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Abstract. A continuous resp. discrete r-dimensional (r > 1) system is the solution space of a system of
linear partial differential resp. difference equations with constant coefficients for a vector of functions or
distributions in r variables resp. of r-fold indexed sequences. Although such linear systems, both multi-
dimensional and multivariable, have been used and studied in analysis and algebra for a long time, for
instance by Ehrenpreis et al. thirty years ago, these systems have only recently been recognized as objects
of special significance for system theory and for technical applications. Their introduction in this context in
the discrete one-dimensional (r = 1) case is due to J. C. Willems. The main duality theorem of this paper
establishes a categorical duality between these multidimensional systems and finitely generated modules
over the polynomial algebra in r indeterminates by making use of deep results in the areas of partial
differential equations, several complex variables and algebra. This duality theorem makes many notions
and theorems from algebra available for system theoretic considerations. This strategy is pursued here in
several directions and is similar to the use of polynomial algebra in the standard one-dimensional theory,
but mathematically more difficult. The following subjects are treated: input-output structures of systems
and their transfer matrix, signal flow spaces and graphs of systems and block diagrams, transfer equiv-
alence and (minimal) realizations, controllability and observability, rank singularities and their connection
with the integral respresentation theorem, invertible systems, the constructive solution of the Cauchy
problem and convolutional transfer operators for discrete systems. Several constructions on the basis of the
Grobner basis algorithms are executed. The connections with other approaches to multidimensional
systems are esi=hlished as far as possible (to the author).
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0. INTRODUCTION
This paper is based on the three preprints [OB2].

Since the last century "function” modules A over the polynomial algebra
F(s]=F[s,,,s.] with coefficients in a field F have played an important role
in the theory of differential or difference equations , the operation of Fls]
on A being given by r pairwise commuting F-linear endomorphisms

L+ A—> A,a— Lf(a) =s;a, i=1,-r .

In the typical continuous case A:=C®(R") is the C-vector space of
complex-valued C*-functions a=a(t ,~;t_) onﬁ R with the operation
L;(a)=09;a:= da/dt; , i=1,r. For a monomial sm=slm(1)---srm(") e Cls],
m=(m(1),-, m(r)) ¢« N", this means

sMa= c)'mla/c)tim“)--'c)trm(") , Iml=m(D)+---+m(r) .
In the typical discrete case A==FNr is the vector space of multiindexed
sequences a=(a(n); neN")=(a(n(1), - ,n(r)); n(i)eN ,i=1,--,r)
with entries in the field F , and the operation of F[s] on FrNr is given by
the left shifts (s™a)(n)=a(m+n), m,neN" .
Starting some thirty years ago R.Kalman , H.Rosenbrock and many others
have used well-known properties of the polynomial ring in one variable
(r=1) over a field to develop the state space , the geometric and the
polynomial approach to one-dimensional system theory , the independent
variable being usually time , by considering a vector space A of signals as
a module over the polyncmial ring . Also around 1960 Ehrenpreis , Malgrange
and Palamodov ( see [EH] , [MAL] , [PAL] ) exploited the C[s]-module
structure of C®(R") , the space $'(R") of distributions and other spaces to
prove the fundamental existence theorems for systems of linear partial diffe-
rential equations with constant coefficients . In this paper I develop multidi-
mensional system theory (rz1) in analogy to the " classical” models by
making use of the results of Ehrenpreis et al. and of similar results in the
discrete case.
For a F[s]-module A of signals a A-system is a subspace of some Al, 1eN,

of the form
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(1) S={w=(w,~ wl)Te Al; Rw=0}
where Re F[s]*'! is a polynomial matrix. With the entries
R, =Z{Rij(m) s™; meNT}eF[s] of R the defining equation Rw=0 of (1) means
SR (m)L™ P L ™ w)) 5 =1, L meNT} =0 for i=1,k .
In the discrete case A=FN' this signifies
Z{Rij(m)wj(mﬂx); meNT ,j=1,--,1}=0 for all i=1,--,k and neN"
whereas in the continuous case with A=C®(R") one obtains the system of

partial differential equations .

