subcategory with Q :=QC, Ra :=RaC and T := T (C) that satisfies Assumption
3.6, viz. Q(A) = AT . The decomposition F = Ra(F )⊕F2 holds according to Thm.
and Def. 3.2. As explained in the Introduction we consider a behavior

B =U⊥ ⊆ F ℓ, U = A1×kR, R ∈ Ak×l , with Q(U) = A1×k′
T R′, R′ ∈ Ak′×l , (60)

and two additional matrices P ∈ Am×l and Q ∈ Aq×l . The matrix R′ is computed by
means of Algorithm 3.9.
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Definition 4.1. Consider an input/output behavior (compare (55))

Bobs =
{
( y

u) ∈ F q+m; Pobs ◦ y = Qobs ◦u
}

with

(Pobs,−Qobs) ∈ Akobs×(q+m), rank(Pobs,−Qobs) = rank(Pobs) = q

and transfer matrix Hobs ∈ quot(A)q×m, PobsHobs = Qobs.

(61)

Then Bobs is called a C-observer of Q ◦w from P ◦w, w ∈ B, if the associated error
behavior

Berr :=
{

y−Q◦w ∈ F q; w ∈ B,
( y

P◦w

)
∈ Bobs

}
(62)

is C-negligible, i.e., Berr ∈ C.

Example 4.2. In [3] the signal space F ℓ and thus every trajectory w ∈ B are decom-
posed into three components F l = F ℓr ×F ℓm ×F ℓi ∋ w = (wr,wm,wi)

⊤ where wr
is the relevant component that one wants to estimate, wm is the measurable one and wi
the irrelevant one that one neither knows nor is interested in. With

Q := (idℓr ,0,0), Q◦w = wr, and P := (0, idℓm ,0), P◦w = wm,

this situation is included in the preceding setting.

Lemma 4.3. A C-observer Bobs of B is C-stable, i.e. B0
obs ∈ C, hence by Cor. 3.8

Bobs ∩F q+m
2 =

{
( y

u) ∈ F q+m
2 ; Hobs ◦u = y

}
.

Proof. A subbehavior of a C-negligible one is again such and indeed

B0
obs = {y ∈ F q; Pobs ◦ y = 0}=

{
y−Q◦0; 0 ∈ B,

( y
P◦0
)
∈ Bobs

}
⊆ Berr.

The following theorem characterizes the existence of a C-observer and parametrizes
all controllable ones.

Theorem 4.4 (cf. [3, Thm. 5.2] and [6, Thm. 2.7]). Under the assumptions stated at
the beginning of this section, in particular

Q(A) = AT and U = A1×kR ⊆ A1×k
T R ⊆ Q (U) = A1×k′

T R′, R′ ∈ Ak′×l ,

the following statements are equivalent:

1. There exists a C-observer of Q◦w from P◦w, w ∈ B.

2. Q = XR′+HobsP for some X ∈ Aq×k′
T and Hobs ∈ Aq×m

T .

3. Under the additional assumption that Q(−) = (−)T , hence w.l.o.g. R = R′: If
w ∈B and P◦w is C-negligible then so is Q◦w. (This is the standard detectabil-
ity condition. The implication 1., 2.=⇒ 3. is always true.)

For each equation Q = XR′+HobsP as in 2. the unique controllable realization of the
(transfer) matrix Hobs, i.e., the input/output behavior

Bobs :=
{
( y

u) ∈ F q+m; Pobs ◦ y = Qobs ◦u
}
, (Pobs,−Qobs) ∈ Akobs×(q+m), with

A1×kobs Pobs =
{

ξ ∈ A1×q; ξ Hobs ∈ A1×m} , Qobs := PobsHobs,

is a controllable C-observer of Q ◦ w from P ◦ w, w ∈ B. Thus the matrices Hobs
parametrize the set of all possible controllable C-observers.
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Proof. 1.=⇒ 2.: Let Bobs from (61) be a C-observer of B. From Lemma 4.3 we infer
that Bobs is C-stable and that

Bobs ∩F q+m
2 =

{
( y

u) ∈ F q+m
2 ; y = Hobs ◦u

}
, Hobs ∈ Aq×m

T .

That Berr is C-negligible signifies that

Berr ∩F q
2 =

{
y−Q◦w; w ∈ B

∩
F ℓ

2 , y = HobsP◦w
}
= 0, i.e.,

if w ∈ B∩F ℓ
2 and y := HobsP◦w then y−Q◦w = (HobsP−Q)◦w = 0.

(63)

From (54) we conclude B∩F ℓ
2 = U⊥2 = Q(U)⊥2 . Define V := A1×q

T (HobsP−Q) ⊆
A1×ℓ

T . Equation (63) implies U⊥2 ⊆V⊥2 and then, by Cor. 3.7,

A1×k′
T R′ = Q(U)⊇ Q(V )⊇ A1×q

T (HobsP−Q) =⇒

∃X ∈ Aq×k′
T with HobsP−Q =−XR′ =⇒ Q = XR′+HobsP.

2. =⇒ 1.: All matrices in Q = XR′+HobsP have entries in AT and hence act as oper-
ators on spaces F •

2 . Let Bobs be the unique controllable realization of Hobs as in the
statement of the theorem. From the definition of Pobs we conclude

A1×kobs Pobs =
{

ξ ∈ A1×q; ξ Hobs ∈ A1×m}=⇒
A1×kobs

T Pobs =
{

ξ ∈ A1×q
T ; ξ Hobs ∈ A1×m

T

}
=⇒

Hobs∈Aq×m
T

A1×kobs
T Pobs = A1×q

T =⇒∃Y ∈ Aq×kobs
T with Y Pobs = idq .

Again we use B ∩F ℓ
2 = Q(U)⊥2 =

{
w ∈ F ℓ

2 ; R′ ◦w = 0
}
. We have to show that

Berr ∩F q
2 = 0. But let w ∈ B∩F ℓ

2 and
( y

P◦w

)
∈ Bobs ∩F q+m

2 . Then

Pobs ◦ y = Qobs ◦P◦w = Pobs ◦ (HobsP)◦w = Pobs ◦ (Q−XR′)◦w =⇒
Pobs ◦

(
y−Q◦w+X ◦R′ ◦w

)
= 0 =⇒

Y Pobs=idq, R′◦w=0

y−Q◦w = 0 =⇒ Berr ∩F q
2 = 0.

In this fashion every solution (X ,Hobs) ∈ Aq×(k′+m)
T of the inhomogeneous linear equa-

tion Q = XR′+HobsP = (X ,Hobs)
(

R′
P

)
furnishes a controllable C-observer of B with

transfer matrix Hobs or, in other words, these Hobs parametrize the set of all controllable
C-observers. For fixed Hobs the matrix X is unique up to a left multiple of a universal
left annihilator of R′.
2. ⇐⇒ 3.: By assumption we have Q(M) = MT for all AM and may and do choose
R′ = R. The A-submodules V1 := A1×(k+m) (R

P) and V2 := A1×qQ of A1×ℓ give rise to

Q(V1) = A1×(k+m)
T (R

P) , Q(V2) = A1×q
T Q and

V⊥2
1 =

{
w ∈ B∩F ℓ

2 ; P◦w = 0
}
, V⊥2

2 =
{

w ∈ F ℓ
2 ; Q◦w = 0

}
.

The condition of 3. signifies that V⊥2
1 ⊆V⊥2

2 or, equivalently by Cor. 3.7, that

A1×(k+m)
T (R

P) = Q(V1)⊇ Q(V2) = A1×q
T Q ⇐⇒

∃(X ,Hobs) ∈ Aq×(k+m)
T with Q = (X ,Hobs)(R

P) = XR+HobsP

which is the condition of 2.
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Remark 4.5. If in Thm. 4.4 the matrix R′ can be computed by Algorithm 3.9 and
if inhomogeneous linear systems over AT like in 2. can be solved, then the condition
in 2. can be checked, all matrices Hobs can be computed and the unique controllable
C-observers with transfer matrix Hobs can be constructed.