TR (m)o ™0 ™V w (1) 5 j=1,1, meNT }=0, i=1,k
with constant coefficients Rij(m) . In the "classical” case with r=1,
F=R and A=RY these systems were introduced by J.C.Willems in [WIL]
under the name of AR-systems . Continuous systems of this type ( r=1,
F=R , A=C®(R) ) are treated as differential input-output systems in the
book [BY] of Blomberg and Ylinen . There are several points of contact
between this book and my paper in the one-dimensional continuous case.

%! of S in (1) gives also rise to the finitely ge-

The defining matrix Re¢F[s
nerated F[s]- module M=F[s]'/ RTF[s]¥ where RT is the transposed matrix

of R and RTF[s]¥ its column module in F[s]' . The main result of this

paper is that the correspondence

(2) M=F[s]'/RTF[s]* —— S={weA'; Rw=0}

is one-one , more precisely a categorical duality between finitely generatcd
Fls]-modules and A-systems as introduced above . Hence the linear and
commutative algebra over F[sl,---,sr]‘ is-applicable to multidimensional system
theory as in the one-dimensional situation . An easy , but important obser-
vation for the duality M¢— S is the isomorphism

(3) Hom ¢ 1(F[s]'/RTE(s]* ,A) = 5, f—> (f(e,),~ f(e )T

where e, e, denote the standard basis vectors in F(s]! and e,,~e, their
residue classes in M . For systems of partial differential equations this
observation is due to Malgrange [MAL] . The isomorphism (3) leads to the

question under which condition on A the contravariant Hom- functor

M— HomF[s](M ,A) induces a duality on finitely generated modules . The
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prototype of such a duality is the Pontrjagin duality between discrete and
compact abelian groups where A:=S'={z<C; |z|=1} is the circle group . The
general question was completely answered in [ROO] and [OB1] . The necessary
and sufficient condition on Ais that it is a large injective cogenerator ( see
§2 for this notion ) . It is the main work of this paper to show that the
F(s]-modules A from system theory like FN" and C=(R") above are large
injective cogenerators . This algebraization also suggests to investigate A-
systems for any large injective cogenerator A over an arbitrary commutative
noetherian ring D . This is done in §2 . In pétrticular the discrete and the
continuous cases can be treated at the same time.For one-dimensional system
theory this analogy between discrete and continuous systems is well-known ,
but the explanations of this observation are often insufficient .

In 8§81 I introduce several F[s]-modules A which are interesting for system
theory . Besides F[Nr and C®(R") as above I consider convergent power series
C<t1""’tr> cC{t} ==C|Nr in the discrete case and the C[s]-modules of distri-
butions Z)'{R") and of entire functions &(CF) in the continuous case and
also their real models . Delay-differential equations can be formulated in this
frame-work , but my main theorems are not directly applicable in this case .
The main technical work of this paper is contained in the paragraphs 3
and 4 where I prove for the discrete and the continuous cases respectively
that the F[sl-modules A from §1 are large injective cogenerators .The injec-
tivity of A in the continuous cases is one of the main :=sults ¢ Threnpreis
et al. ( [EH] , [MAL] , [PAL] ). The proof of the large cogenerator property
in the continuous case makes heavy use of t.he theory of complex spaces and
the valuable books [GR1] , [GR2] and [GR3] by Grauert and Remmert . In
the discrete case I consider an arbitrary affine F-algebra D and its dual space
A:=Hom(D,F) as a D-module . The case D =F[s1,---,sr] and
A=Hom (F[s],F)=F{t,,-, t:r}=F[Nr from above is of this type . In particu-
lar , I characterize systems ScAl as D -submodules of Al_ which are also
closed with respect to the canonical linearly compact topology on A , thus