Example 4.6. (Deadbeat trajectories) 1. The multidimensional generalization of the
two-dimensional deadbeat observers [3] is obtained for the signals and operators from
(1), (2) and (3): The set T := sN := {sµ ; µ ∈ N = NmI ×ZmII} of monomials is multi-
plicatively closed and gives rise to the Serre subcategory C(T ) := {C ∈ ModA; CT = 0}
from (49) with QC(T )(M) = MT . A signal w ∈ FN is C(T )-negligible or a deadbeat
signal if and only if sµ ◦w = 0 for some µ ∈ N. The C(T )-negligible behaviors are
called nilpotent [3].
2. In the situation of Example 4.2 the matrices of Thm. 4.4 have the form

w = (wr,wm,wi)
⊤ ∈ F ℓr+ℓm+ℓi , R′ = (R′

r,R
′
m,R

′
i) ∈ Ak′×(ℓr+ℓm+ℓi),

P = (0, idℓm ,0) ∈ Aℓm×(ℓr+ℓm+ℓi), Q = (idℓr ,0,0) ∈ Aℓr×(ℓr+ℓm+ℓi),

X ∈ Aℓr×k′
T , Hobs ∈ Aℓr×ℓm

T .

The equation 2. in Thm. 4.4 obtains the form

Q = (idℓr ,0,0) = XR′+HobsP = X(R′
r,R

′
m,R

′
i)+Hobs(0, idℓm ,0) or

idℓr = XR′
r, XR′

i = 0, Hobs =−XR′
m.

Hence for any chosen stability notion an observer for wr from wm exists if and only if
the matrix R′

r has a left inverse X ∈ Aℓr×k′
T with XRi = 0. The transfer matrix of the

controllable observer is Hobs =−XRm.
For deadbeat trajectories as in 1. one may choose R′ = R. In dimension 2 this is the
result [3, Thm. 5.2, (iii)].

5 Characteristic variety, stability and Serre categories
In this section we construct and characterize the Serre categories C(Λ1) from the Intro-
duction and Section 2 and derive their connection with Λ1-stability. The main results
are Thms. 5.8, 5.11 and 5.14. We repeat that the case of the real base field R requires
more difficult considerations than that of the complex base field C.
For the proofs we need and therefore recall the results of [19] and present them in a
simplified form. In the beginning we assume an arbitrary field F , an F-affine integral
domain A = F [s]/I and an arbitrary injective cogenerator AF or, equivalently, an injec-
tive module AF with ass(F ) ⊇ max(A). We use standard results from Commutative
Algebra [12, §5]. Consider the Serre subcategory (cf. [21])

Cfin := {C ∈ ModA; ∀x ∈C : dimF(Ax)< ∞} with
P1,fin = {p ∈ spec(A); A/p ∈ Cfin}= max(A) and Rafin := RaCfin , Ffin := Rafin(F ).

(64)
That dimF(A/m)< ∞ for m ∈ max(A) follows from Hilbert’s Nullstellensatz. An ele-
ment x ∈ M, M ∈ ModA, is Cfin-negligible or finite if the cyclic module Ax is F-finite
dimensional (f.d.) whereas the modules in Cfin are also called locally finite. The Gabriel
topology Tfin := TCfin consists of the ideals a with dimF(A/a) < ∞ or dim(A/a) = 0
where dim denotes the Krull dimension.
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Result 5.1. ([19, Thm. 1.14, (2.12-13)]) The radical Ffin =Rafin(F ) admits the direct
decomposition

Ffin =⊕m∈max(A)F (m) where

F (m) =
∞∪

k=0

annF (mk), annF (mk) :=
(
mk
)⊥

=
{

w ∈ F ; mk ◦w = 0
} (65)

and is itself an injective cogenerator with ass(Ffin) = max(A). This decomposition
induces the decomposition

F ℓ
fin = Rafin

(
F ℓ
)
=⊕m∈max(A)F (m)ℓ.

For t ∈ A\m the map t◦ : F (m)→F (m) is bijective and therefore F (m) is a module
over the local ring Am =

{ a
t ; a ∈ A, t ∈ A\m

}
, and indeed an injective cogenerator

of ModAm . These properties can also be proven as in Thm. 3.2.

For an A-module M we define its maximal support as

suppmax(M) := supp(M)∩max(A) = {m ∈ max(A); Mm ̸= 0} , especially
Vmax(a) := suppmax(A/a) =V (a)∩max(A) = {m ∈ max(A); a⊆m} . Then

suppmax(M) =
(35)

Vmax(a) if M f.g., a := annA(M).
(66)

Corollary 5.2. Consider modules and the associated behavior as in (36), i.e.,

R ∈ Ak×ℓ, U := A1×kR, M := A1×ℓ/U, a := annA(M) and B :=U⊥ ∼= HomA(M,F ).

Then Rafin(B) = B∩F ℓ
fin =

⊕
m∈max(A)

B(m) with

B(m) := B∩F (m)ℓ =
{

w ∈ F (m)ℓ; R◦w = 0
}
∼=

HomA(M,F (m))∼= HomAm(Mm,F (m)).

This implies

suppmax(M) =Vmax(a) = {m ∈ max(A); B(m) ̸= 0} and

B
∩

F ℓ
fin =⊕m∈suppmax(M)B(m).

Proof. The equality Rafin(B) = ⊕mB(m) follows directly from F ℓ
fin = ⊕mF (m)ℓ

and B =
{

w ∈ F ℓ; R◦w = 0
}

. The last isomorphism comes from the universal prop-
erty of the quotient module since F (m) is an Am-module according to Result 5.1.
Since AmF (m) is an injective cogenerator the equivalence

Mm = 0 ⇐⇒ B(m)∼= HomAm(Mm,F (m)) = 0

holds and hence suppmax(M) = {m ∈ max(A); B(m) ̸= 0} .

Since Ffin is an injective cogenerator B∩F ℓ
fin is a "big" submodule of B and de-

termines B which, however, contains many non-finite trajectories in general.
The following theorem is a simple, but important consequence of Cor. 5.2 and char-
acterizes, for the constructed C, the C-negligible behaviors by properties of their finite
trajectories.
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Theorem 5.3. (Compare [20, Sect. 3]) Let F be a field, A an F-affine domain, AF an
injective cogenerator (with ass(F ) ⊇ max(A)) and B ∼= HomA(M,F ) the behavior
from Cor. 5.2. Choose an arbitrary disjoint stability decomposition max(A) =M1 ⊎
M2 into a stable set M1 and a non-empty unstable set M2. Then

C := {C ∈ ModA; ∀m ∈M2 : Cm = 0}= {C ∈ ModA; suppmax(C)⊆M1}

is a Serre subcategory of A-torsion modules and the following properties are equiva-
lent:

1. The module M belongs to C or B is C-negligible.

2. The rank of R∈Ak×ℓ is ℓ, i.e., M is an A-torsion module, and Vmax(a)= suppmax(M)
is contained in M1.

3. The F -behavior B is autonomous and Rafin(B) = B
∩

F ℓ
fin = ⊕m∈M1B(m),

i.e., the finite trajectories of B have components in F (m)ℓ for m ∈M1 only.