generalizing the corresponding theorem of Willems in [WIL] . In §3,(59) , I
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explain the connection with Macaulay's inverse system of a modular system.
Some important results of abstract system theory from §2 are ex-
plained here for the polynomial algebra F[s] instead of an arbitrary commu-
tative noetherian ring D as in §2 . These results are applicable , in particu-
lar , to all F{s]-modules A from §1 . A typical application of the injectivi-

ty of A in system theory is the following result ( theorem 2.34 ) : If

11201 s 3 matrix the image

S={w1eAl(1); R1w1=0} is a system and Pc<F[s
PS={Pw,;w, ¢S} is a system too , and indeed PS={w,¢ A2, R,w,=0}
where R, and some Y are universal matrices ‘with R,P=YR, ( see (2.28) for
this notion ). A particular case gives the abstract Rosenbrock systems (2.41).
The main duality theorem (2.56) yielding the 1-1-correspondence M ¢— S
from (2) is verbally taken from [OB1] . The first main consequence of the
full duality theorem is the quasi-uniqueness of the defining matrix
( Cor. 2.63) : If a system S={weAl;R1w=0}={W€Al;sz=0} is defined by
two polynomial matrices R, and R, there are polynomial matrices X, and X,
such that R,=X R, and R;=X,R,.
An important consequence of this is the existence of invariant input-output
structures and their associated transfer matrices for a system
S={W€A1; Rw=0} , ReF[s]k’l. As a matrix with coefficients in the field
F(s) of rational functions the matrix has a rank p.Put m:=/-p . These
numbers depend on S only and not on the special defining matrix R ( theo-
rem 2.65 ) For any p-tupel of %fg) - linearly independent columns -of R
and after a corresponding column permutation this matrix can be written as
R=(-Q,P ) , QeF[s]®™ , PeF[s]k'*; , rank(R) =rank (P)=p .

M*P of the signal

With the corresponding decomposition w=(u,y)eA'=A
vector one obtains

(4) S={(uy)cA'; Py=Qu}

I call w=(uy)a IO-structure and (4) a IO-form of S . The 1O0-form (4)
is characterized by the fact that for every ue¢A™ there is a yc AP such that

(uy)eS ( theorem 2.69 ) . Therefore u resp. y are called an input resp. out-

put vector for S and m resp. p the input resp. output dimension . Moreover



there is a unique rational matrix HeF(s)P™ satisfying Q=PH, and H depends
on S and its 10-structure (uy) , but not on the special choice of the matri-
ces R,P,Q . This H is the transfer matrix of S with respect to the chosen
[IO-structure . In the one-dimensional case input-output structures are dis-
cussed in [BY] and [WIL] . Contrary to the one-dimensional case a system S
does not admit a 1O-representation (4) with a proper transfer matrix in
general . Indeed , generically , the transfer matrix is not proper for r>1.
Therefore the properness of H is not included in the definition of a
1O-structure as it is done in [WIL] for the one-dimensional case . In §6
I define a transfer operator or function H(R): A™ — AP for systems with a
weakly proper transfer matrix H by means of a suitable operator calculus and
derive many of its standard properties known from the case r=1 .
At the end of §2 I also consider the systems of linear equations with coef-
ficients in the field F(s)

Rw =0 resp. Py=Qu , weE(s)!, yeF(s)P, UWeF(s)™,
and show that the assignment

S={wcA;Rw=0}—> S:={weF(s)!; Rw=0}

is an exact functor ( theorem 2.91 ) . The main assertion here is that g de-
pends on S only and not on the special choice of the matrix R . The F(s)-
vector space g contains the complete information on the transfer matrix H
of S with respect to the IO-structure (uy) ( theorem 2.94 ) . I call g the
signal flow space of S in generalization of the signa! flow or Mason graph
of a block diagram which is of greaﬁ significance in the engineering litera-
ture ( see [CH] ) . In §8 of this paper I will give some graph theoretic
consequences of the assignment S —— S like series and parallel connection,
feedback constructions etc. for block diagrams of systems .
Finally , system theory for a large injective cogenerator A over D induces
the same for the D/J-module {acA;pa=0 for all peJ } where J is any ideal
of D ( theorem 2.99 ) . I give several interesting examples .