With the notations from (37) this implies

P2,C := {q ∈ spec(A); ∃m2 ∈M2 with q⊆m2} , Mi =Pi,C
∩

max(A), i = 1,2,

TC = {a⊆ A; Vmax(a)⊆M1} , P1 = {p ∈ spec(A); Vmax(p)⊆M1} .
(67)

Proof. The functors ModA → ModAm , C 7→ Cm, are exact and preserve direct sums.
This implies immediately that C satisfies the defining closure properties of a Serre
subcategory. All three properties imply that M is an A-torsion module or that B is an
autonomous F -behavior, hence we assume this.
1. ⇐⇒ 2.: C = {C ∈ ModA; suppmax(C)⊆M1} and Vmax(a) = suppmax(M) since M
is finitely generated.
2. ⇐⇒ 3.: From Cor. 5.2 we infer

suppmax(M) = {m ∈ max(A); B(m) ̸= 0} and Rafin(B) =⊕m∈suppmax(M)B(m),

hence
(
Rafin(B) =⊕m∈M1B(m) ⇐⇒ suppmax(M)⊆M1

)
.

Equation (67) is an immediate consequence.

Remark 5.4. (cf. [21, Rem. 5.1]) There are Serre subcategories of ModA that do not
arise according to Thm. 5.3. For k ∈ N consider the Serre subcategory associated to
(see (37))

spec(A) =P1,k ⊎P2,k with P1,k := {p ∈ spec(A); dim(A/p)≤ k} ,
P2,k := {p ∈ spec(A); dim(A/p)> k} and Ck = {M ∈ ModA; dim(M)≤ k}

where dim denotes the Krull dimension. Since an ideal p is maximal if and only if
dim(A/p) = 0 we infer P2,k ∩max(A) = /0. Therefore, by (67), C does not arise ac-
cording to Thm. 5.3. For k = 0 one obtains P1,0 =P1,fin = max(A) and C0 = Cfin.

5.1 Discrete behaviors
We now specialize F to get more analytic information on the finite trajectories of
the last theorem. For A = C[s] and the continuous and discrete standard C[s]-signal
modules the subsequent theory follows from [19] and [20].
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For M ∈ ModA let M∗ := HomF(M,F) denote the dual vector space. It is an A-module
via

(a◦φ)(x) := φ(ax), a ∈ A, φ ∈ M∗, x ∈ M. (68)

Result 5.5. ([18, Thm. 3.15], [19, Thm. 1.14]) The dual space F :=A∗ with the action
from (68) is a large injective cogenerator, i.e., satisfies ass(A∗) = spec(A). Its injective
submodule Ffin from Result 5.1 is the least injective A-cogenerator. For each m ∈
max(A) the direct summand F (m), m ∈ max(A), is indecomposable, hence F (m) ∼=
E(A/m) (compare (45)) and F (m) is the least injective Am-cogenerator.

The standard multidimensional discrete signal spaces are of this form. In the fol-
lowing we use this large injective cogenerator signal module A∗.
For a finitely generated A-module M = A1×ℓ/U with A∗-behavior U⊥ ⊆ (A∗)ℓ there are
the canonical A-isomorphisms

M∗ = HomF(M,F)∼= HomA(M,A∗)∼=U⊥, φ 7→ ϕ 7→
(36)

w,

ϕ(x)(a) = φ(ax), w j = ϕ(δ j +U), δ j = (0, · · · ,0,
j
1,0, · · · ,0),

hence the frequent identification M∗ = HomA(M,A∗) =U⊥ ⊆ (A∗)ℓ.

(69)

Example 5.6. (Monoid algebras [13, Ch. 7]) We consider the elements of the free
abelian group Zn as row vectors. Consider a matrix Θ∈Zm×n and the finitely generated
additive monoid

N := N1×mΘ =
m

∑
i=1

NΘi− ⊆ Zn. (70)

Let s = (s1, · · · ,sm) and σ = (σ1, · · · ,σn) be two lists of indeterminates. The group
algebra of Zn over F is the Laurent polynomial algebra

F [Zn] = F [σ ,σ−1] =⊕ν∈Zn Fσν , σ−1 := (σ−1
1 , · · · ,σ−1

n ), (71)

where we identify ν ∈ Zn with the monomial σν as usual. The monoid algebra of N
then has the form

F [N] :=⊕ν∈NFσν ⊆ F [Zn] = F [σ ,σ−1]. (72)

The monoid epimorphism ◦Θ : Nm → N,µ 7→ µΘ, induces the algebra epimorphism

φ : F [s]→ F [N], si 7→ σΘi− =
n

∏
j=1

σΘi j
j , sµ 7→ σ µΘ, with

IN := ker(φ) ∈ spec(F [s]) and F [s]/IN ∼= F [N],sµ + IN 7→ φ(sµ) = σ µΘ.

(73)

We often identify F [s]/IN = F [N], sµ + IN = σ µΘ. The ideal IN is called the lattice
ideal of N and has the form [13, Thm. 7.3]

IN = ∑
{

F
(

sµ − sµ ′
)

; µ ,µ ′ ∈ Nm, µΘ = µ ′Θ
}
. (74)

The algebra F [N] acts on FN := {w : N → F, ν 7→ w(ν)} by shifts or translation. It
also acts on F [N]∗ via (68) and the map

F [N]∗ → FN , φ 7→ w, φ(σν) = w(ν), (75)

is an F [N]-isomorphism. Therefore we may and do identify F [N]∗ = FN , i.e., φ = w
and w(σν) = w(ν). According to Result 5.5 the module F [N]FN is a large injective co-
generator with all the additional properties and gives rise to a corresponding behavioral
systems theory.
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5.2 Operator rings F [NmI ×ZmII ]

We introduce some more notations for the lattices and their monoid algebras from (1)-
(3). For any disjoint decomposition

{1, · · · ,m}= S⊎S′ and any set X we identify Xm = XS⊎S′ = XS ×XS′

x = (x j) j=1,··· ,m = (xS,xS′), xS := (x j) j∈S, xS′ := (x j) j∈S′ .
(76)

Let m = mI +mII , mI ,mII ∈ N, and pose

{1, · · · ,m}= SI ⊎SII with
SI := {1, · · · ,mI} , SII := {mI +1, · · · ,m = mI +mII} , and

Zm = ZSI ×ZSII = ZmI ×ZmII ∋ µ = (µSI ,µSII ) =: (µI ,µII),

N := NmI ×ZmII ⊆ Zm = ZmI ×ZmII , s = (sSI ,sSII ) =: (sI ,sII),

A := F [N] = F [sI ,sII ,s−1
II ] ∋ sµ = sµI

I sµII
II , µI ∈ NmI , µII ∈ ZmII .

(77)

So F [N] is the mixed Laurent polynomial algebra from (3). In the polynomial algebra
F [s] the set T :=

{
sµII

II ; µII ∈ NmII
}

is multiplicatively closed and F [N] =F [sI ,sII ,s−1
II ] =

F [s]T is the quotient ring of F [s] with respect to T . This implies the factoriality of F [N]
and thus the validity of Assumption 3.6. Moreover there is the bijection [12, Thm. 4.1]

max(F [N])∼= {m ∈ max(F [s]); m∩T = /0} , n=mT = F [N]m↔m= n∩F [s]. (78)

For the Laurent polynomial algebras and notations from above over any algebraically
closed field F and over the real field R we recall the description of the finite trajectories
in FN from [19].

5.2.1 Algebraically closed base fields F

Assume first that F is algebraically closed and define the total space (cf. (7))

ΛN := FSI × (F \{0})SII = FmI × (F \{0})mII ⊂ Fm = FmI ×FmII (79)

of vectors λ ∈ Fm that can be substituted into Laurent polynomials f ∈ A. Hilbert’s
Nullstellensatz for polynomial ideals implies the bijection

Fm ∼= max(F [s]), λ 7→m(λ ) :=
m

∑
i=1

F [s](si −λi) = { f ∈ F [s]; f (λ ) = 0} , (80)

that, together with (78), furnishes an analogue for F [N]:

ΛN ∼= max(F [N]) = max(F [sI ,sII ,s−1
II ]),

λ 7→mN(λ ) :=
m

∑
i=1

F [sI ,sII ,s−1
II ](si −λi) =

{
f ∈ F [sI ,sII ,s−1

II ]; f (λ ) = 0
}
.

(81)

The vanishing set or variety of an ideal a⊆ F [N], compare (9), is

V (a) :=VΛN (a) := {λ ∈ ΛN ; ∀ f ∈ a : f (λ ) = 0} . Then
VΛN (a)

∼=Vmax(a), λ 7→mN(λ ),
(82)



5 CHARACTERISTIC VARIETY, STABILITY AND SERRE CATEGORIES 26

is the canonical bijection induced from (81).
According to Result 5.5 we define

FN(λ ) := FN(mN(λ )) =
{

w ∈ FN ; ∃k ∈ N : mN(λ )k ◦w = 0
}

for

λ ∈ ΛN = FmI × (F \{0})mII and obtain Rafin(FN) =⊕λ∈ΛN FN(λ ).
(83)

We construct an F-basis of FN(λ ). Let S := supp(λ ) :=
{

j; λ j ̸= 0
}

, hence S ⊇ SII
and {1, · · · ,m}= S′⊎S, and consider the derived data

λS := (λ j) j∈S, α := (αS′ ,αS), t = (tS′ , tS) ∈ Zm = ZS′ ×ZS.

Define eλ ,α =
(
eλ ,α(t)

)
t∈N ∈ FN , λ ∈ ΛN , α ∈ Nm,

by eλ ,α(t) = δαS′ ,tS′

(
tS
αS

)
λ tS−αS

S with
(

tS
αS

)
:= ∏

j∈S

(
t j

α j

)
.

Then (s−λ )β ◦ eλ ,α =

{
eλ ,α−β if α ∈ β +Nm

0 otherwise
.

(84)

In characteristic zero, but not in positive characteristic the multinomial coefficients( tS
αS

)
are polynomial functions of t ∈ N.

Result 5.7. ( [19, Thm. 1.25, Cor. 1.26, Thm. 4.23 ] ) For algebraically closed F, the
data from (76)-(84) and λ ∈ ΛN one has

FN(λ ) =⊕α∈Nm Feλ ,α with (s−λ )β ◦ eλ ,α =

{
eλ ,α−β if α ∈ β +Nm

0 otherwise
.

Due to (84) and Rafin(FN)=⊕λ∈ΛN FN(λ ) the finite signals in Rafin(FN) are called
polynomial-exponential in characteristic zero. For F = C the growth of eλ ,α(t) as
function of t is determined by its factor λ tS

S .

For the adaption of Thm. 5.3 we introduce the characteristic variety, cf. (8), (27).
For a f.g. F [N]- torsion module and its dual autonomous behavior, viz.

M = F [N]1×ℓ/F [N]1×kR, R ∈ F [N]k×ℓ, rank(R) = ℓ,

B = HomF [N](M,FN) =
ident.

{
w ∈

(
FN)ℓ ; R◦w = 0

} (85)

and for λ ∈ ΛN there are the canonical isomorphisms F [N]/mN(λ )∼= F and

M/mN(λ )M ∼= MmN(λ )/mN(λ )mN(λ )MmN (λ )
∼= F1×ℓ/F1×kR(λ ).

From Krull’s Lemma we infer

mN(λ ) ∈ suppmax(M) ⇐⇒ MmN(λ ) ̸= 0 ⇐⇒
Krull

M/mN(λ )M ∼= MmN(λ )/mN(λ )mN(λ )MmN (λ ) ̸= 0 ⇐⇒ rank(R(λ ))< ℓ.

Moreover D(M/mN(λ )M) = D(M)
∩

D(F [N]/mN(λ ))ℓ = B
∩

F1×ℓeλ ,0.

Thus (81) and Cor. 5.2 imply the bijection

char(B) := char(M) :=
{

λ ∈ ΛN ; B∩Fℓeλ ,0 ̸= /0
}
=
{

λ ∈ ΛN ; B∩FN(λ )ℓ ̸= /0
}
=

{λ ∈ ΛN ; rank(R(λ ))< rank(R)} ∼= suppmax(M) and

B
∩

Rafin(FN)ℓ =⊕λ∈char(B)B(λ ), B(λ ) := B∩FN(λ )ℓ.
(86)
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The set char(B) is the characteristic variety from (8). The bijection VΛN (a)
∼=Vmax(a)

from (82) for the annihilator ideal a := annA(M) of M and the equation Vmax(a) =
suppmax(M) from (66) imply equation (9):

char(B) =VΛN (annA(M)). (87)

For the preceding more special situation Theorem 5.3 furnishes

Theorem 5.8. Assumptions as in Result 5.7, especially F [N] = F [sI ,sII ,s−1
II ] over an

algebraically closed field F. Consider a f.g. F[N]-torsion module and its dual au-
tonomous behavior as in (85). Choose an arbitrary disjoint stability decomposition
ΛN = FmI × (F \{0})mII = Λ1 ⊎Λ2 into a stable region Λ1 and an unstable region
Λ2 ̸= /0. Then

B
∩

Rafin(FN)ℓ =⊕λ∈char(B)B(λ ), B(λ ) := B∩
(
FN(λ )

)ℓ
, FN(λ ) =⊕α∈Nm Feλ ,α .

Moreover C(Λ1) :=
{

C ∈ ModF [N]; ∀λ ∈ Λ2 : CmN(λ ) = 0
}

is a Serre subcategory of ModF [N], and the module M and B are C(Λ1)-negligible if
and only char(M)= char(B)=VΛN (annA(M))⊆Λ1 or if and only if B

∩
Rafin(FN)ℓ =

⊕λ∈Λ1B(λ ).

For N =Nm, F [N] =F [s] and ΛN =Fm Thm. 5.7 permits a simplification. Consider
the F-algebra automorphism φλ : F [s]→ F [s], f 7→ f (s−λ ), with its inverse φ−1

λ =
φ−λ .

Corollary 5.9. Let F be algebraically closed and I any ideal of F [s]. The decomposi-
tion Rafin(FNm

) =⊕λ∈Fm FNm
(λ ) and e0,α = (δα,t)t∈Nm =: δα hold.

1. With supp(w) := {µ ∈ Nm; w(µ) ̸= 0} for w ∈ FNm
one gets

FNm
(0) =⊕α∈Nm Fδα = F(Nm) :=

{
w ∈ FNm

; supp(w) finite
}
.

2. For fixed λ ∈ Fm and I−λ := φ−λ (I) = { f (s+λ ); f ∈ I} the map

ϕλ : F(Nm) =⊕α∈Nm Fδα ∼= FNm
(λ ), y = (y(α))α∈Nm 7→ ∑

α∈Nm
y(α)eλ ,α , (88)

is a φλ -semilinear isomorphism, i.e., is an F-isomorphism and satisfies ϕλ ( f ◦ y) =
f (s−λ )◦ϕλ (y) for f ∈ F [s] and y ∈ F(Nm). It induces the isomorphism

I⊥−λ ∩F(Nm) =
{

y ∈ F(Nm); I−λ ◦ y = 0
}
∼= I⊥∩FNm

(λ ), (89)

This reduces computations in FNm
(λ ) to computations in F(Nm).

Proof. 2. The semi-linearity follows from the last equation in (84) which holds for
eλ ,α and especially for δα = e0,α .