In §5 I formulate and solve the canonical Cauchy problem for discrete

I0-systems. In this context I was influenced by ideas from J. Gregor [ GRE].
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The system is given as in (4), the signal space being A=FYN | F a field.

Using the theory of standard or Grobner bases (compare [BU] and [PAU D
I canonically construct finite subsets D(j)cN",D(j)*® ,j=1,--,p, and the
derived sets
G'={(j,d+n); j=1,--,p,deD(j),neN"},
G=([p]xN"\G'={(j,n);j=1,~, p, neN", (j,n)¢ G}

(Corollary 5.33) such that the initial value or Cauchy problem
(5) P(L)(y)=Q(L)(u),y|G=x, i.e. yj(n):xj(n) for all (j,n)eG,
for arbitrarily given ueA™ and x=(xj(n);(j-’,n)eG)eFG has a unique
solution y=(y;(n); j=1,-,p neNT) e (FN")P (theorem 5.41). Theorem 5.63
contains an algorithm for the calculation of each component y;(n) in
finitely many steps. This algorithm depends on the Grobner basis algorithm
due to Buchberger [BU] and others. Contrary to the continuous case of
partial differential equations where the initial value problem can be solved
uniquely only for hyperbolic systems (compare [ TR], Ch.il ) theorem 5.41
proves that for discrete systems of partial difference equations the initial
value or Cauchy problem can always be canonically defined and constructively
solved. The solution of the Cauchy problem gives also rise to the isomorphism
(6) ker(P(L))={y<AP; P(L)(y)=0}=F€, y »y|G
and the transfer operators
(7)  K:im(P(L)) — AP, v K(v), H:=KQ(L):A™ — AP, u —H(u) |
given uniquely by the equations _

P(L)(K(v))=v, P(L)(F(1))=Q(L) (w), R(v)IG=H(u)]G=0.
I call FC€ the canonical state space of the system S={(uy);Py=Qu}.
With the same technique I prove in theorem 5.71 that for arbitrary large
injective cogenerators A over F[s]=F[s,,--,s.] the IO-system ScA™"P
with given IO-structure (u,y) can be uniquely characterized by a pair
(P"8,H) of matrices where PT8¢F[s]!'P 1:=[(D(1))|+--+|(D(p))|, is the
reduced Grobner matrix of S and HeF(s)P'™ its transfer matrix satisfying

PrgHeF[s]l'". In other words, (P"8 H) is a complete system of invariants



for ScA™ P with given IO-structure (u,y).
The questions of §6, but not the results were again inspired by [GRE]. The
starting point is Willems' observation [ WIL] that in the one-dimensional
discrete case any system Sc(FN)m*P=(F{t} )™ P admits a 10-structure
with proper transfer matrix H(s). This means that H(s) is a power series
in t:=s~ ', i.e. H(s)e(F(s)E{t})P'™. Moreover it is then well-known
that the transfer operator H from (7) is given by convolution with H, i.e.
H(u)=H*u where u=(Znuj(n)t";j=1,~,m‘)eF{t}m is also considered as a
power series vector. Also if P is square and P lis proper then K(v)=P lxv.
In §6 I investigate the same questions for the multidimensional discrete
situation, i.e. under which circumstances the transfer operators H and K are
given by convolution with H respectively P(s)™" .
In theorem 6.86 I show for square matrices P<F[s]P'P that the operator
K from (7) is given by convolution if and only if P is column reduced. Thus
the main results (6.101), (6.106) and (6.109) of §6 concern systems with
column reduced P. By several examples - the easiest is (6.118) - I motivate
why it is appropriate to consider systems over rings instead of fields. In the
main results I therefore consider systems
oy STATTP PGz (w) ,A=BN =B{t -t}
PeK[sy,--,s.17'P det(P)#0,Qe¢K[s]P'™, PH=Q
where K is a noetherian, regular, factorial integra! domain, for instance a
polynomial ring over a field and where B is a faithful K-module. The case
K=B=F leads back to the systems (4), the standard non-field example is
given by K=F[oy ... 6,1, B=FN®=F{1,,- 1 ot Klsl=Floy,0,,51,,8.]
and A=F{ty, ", 1,,ty,t.}.
The first part of §6 introduces and investigates (weakly) proper rational
functions and matrices and develops an operator calculus for these

(see 6.35, 6.40, 6.45). These results are then applied to the formulation

and solution of various Cauchy problems with transfer operators given by
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convolution . Theorem 6.74 is a discrete analogue of the Cauchy-
Kowalewskaja theorem. The main theorems (6.101) resp. (6.106) resp.
(6.109) formulate and solve the Cauchy problem for column reduced resp.
row reduced resp. both column and row reduced matrices Pe K[s]P'P.
Theorem 6.109 is then applied to generalized Roesser systems (6.113) and
to systems introduced and investigated by E. Fornasini, G. Marchesini (see,

for instance, [FM3]) and by L. Baratchart [BA]and others (see [TZ]) . In

an appendix to 86 I indicate a multidimensional operator or operational calcu-
lus for arbitrary F[s,,--,s_]- modules A instead of EN as in 86 where I
follow the one-dimensional model of [BE] and [PR] . This calculus is appli-
cable to A=C%®(R") over C[sl,---,sr] , but not to B'(R") .

The first part of §7 is devoted to transfer equivalence and realization theory .
Here I explain the results for a large injective cogenerator over F[sl,---,sr] ,
F a field . Systems S, and S, in A are transfer equivalent if their signal flow
spaces §1 and §2 in F(s)! coincide . A realization of a F(s)- subspace V of
F(s)is a system S c Al with §=V . Theorem 7.17 characterizes transfer equi-
valence and theorem 7.19 the lattice of all systems S which realize a given V .
In (7.21) I show that every such V admits a unique minimal realization Smin,
and that an arbitrary realization S={W€A1; Rw=0}, Re F[s]k’l, is minimal if
and only if its module M(S)=F[s]'"/RT F[s]¥ is torsionfree or if and only if
R is left factor prime . In (7.24) and (7.25) I develop an algorithm for the
censtruction of the unique minimai reaitzation which uses the Grobner basis
algorithms , for instance from [ PAU ] . The realization of a transfer matrix
HeF(s)P™ is defined to be a I0-system with H as transfer matrix or , equi-
valently , with S = graph(H) cF(s)™"P | The preceding theory is applicable .
In the second section of §7 I characterize systems S={w; Rw=0} whose mo-
dule M=F[s]*/RTF(s]* has a small projective dimension . That M has pro-
jective dimension <1 signifies that one or all IO-structures of S admit a re-
presentation

(9) S={(uy)eA™"P;Py=Qu},Pc¢F[s]”P , det(P)+0, PH=Q ,

i.e. with square P and hence H=P_1Q ( Theorem 7.39) . The latter equation
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is usually called a left MFD ( left matrix fraction description) of H . Every
matrix H trivially admits such a left MFD , but the minimal realization

S in Sl (uy)eA™P P y=Qintl s Pryn H=Q i

of H is , in general , not of the type (9) . By (7.42) this is , however , the
case for the polynomial ring F[s1,sz] in two indeterminates and explains to
a certain extent why multidimensional system theory has been mainly de-
veloped in the 2-d case . Theorems 7.52 resp. 7.53 characterize those systems
whose module is torsionfree of projective dimension <1 resp. free and which
are minimal in particular . In [ROC] these s;ystems are called weakly resp.
strongly controllable in the case r=2 , D=lR[sl,sz,si-1,sz_1] and A=[RZz .
These results generalize [WOL], Th. 5.3.1 (a) . In theorem 7.63 I similarly
define and characterize multidimensional observable Rosenbrock systems .