5.2.2 The real case F = R

The analogue of Result 5.7 for the real algebra R[N] and its large injective cogenerator
R[N]RN is derived from the complex case. Let Γ := Aut(C/R) = {idC,γ} denote the
Galois group of C over R where γ : C → C, z 7→ z, is the complex conjugation. Its
action on C is extended componentwise to a semi-linear action on any function space

CJ := {w : J → C} by (γw)( j) := w( j) := w( j), γ(zw) = z(γw) for z ∈ C. (90)
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This action induces an analogous action on any Γ-invariant subset V ⊆ CJ , i.e., with
ΓV = V , and then the fixed set ΓV := {v ∈V ; Γv = {v}} and the orbit space Γ\V :=
{Γv; v ∈V}. If V is a Γ-invariant C-subspace of CJ then ΓV is an R-subspace of V and
gives rise to the direct decomposition

V = ΓV ⊕ i
(ΓV

)
∋ v =

v+ γv
2

+ i
v− γv

2i
=: ℜ(v)+ iℑ(v). (91)

where ℜ(v) resp. ℑ(v) are called the real resp. imaginary part of v. In particular, Γ
acts on Cm with its Γ-invariant subset

ΛN,C := CmI × (C\{0})mII and orbits Γλ =
{

λ ,λ
}
∈ Γ\ΛN,C. Moreover

λ ∈ ΛN,R := RmI × (R\{0})mII ⇐⇒ Γλ = {λ} .
(92)

For λ ∈ ΛN,C let mN,C(λ ) := ∑m
j=1C[N](s j −λ j) (cf. (81)) and

mN,R := R[N]∩mN,C(λ ) = { f ∈ R[N]; f (λ ) = 0} ∈ max(R[N]). (93)

Again the Nullstellensatz implies the bijection [19, Lemma 5.5]

Γ\ΛN,C ∼= max(R[s]), Γλ 7→mN,R(λ ). Define RN(λ ) := RN(mN,R(λ )). (94)

If λ ∈ΛN,R then eλ ,α ∈RN . For λ ∈ΛN,C\ΛN,R we have eλ ,α = eλ ,α in (84) and define
cλ ,α := ℜ(eλ ,α) and sλ ,α := ℑ(eλ ,α). For λ j ̸= 0 we use the polar representation λ j =

|λ j|eiω j , ω j ∈ R,. For S := supp(λ ), t ∈ N and α ∈ Nm we obtain λ tS
S = |λS|tS eitS•ωS

where |λS| := (|λ j|) j∈S, ωS := (ω j) j∈S and tS •ωS := ∑ j∈S t jω j and

eλ ,α = δαS′ ,tS′

(
tS
αS

)
|λS|tS−αS ei(tS−αS)•ωS

cλ ,α(t) = δαS′ ,tS′

(
tS
αS

)
|λS|tS−αS cos((tS −αS)•ωS)

sλ ,α(t) = δαS′ ,tS′

(
tS
αS

)
|λS|tS−αS sin((tS −αS)•ωS) .

(95)

Result 5.10. ([19, Ex. 5.27, Thm. 4.23]) The indecomposable injective R[N]-module
RN(λ ) has the form

RN(λ ) =

{
⊕α∈NmReλ ,α if λ ∈ ΛN,R
Γ
(
CN(λ )⊕CN(λ )

)
=⊕α∈Nm

(
Rcλ ,α ⊕Rsλ ,α

)
if λ ∈ ΛN,C \ΛN,R

.

With these preparations the real specialization of Theorem 5.3 is

Theorem 5.11. Let F := R. Data from (76)-(78), especially R[N] = R[sI ,sII ,s−1
II ]

and from (92)-(95). Consider a f.g. R[N]-torsion module and its dual autonomous
behavior as in (85). Choose an arbitrary disjoint stability decomposition ΛN,C =CmI ×
(C\{0})mII = Λ1 ⊎Λ2 into Γ-invariant regions Λ1 and Λ2 ̸= /0. With RN(λ ) from (94)
and Result 5.10 one obtains

B
∩

Rafin(RN)ℓ =⊕Γλ∈Γ\char(B)B(λ ) with B(λ ) := B∩
(
RN(λ )

)ℓ
. Moreover

CR(Λ1) :=
{

C ∈ ModR[N]; ∀λ ∈ Λ2 : CmN,R(λ ) = 0
}
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is a Serre subcategory of ModR[N], and the module M or B are CR(Λ1)-negligible if
and only char(B)⊆ Λ1 or if and only if B

∩
Rafin(RN)ℓ =⊕Γλ∈Γ\Λ1B(λ ).

As in the complex case the characteristic variety is

char(M) = char(B) =VΛN (annR[N](M)) =
{

λ ∈ ΛN,C; rank(R(λ ))< ℓ
}

and

Γ\char(M)∼= suppmax(M) =Vmax(annR[N](M)),Γλ 7→mN,R(λ )

is bijective.

Remark 5.12. The theorems 5.8 and 5.11 can be applied to the observer constructions
of Thm. 4.4 in all discrete standard cases when F is the complex or real field, the
domain of the independent discrete variables has the form N = NmI ×ZmII and the
signal space is FN . In Section 6 we extend the theory to more general lattices.

5.3 Affine integral domains as operator rings
Finally we extend the preceding results to arbitrary F-affine integral domains A =
F [s]/I. For this purpose we interpret AA∗-behaviors as special F [s]FNm

-behaviors: The
isomorphism (69) applied to F [s] instead of A yields the isomorphisms

A∗ = HomF(F [s]/I,F)∼= HomF [s](F [s]/I,FNm
)∼= I⊥ ⊆ F [s]∗ =

ident.
FNm

,

φ 7→ ϕ 7→ w = ϕ(1+ I), φ(sµ + I) = w(µ).

We identify A∗ = I⊥ ⊆ FNm
, i.e., w = φ, w(µ) = w(sµ + I),

(96)

and thus interpret A∗ as the subbehavior I⊥ ⊆ FNm
[18, Thm. 2.99]. The behavior I⊥

is a large injective A-cogenerator, but, in general, not an injective F [s]-module. In [1]
I⊥ is called the reduced signal space for the prime ideal I. An F [s]-module M with
IM = 0 is the same as an A-module with the action f x := f x for f ∈ F [s], f = f + I ∈ A
and x ∈ M. If M = F [s]1×ℓ/U is f.g. the condition IM = 0 is equivalent to the inclusion
IF [s]1×ℓ ⊆U . Each such U has the form

U = F [s]1×kR+ IF [s]1×ℓ, R ∈ F [s]k×ℓ, with M := F [s]1×ℓ/U =
ident.

A1×ℓ/A1×kR (97)

where Ri j := Ri j + I ∈ A = F [s]/I and where the last identification comes from the
isomorphism theorem. Notice that M is an F [s]-torsion module since IM = 0. It is also
an A-torsion module if and only if rank(R) = ℓ. By behavioral duality the module U
contains IF [s]1×ℓ if and only if

U⊥ =

{
w ∈

(
FNm

)ℓ
; U ◦w = 0

}
⊆
(

IF [s]1×ℓ
)⊥

= (I⊥)ℓ, hence

U⊥ =
{

w ∈ (I⊥)ℓ; R◦w = 0
}
=

{
w ∈

(
FNm

)ℓ
; I ◦w = 0, R◦w = 0

}
.

(98)

On the other hand, this f.g. A-module M gives rise to the dual A∗-behavior HomA(M,A∗).
Since IM = 0 and I ◦ I⊥ = 0 the isomorphism (69) also implies the A-isomorphisms

HomF(M,F)∼= HomA(M,A∗) = HomA(M, I⊥) = HomF [s](M,FNm
)∼=

B :=U⊥ =
{

w ∈ (I⊥)ℓ; R◦w = 0
}
=

{
w ∈

(
FNm

)ℓ
; I ◦w = 0, R◦w = 0

}
.

(99)

We thus obtain the following
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Corollary 5.13. (Compare [18, Thm. 2.99]) Consider any field F, an F-affine inte-
gral domain A = F [s]/I with s = (s1, · · · ,sm) and I ∈ spec(F [s]), the large injective
A-cogenerator A∗ = HomF(A,F) =

ident.
I⊥ and U and M from (97) and the dual AI⊥-

behavior B =
ident.

HomA(M, I⊥).