The last section of 8§87 is devoted to the discussion of rank singularities
which are used in [ BFM] for stability and stabilization problems in the
2~-d case . For a IO-system

S={(uy)eA™*P ;P(L)(y) =Q(L)(u)},Pe¢C[s]*P, rank(P)=p , PH=Q,

in the continuous case of partial differential equations and for the torsion
system module
M:=C[s]P/PT €[s]" of ker(P)={y<A;P(L)(y)=0}=S((0xAP),y < (0,y),
the algebraic subset RS(M):={Cc¢C" ; rank(P({))<p}cC” of rank singularities
coincides with the support of M and is called the characteristic variety of M
or Pin[BJ].Ch.8 . In an appendix zc 37 I take the oppeortunity to explain -
the important and difficult integral representation theorem from [EH], Ch.7,
and [PAL],Ch.6, in the presentation of [BJ], Ch.8, and its connection with
RS(M): Any solution y of the "overdetermined” system P(L)(y)=0 is a finite
sum of integral solutions

(10) Ja(t,t)e® “du(t) , teC", teR", t- ti=t t, +— +1 t_,

171 rr

where u is a measure on C" and where the
a(t,t)e™" , a(t,t)eC[t,t]P , teSupp(y) = support of
are so-called exponential solutions with P(Lt)(a(t,t)et't) =0 . In particular

{teC" ;a(t,-)$0 , teSupp(y)}c RS(M)
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i.e. those t which really contribute to the integral (10) lie in RS(M) . In the
discrete cases one has to replace e™ * by 2{t"t%;neN"} . I believe that the
integral representation theorem will be of great use for multidimensional sy-
stem theory , in particular for stability and stabilization questions as in
[BOS2],Ch.3, and [BFM] and for the investigation of the "state space”
ker(P) . But more work is required to realize this potential .
In the last paragraph 8 I introduce and investigate multidimensional block dia-
grams and their associated systems and give several applications . I took the
1-d models mainly from [KUO] , [CH] and‘[WOL] . Theorem 8.9 charac-
terizes under which conditions the signals at the initial nodes of a block dia-
gram can be chosen as the inputs of a IO-structure . In (8.12) , (8.14) and
(8.18) I explain parallel , series and feedback compositions of systems and
their transfer matrices . | use these results for the characterization of ( left,
right ) invertible systems along the lines of [WOL], 8§5.5, and finally treat
the algebraic side of the problem of exact model matching .
Open problems : (i) This paper contains several algorithms , most of them
based on the standard or Grobner basis algorithms of Buchberger et al. , for
instance (5.63) , (5.71),(5.81), (6.111-112) , (7.24-25) , (7.29) , (8.9) and (8.29).
It is a major , but, modulo the available program packages , not too difficult
task to write programs for these algorithms . (ii) The study of the integral
representation theorem and its implications for multidimensional systems as
explained above . (iii) The discrete theory applies to the large injective coge-

r
nerator FZ over F[si,si_1 ,--~,sr,sr—1]‘. The results of 85 and §6 , in parti-
r

cular the Cauchy problem , however , were only obtained for F[N and should
be formulated and proven for Z' instead of N since , for instance , Z%is a
better model for the discrete coordinates of an image than NZ (compare
[ROC] and [RW]) . ||

It is possible to understand the system theoretic results in the paragraphs 2
and S to 8 of this paper without going into the many technical details of the
paragraphs 3 and 4 . Whereas the techniques used in this paper are new

for system theory as far as I know, the basic notions and the formulation of
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many results are derived from the one-dimensional models as , hopefully ,
every system theorist can realize .
Notations: As usual , the letters N,Z,R,C denote the sets of natural num-
bers , integers , real resp. complex numbers . If X and I are sets the func-
tions x from I to X or elements of X! are written as x=(x(i);iel) = (x )1 -
The kernel , image resp. cokernel of a linear map f:M— N between modules
over some ring R are ker(f) , im(f) resp. cok(f):=N/im(f) ; HomR(M,N)
is the group or even R-module ( for commutative R ) of all R-linear maps
from M to N . The symbol|| denotes the end of a theorem or proof . Inside
a paragraph theorems , lemmas , formulas etc. are numbered consecutively .
The expressions (j) resp. (i.j) mean the j.th theorem etc. in the current resp.
the i.th paragraph .
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1. SYSTEMS OF PARTIAL DIFFERENTIAL OR DIFFERENCE EQUATIONS

Almost all mathematical models for real systems require a class of functions
a=a(t) which are admitted as “signals”. In the one-dimensional case the in-
dependent variable t is usually time. As a mathematical model for the physical
time one usually chooses the set R of real numbers in the so called conti-
nuous case respectively the sets Z:={---1,0,1,--} or N:={0,1,2--} of integers
in the discrete case. Numerical calculations in the continuous case also lead
to the discrete situation by "discretization”. The values a(t) of the signals a
are customarily taken from the field € of complex numbers, for digital sig-
nals the binary field Zz==l/22={0,1} or another finite field are often more
appropriate.
The multidimensional systems of this paper are distinguished by the fact that
t=(t;,-- ,t.) consists of rz1 independent variables ty,-,t,. which are interpre-
ted as time, space or generalized coordinates of some phase space. For r=2
a suitable and customary interpretation of t=(ty,t;) is that as the two pla-
nar coordinates of an image. In analogy to the standard one dimensional
case I take the sets R” respectively N' or Z" as the (definition) do-
mains of the signals and talk of the continuous respectively the
discrete case.
(1) Assumption and interpretation: Let F be a field which, in most
cases, is interpreted as the set of admissible values of the signals.
The standard examples are the fieids R respectively € of real
resp. complex numbers or the finite fields. Let A be an F-vector
space which is interpreted as the set of admissible signals. In most
cases A will be a subspace of the function space

c® ix{a;a: Rm—> C}, F=C,

in the continuous case or of

Nr

F :={a; a: N°"—— F}, F arbitrary,
in the discrete case. Since I consider linear systems only the vector

space structure of A is justified and assumed as usual. ||
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The systems considered in this paper like in the larger part of the
literature are given by differential or difference equations, in this
paper restricted to linear equations with constant coefficients. To
formulate these equations we need the partial difference or derivative
(2) Li: A—— A | i=1l,-r ,
in the i.th direction. These operators commute and induce on A the
structure of a module over the polynomial algebra F[s]:=F[s{,-,s.]
in r indeterminates s; via
(3) pa:=p(Ly,-—,L)(a), peFlfsi,---,sr], acA where
(4) Flsy ,~s; =—>Endg(A), p—p(L,,~L,),
is the substitution homomorphism. Here Endg(A) denotes the F-algebra
of F-linear maps from A into itself. We are thus led to the following
(5) Assumption and Definition: Let
D:=F[s]=F[sy,~, s.]
be the polynomial algebra in r indeterminates over F. The vector space A
of "admissible signals” is assumed to be a D -module. The scalar multi-
plication with s; is denoted by
(6) Li: A— A, a— L; (a)i=s;a. ||
The main examples
(7) Formal power series: Let
(8) A=FN:= F{t)= F{t, -t}
be the F-vector space of fermal pcowrer scrics S
(9) a=(a(n);neN")=X{a(n)t™;neN"}=
=2{a(n(1),~,n(rNt,* Pt " n(1), - n(r) N}
in r indeterminates t;,-,t.. Such a power series a is nothing else than
a multiindexed sequence a=(a(n);n¢N’) of elements in F, i.e. an arbitrary
function a: N"—>F, n — a(n) , from the lattice N° to F . In some
situations the notation
ap=an(1),,n(ry:=aln(1),-,n(r)), n=(n(1),-,n(r))eN",
is preferable. With the usual componentwise F-vector space structure

and with convolution as multiplication this A := F{t} is a commutative
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F-algebra. The convolution, however, plays a role only in the later
developments in context with the transfer function. The D=F[s; ...s.]-
module structure is given by the " left shifts "
(10)Li:F'Nr-——>F'Nr ,ar—>L,(a),i=1,r, Li(a)(n)=a(n(1),~,n(i)+1,--n(r))
via (3). Inductively one obtains
(11 (s™a)(n)=L™(a)(n)=a(m+n),m,neN",

where s™=s, ™M g ™D apgq M=, ™D ™m0
This implies
(12) (pa)(n)=p(L)(a)(n)=Z{pyalm+n) ; meN®}