1. The A-isomorphisms (99) hold, i.e., every AI⊥-behavior B is the same as an
an F [s]FNm

-behavior that is contained in (I⊥)ℓ. For F-finite-dimensional M the
isomorphisms (99) imply dimF(U⊥) = dimF(M).

2. max(A) = {m/I; m ∈ max(F [s]), m⊇ I} and for m⊇ I:

B(m/I) = B(m) =

{
w ∈

(
FNm

(m)
)ℓ

; R◦w = 0, I ◦w = 0
}
.

Cor. 5.2 implies the decomposition

B
∩

Rafin(I⊥)ℓ = B
∩

Rafin(FNm
)ℓ =⊕m/I∈max(A)B(m).

An important special case of Cor. 5.13 was already used in Zerz’ thesis [35].
We finally connect Cor. 5.13 with Thms. 5.8 and 5.11. For algebraically closed F the
variety of the prime ideal I ⊂ F [s] is VF(I) := {λ ∈ Fm = ΛNm ; ∀ f ∈ I : f (λ ) = 0}
and for λ ∈ Fm the ideal mF(λ ) := { f ∈ F [s]; f (λ ) = 0} is maximal (see (19)). Then

(λ ∈VF(I) ⇐⇒ mF(λ )⊇ I) and VF(I)∼= max(F [s]/I) , λ 7→mF(λ )/I. (100)

For M from (97) the equivalence

λ ̸∈VF(I) ⇐⇒ I ∩ (F [s]\mF(λ )) ̸= /0 ⇐⇒ ImF (λ ) = F [s]mF (λ )

and IM = 0 imply MmF (λ ) = 0 for λ ̸∈ VF(I). For λ ∈ VF(I) the equation IM = 0
implies MmF (λ ) = MmF (λ )/I . We infer

VF(I)⊇ char(M) = char(B) =
{

λ ∈ Fm = ΛNm ; MmF (λ ) ̸= 0
}
=

{λ ∈VF(I); rank(R(λ ))< ℓ} ∼= suppmax(AM), λ 7→mF(λ )/I.
(101)

For the real case, i.e., F = R and I ⊆ R[s], one considers the complex variety VC(I) =
VC(CI) ⊂ Cm which is Γ-invariant. The bijections (94) and (101) then induce the
bijections

Γ\VC(I)∼= max(R[s]/I), Γλ 7→mR(λ )/I, mR(λ ) := R[s]∩mC(λ ),
and Γ\char(M)∼= suppmax(AM) where

char(M) = {λ ∈VC(I); rank(R(λ ))< ℓ} ⊆VC(I).
(102)

Due to Cor. 5.13, (101) and (102) the following theorem is a special case of Thms. 5.3,
5.8 and 5.11.

Theorem 5.14. Consider an algebraically closed field F resp. the real field F = R,
an F-affine integral domain A = F [s]/I and the large injective A-cogenerator A∗ =

ident.
I⊥ ⊆FNm

. Choose any stability decomposition VF(I) =Λ1⊎Λ2, Λ2 ̸= /0, resp. VC(I) =
Λ1 ⊎Λ2, Λ2 ̸= /0, with Γ-invariant Λi. Consider the A-module M from (97) and the
associated AI⊥- or F [s]FNm

-behavior B =
{

w ∈
(
FNm)ℓ

; I ◦w = 0, R◦w = 0
}

.



6 SERRE CATEGORIES FOR GENERAL LATTICES 31

1. There are the direct decompositions

Rafin(B) = B
∩

Rafin(FNm
)ℓ =⊕λ∈char(B)B(λ ) resp.

Rafin(B) = B
∩

Rafin(RNm
)ℓ =⊕Γλ∈Γ\char(B)B(λ ) with

B(λ ) =
{

w ∈ B; ∃k ∈ N with mF(λ )k ◦w = 0
}
={

w ∈
(

FNm
(λ )
)ℓ

; I ◦w = 0, R◦w = 0
}
,

where the FNm
(λ ) are described analytically in Results 5.7 resp. 5.10.

2. The category C(Λ1) :=
{

M ∈ ModA; ∀λ ∈ Λ2 : MmF (λ ) = MmF (λ )/I = 0
}

is a
Serre subcategory of torsion modules of ModA, and an A-torsion module M be-
longs to C(Λ1) if and only char(M) = char(B)⊆ Λ1 or if and only if

Rafin(B) =⊕λ∈Λ1B(λ ) resp. Rafin(B) =⊕Γλ∈Γ\Λ1B(λ ).

6 Serre categories for general lattices
We assume the data of Example 5.6, i.e., a finitely generated submonoid N =N1×mΘ⊆
Z := Zn as domain of the independent variables of the signals w ∈ FN . W.l.o.g. we
assume Z = Zn = ZN = N−N. The base field F is arbitrary. From Ex. 5.6 we use two
lists s = (s1, · · · ,sm) and σ = (σ1, · · · ,σn) of indeterminates, the polynomial algebra
F [s], the Laurent polynomial algebra F [Z] and its subalgebra F [N]:

F [Z] = F [σ ,σ−1] =⊕ν∈ZFσν ⊇ F [N] =⊕ν∈NFσν with

φind : F [s]/IN ∼= F [N], sµ + IN 7→ σ µΘ, where

IN = ∑
{

F(sµ − sµ ′
); µ,µ ′ ∈ Nm, µΘ = µ ′Θ

}
⊂ F [s].

(103)

The relation of our data to those discussed in [14] for the construction of causal in-
put/output representations of two-dimensional behaviors is given by the following dic-
tionary:

N = C ⊂ Z2 [14, Def. 5] , F [N] = F [σ1,σ2,σ−1
1 ,σ−1

2 ]C [14, (2) on p.1542 ],

FN = (F)Z
2

C ,
(
FN)ℓ = (Fℓ)Z

2

C [14, p.1547] .
(104)

Due to the given form of IN the behavior I⊥N ⊆ FNm
is the invariant set

I⊥N =
{

u ∈ FNm
; ∀µ,µ ′ ∈ Nm with µΘ = µ ′Θ : u(µ) = u(µ ′)

}
. (105)

The adjoint isomorphism φ∗
ind of φind is the isomorphism

φ∗
ind : F [N]∗ = FN ∼= (F [s]/IN)

∗ = I⊥N : w 7→ u, w(µΘ) = u(µ).

We identify FN = I⊥N , w = u, w(µ) = w(µΘ),w(µ) = w(µ ′) if µΘ = µ ′Θ.
(106)

and also F [s]/IN = F [N], sµ + IN = σ µΘ. Thus Cor. 5.13 can be applied to F [N], i.e.,
finitely generated F [N]-modules M and their dual F [N]FN-behaviors

B = HomF [N](M,FN) =
(99)

HomF [s](M,FNm
)
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can also be considered as F [s]-modules resp. F [s]FNm
-behaviors which is significant for

constructive purposes.
In general, the ring F [N] is not factorial [13, p.136] and Assumption 3.6 is not satisfied
for an arbitrary Serre subcategory of ModF [N] and then Section 4 is not applicable. In
contrast the Laurent polynomial algebra F [Z] = F [σ ,σ−1] is factorial and Assumption
3.6 is satisfied for every Serre subcategory of ModF [Z]. This suggests the following
procedure to construct suitable Serre subcategories of ModF [N].
The set σN := {σν ; ν ∈ N} is multiplicatively closed in F [N]. Due to Z = N −N the
quotient ring F [N]σN coincides with F [Z]. The quotient module functor

ModF [N] → ModF [Z], M 7→ MσN = F [Z]⊗F [N] M, (107)

is exact. There is the bijection [12, Thm. 4.1]

spece(F [N]) :=
{
p ∈ spec(F [N]); p∩σN = /0

}∼= spec(F [Z]),

p= q∩F [N]↔ q= pσN = F [Z]p.

Moreover for p ∈ spec(F [N]) : p∩σN ̸= /0 ⇐⇒ pσN = F [Z], hence
spec(F [N]) = spece(F [N])⊎ specne(F [N]) with
specne(F [N]) := {p ∈ spec(F [N]); pσN = F [Z]} .

(108)

Lemma 6.1. Let CZ be any Serre subcategory of ModF [Z], for instance one from Thms.
5.8 or 5.11, with the associated decomposition (37) spec(F [Z]) = PZ,1 ⊎PZ,2, the
radical RaZ := RaCZ , the Gabriel topology (39) TZ := TCZ the localization functor
QZ := QCZ : ModF [Z] → ModF [Z],CZ and TZ := T (CZ) from (50) according to Section
3. Define

CN :=
{

C ∈ ModF [N]; CσN ∈ CZ or QZ(CσN ) = 0
}
. (109)

Then CN is a Serre subcategory of ModF [N] with its associated data spec(F [N]) =
PN,1 ⊎PN,2, RaN := RaCN , TN := TCN , QN := QCN , TN := T (CN). With

PN,1,e :=PN,1 ∩ spece(F [N]) =
{
p ∈ spec(F [N]); F [N]/p ∈ CN , p∩σN = /0

}
,

MN,1 := max(F [N])∩PN,1, MN,2 := max(F [N])∩PN,2

MN,1,e :=MN,1 ∩ spece(F [N]),

MZ,1 := max(F [Z])∩PZ,1, MZ,2 := max(F [Z])∩PZ,2

we obtain

TN = {a⊆ F [N]; aσN = F [Z]a ∈ TZ} , hence σN ⊆ TN ,

PN,1 =PN,1,e ⊎ specne(F [N]) and MN,1 =MN,1,e ⊎ (MN,1 ∩ specne(F [N])) .

For an ideal b⊆ F [Z] : b ∈ TZ ⇐⇒ F [N]∩b ∈ TN .

(110)

Moreover the bijection spece(F [N])∼= spec(F [Z]) from (108) induces the bijections

PN,1,e ∼=PZ,1, PN,2 ∼=PZ,2, MN,1,e ∼=MZ,1, MN,2 ∼=MZ,2 (111)

Proof. 1. Since (−)σN is exact and preserves direct sums the closure properties of CN
follow immediately from those of CZ , so CN is a Serre subcategory. The exactness also
implies the first equation of (110). Since each σν , ν ∈ N, is a unit in F [Z] we infer
F [Z]σν = F [Z] and thus σν ∈ TN by (50). The last equivalence in (110) follows from
(F [N]∩b)σn = b.
2. Ad (110), (111): The prime ideals p∈ specne(F [N]) with pσN =F [Z]p=F [Z] belong
to PN,1 = spec(F [N])∩TN , but do not generate prime ideals in F [Z]. The remaining
assertions follow from the bijection in (108).
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Example 6.2. (cf. [3] for N =N×Z) For CZ = {0} one obtains the least category CN ,
viz. CN =

{
C ∈ ModF [N]; CσN = 0

}
of the special type (49) induced from TN = σN .

A signal w ∈ FN is CN-negligible if and only if σν ◦w = 0 for some ν ∈ N. These
signals are called deadbeat signals and already appeared in Ex. 4.6 for the case N =
NmI ×ZmII .

Theorem 6.3. For the data from Lemma 6.1 the following assertions hold:

1. An F [Z]-module is CN-closed if and only if it is CZ-closed, and indeed

ModF [N],CN = ModF [Z],CZ .

2. QN(M) = QZ(MσN ) for M ∈ ModF [N].

3. TN = F [N]∩TZ , TZ = (TN)σN and F [N]TN = F [Z]TZ = QZ(F [Z]) = QN(F [N]),
hence Assumption 3.6 is satisfied for F [N].

4. If CZ is given as in Thm. 5.3, i.e., max(F [Z]) =MZ,1 ⊎MZ,2 with MZ,2 ̸= /0 and

CZ :=
{

C′ ∈ ModF [Z]; ∀n2 ∈MZ,2 : C′
n2

= 0
}

then so is CN with max(F [N]) =MN,1 ⊎MN,2 where

MN,2 :=
{

F [N]
∩

n2; n2 ∈MZ,2

}
∼=MZ,2, m2 = n2

∩
F [N]↔ n2 =m2,σN .

Proof. 1. For an F [Z]-module M, an ideal a ∈ TN and b= aσN ∈ TZ consider the map
from (42):

M → HomF [N](a,M)∼= HomF [N]σN (aσN ,M) = HomF [Z](b,M). (112)

If M is CZ- closed then this is an isomorphism for all b ∈ TZ , hence also for all a ∈ TN
and thus M is CN-closed. If M is CN-closed choose any b ∈ TZ . Then a := F [N]∩ b
satisfies aσN = b and a ∈ TN , hence (112) is again an isomorphism for all b and M is
CZ-closed.
Since a CN-closed module X is an F [N]TN -module and since σN ⊆ TN by (110) we
conclude that X is also an F [Z] = F [N]σN -module. By 1. X is a CZ-closed module.
2. For any F [N]-module M and CN-closed module X item 1. and (43) imply the func-
torial isomorphisms

HomF [N](M,X)∼= HomF [Z](Mσn ,X)∼= HomF [Z] (QZ(MσN ),X) .

This signifies that M 7→QZ(MσN ) is the left adjoint functor of the inclusion of ModF [N],CN
into ModF [N] and therefore coincides with QN . Notice that left adjoint functors are
unique(ly defined) up to functorial isomorphism only.
3. The bijection (111) PN,2 ∼=PZ,2, p= F [N]∩q↔ q= pσN , and (50) imply

F [N]
∩

TZ = F [N]∩

 ∩
q∈PZ,2

(F [Z]\q)

=

∩
q∈PZ,2

(F [N]\ (F [N]∩q)) =
∩

p∈PN,2

(F [N]\p) = TN ,
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hence also (TN)σN ⊆ TZ since σN consists of units of F [Z]. For t ∈ TZ there is a de-
nominator σν , ν ∈ N, with σν t ∈ F [N]∩TZ = TN , hence t = σ−ν(σν t) ∈ (TN)σN and
(TN)σN = TZ . Since σN ⊆ TN and F [N]σN =F [Z] we conclude F [N]TN = (F [N]σN )TN

=

F [Z]TZ . The factoriality of F [Z] implies F [Z]TZ = QZ(F [Z]), compare Ass. 3.6. Sum-
ming up we obtain F [N]TN = F [Z]TZ = QZ(F [Z]) = QZ (F [N]σN ) =

2.
QN(F [N]).

4. Define C′
N :=

{
C ∈ ModF [N]; ∀m2 ∈MN,2 : Cm2 = 0

}
. We have to show CN = C′

N .
Consider maximal ideals n2 ∈ MZ,2 and m2 := F [N]

∩
n2 ∈ MN,2, hence n2 = m2,σN

and /0 = σN∩m2. Let first C ∈ C′
N . By definition we get

∀m2 ∈MN,2 : Cm2 = 0 =⇒∀m2 ∈MN,2 : 0 = (Cm2)σN = (CσN )m2,σN
= (CσN )n2

=⇒∀n2 ∈MZ,2 : (CσN )n2
= 0 =⇒CσN ∈ CZ =⇒C ∈ CN .

Let, conversely, C ∈ CN and assume w.l.o.g. that C is f.g. Then

(CσN )n2
= 0 =⇒∃t ′ ∈ F [Z]\n2 with t ′CσN = 0 =⇒

n2=m2,σN

∃t ∈ F [N]\m2 with (tC)σN = 0 =⇒∃t ̸∈m2,∃µ ∈ N with (σ µ t)C = 0 =⇒
σN⊆F [N]\m2

∃t1 ∈ F [N]\m2 : t1C = 0 =⇒Cm2 = 0 =⇒
∀m2

C ∈ C′
N .

The Serre categories of the type CN are characterized in the following

Theorem 6.4. For a Serre subcategory C ( ModF [N] with spec(F [N]) =P1 ⊎P2 ac-
cording to (37) the following assertions are equivalent:

(i) The category C is of the form C = CN for some CZ . The category CZ is then
uniquely determined.

(ii) P1 ⊇ specne(F [N]) :=
{
p ∈ spec(F [N]); p

∩
σN ̸= /0

}
.

(iii) σN ⊆ T (C).

(iv) F [Z]⊆ F [N]T (C).

(v) All deadbeat signals w, i.e., those with σν ◦ w = 0 for some ν ∈ N, are C-
negligible.

Proof. (i)=⇒ (ii),(iii),(iv),(v): Lemma 6.1. Moreover the bijection PN,1,e ∼=PZ,1, p 7→
pσN , from Lemma 6.1 shows that PZ,1 and hence CZ can be reconstructed from PN,1.
This suggests how to construct CZ .
(ii) =⇒ (i): Assume P1 ⊇ specne(F [N]) and define

P1,e :=P1 ∩ spece(F [N]), hence P1 =P1,e ⊎ specne(F [N]), and PZ,1 by
P1,e ∼=PZ,1 := {pσN = F [Z]p; p ∈P1,e} ⊂ spec(F [Z]) with p= F [N]∩pσN .

From P1 the new set PZ,1 inherits the property that q1 ⊆ q2 and q1 ∈ PZ,1 imply
q2 ∈PZ,1. Therefore PZ,1 gives rise to the Serre categories CZ and then CN with

PN,1 =PN,1,e ⊎ specne(F [N]), PN,1,e ∼=PZ,1. Since
spece(F [N])∼= spec(F [Z]), p 7→ pσN , and P1,e ∼=PZ,1
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we conclude

PN,1,e =P1,e and P1 =P1,e ⊎ specne(F [N]) =PN,1,e ⊎ specne(F [N]) =PN,1.

The equality P1 =PN,1 implies C= CN .
(iii) =⇒ (ii): σN ⊆ T (C) and (50) imply p∩σN = /0 for all p ∈ P2. In other words,
p∩σN ̸= /0 implies p ∈P1, hence specne(F [N])⊆P1.
(iv) =⇒ (iii): We apply that T (C) is saturated, i.e., (t1t2 ∈ T (C) =⇒ ti ∈ C).

For ν ∈ N : σ−ν ∈ F [Z]⊆ F [N]T (C) =⇒
σ−ν = at−1, a ∈ F [N], t ∈ T (C) =⇒ t = σν a =⇒ σν ∈ T (C).

(v) =⇒ (iii): Consider the behavior B := (F [N]σν)⊥ ⊆ FN , σν ∈ σN . All signals in
B are annihilated by σν , hence are C-negligible by (v). This, however, implies that
F [N]/F [N]σν ∈ C and σν ∈ T (C) by (50).

7 Constructiveness of the algorithms
Let F = R or F = C and assume the situation of Thm. 5.14, viz. an F-affine integral
domain A = F [s]/I, a stability decomposition VC(I) = Λ1⊎Λ2 and the associated Serre
subcategory C with the derived data

P1 = {p/I ∈ spec(A); I ⊆ p ∈ spec(F [s]), VC(p)⊆ Λ1} ,
T := TC = {a= b/I ⊆ A; I ⊆ b⊆ F [s], VC(b)⊆ Λ1} ,

Q := QC, T := T (C)

from (51). We identify Cm = R2m and C[s]⊆ R[x,y]2 via

C[s] ⊆−→ R[x,y]2 = R[x1, . . . ,xm,y1, . . . ,ym]
2, f 7−→ (ℜ( f (x+ iy)),ℑ( f (x+ iy))).

Assume that Λ1 ⊆ R2m is semi-algebraic, i.e., the solution set of finitely many poly-
nomial equalities and inequalities with polynomials in R[x,y]. Then for an ideal a =
b/I ⊆ A, I ⊆ b= ∑ℓ

k=1 F [s] fk, the relation VC(b)⊆ Λ1 and thus the inclusion a∈T can
be checked algorithmically via finding a quantifier-free formulation of the formula

∀(x,y) ∈ R2m :

((
ℓ∧

k=1

ℜ( fk(x+ iy)) = 0∧ℑ( fk(x+ iy)) = 0

)
=⇒ (x,y) ∈ Λ1

)
,

that amounts to “true”, i.e., a ∈ T, or “false”, i.e., a /∈ T. These quantifier eliminating
algorithms are based on the theorem of Tarski-Seidenberg and have been implemented
e.g. in QEPCAD 1 and Redlog 2.

In the computer algebra system SINGULAR 3 algorithms for the computation of
a primary decomposition of a submodule U ⊆ F [s]1×ℓ of a free module of a polyno-
mial ring are included that can be extended to compute primary decompositions of the
finitely generated modules F [s]1×ℓ/U ∼= A1×ℓ/A1×kR from (97). This implementation

1http://www.usna.edu/cs/~qepcad/B/QEPCAD.html
2http://redlog.dolzmann.de
3http://www.singular.uni-kl.de
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works for many base fields F . Summarizing, in the situation described above one can
compute the C-radical RaC(M) of a finitely generated A-module M using Algorithm
3.1 and the Gabriel localization Q(U) of a submodule U ⊆ A1×ℓ using Algorithm 3.9.
In a more special setting one can take advantage of the quantifier elimination algo-
rithms to solve systems of inhomogeneous linear equations over AT which is crucial
for the construction of observers in Theorem 4.4. In addition to the assumptions above
let Λ2 be ideal convex in the sense that Q(M) = MT for all M ∈ ModA or

VC(b)⊆ Λ1 ⇐⇒ a ∈ T ⇐⇒ a∩T ̸= /0 for a= b/I ⊆ A. (113)

Consider a system of inhomogeneous linear equations Y z= y over AT with Y ∈Ak×ℓ
T

and y ∈ Ak
T . By multiplying the rows with elements in T (that are invertible) we can

assume w.l.o.g. that the matrices Y and y have entries in A. Solving the homogeneous
system Y z = 0 over AT is simple since a generating system of the solution module over
A is also one over AT . To find a solution of the inhomogeneous system we solve the
homogeneous system (Y,−y)( x

t ) = 0 over A first. Let
( z1

t1

)
, . . . ,

(
zp
tp

)
be a generating

system of its solution module and let a := ∑p
j=1 At j ⊆ A. There exists a solution of

Y z = y over AT if and only if there exists an element t ∈ a∩T , and this can be checked
using Equation (113): If t = ∑p

j=1 c jt j ∈ a∩T with c j ∈ A then 1
t ∑p

j=1 c jz j ∈ Aℓ
T solves

Y z = y.
The only problem left is actually finding t ∈ a∩T . If we know that such t exist,

e.g. using Equation (113), we make an ansatz t = ∑p
j=1 c jt j with indeterminate c j =

∑µ∈Nm d jµ sµ ∈ F [s] with d jµ ∈ F and bounded total degree, say tdeg(c j) 6 q ∈ N,
and check if under these assumptions there exists such a t via finding a quantifier free
formulation of

∃d jµ ∈ F (where j = 1, . . . p, µ ∈ Nm with µ1 + · · ·+µm 6 q) :

VC

(
p

∑
j=1

∑
µ

d jµ sµ t j

)
⊆ Λ1.

If the result is not “false” then it comprises a parametrization of possible t from which
we can choose one. If the result is “false” then we enlarge q. Since we know that
a∩T is not empty the algorithm stops after finitely many iterations. It should be noted,
however, that the computation times for the quantifier elimination algorithms increase
rapidly with the number of variables and the degrees of the polynomials involved, thus
with today’s computers these algorithms, especially the last one, are not suited for large
problems.
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