™ in F[s]. Primarily this example gives rise

for a polynomial p=2 p.,s
to the terminology "left shift”. For r=1 one obtains the usual space
A=FN of sequences a=(a(0) a(1) a(2) - ) with the left shift
L:a=(a(0) a(1) a(2)--)—(a(1) a(2) ).

In the same fashion one can consider the space Fzr of functions a
on the whole integral lattice Z*. The left shifts are given by (10) and
are bijective. The convolution, however, is not defined on all of FNr. [l
(13) Convergent power series: Let F=C be the field of complex numbers and
(14) c<t>cc{t}
the subspace of C{t} of convergent power series (see [GR1] or (4.3)).
A power series

a=(a;nelN")=>{a t";neN"}C{t}
s called convergent if for some positive real numbers Ry, -, R. the series

S la, IR™:=%la IR VR ) <o
converges (to a real number, not to « ). The details are explained in § 4.
The space C<t> is trivially a D=C[s]-submodule of C{t} and thus
itself a C[s]-module as required in (5). The C[s]-module
<l:‘<t>C‘E{t}=03'I\Ir contains all those spaces of sequences usually in-
vestigated in system theory like the space
(15) 1®:={aeC{t};Sup,la,l<cwo}
of bounded or stable sequences, the space

(16) {aeC{t}; lim,a,=0}
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of asymptotically stable or zero sequences and the spaces
(17) 1P:={a=(a,;neN"); X ]a, |P <o} where 0<p<®
(13 real) Over the real field R there is the R[s]-submodule R{t> c C{t)> of
convergent power series with real coefficients such that C{t)> is the com-
plexification of R{t) . This means the the canonical map
can:C®[RlR<t>E> C<t> is a C[s]=C® R[s] - isomorphism . In this fashion
the main theorem for A in the complex case induces the same result for the
real models A over R[s] . [|
(18) Differentiable functions: Let

C®(RF):={a:R"—>C; a is infinitely often differentiable}
be the space of complex valued C®-(=infinitely often differentiable )
functions. This space becomes a C[sy,-,s,.]-module via
(19) sja:=L;(a):=9;(a):=0a/adt;,i=1,-,r ,
where a=a(ti,---,tr)eC°°((Rr). This is the classical space in which one
looks for solutions of partial differential equations. From (19) one derives
(20) s™a=L™(a)=0™a=0!™la/ot, ™Vt ™) meNT,
where |m|=m(1)+--+m(r) and
(21) pa=p(dy,—,0)(a)=2{pLr0™a;meN"}
for a polynomial p=3p_ s™ «C[s].
(18 real) The real model of A:=C*(R") is its R[s]-submodule

Ag = CE:(IRr)z{a: R"— R; a is o - often differentiable }
whichk again induces the canonical C[s]= C@RIR[s] - isomorphism
C@Rcz([Rr)i‘-:’ C=(R") .||
(22) Distributions: The solutions of partial differential equations may have
singularities. Out of this and other reasons analysts prefer to work with
distributions instead of C%-functions. As usual, let
(23) D(R") = { a; ais a distribution on RT }
be the C- vector space of distributions on R*( see [ SCH], [HO1] ) or any
book on partial differential equations ). The C[s]-module structure on
P(RT) is given by differential operators as in (19) , (20) and (21).

Other admissible C[s]-modules of distributions are the subspaces
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DFRT)<D'(RT) of distributions of finite order and the spaces
D(Q) or H'F(Q) of distributions on an open convex subset Q of R'.
See § 4 for the details.

(22real) The real-valued distributions are given by

ﬁ&{(ﬂlr):Hé\mR(.@ﬂ,\(Rr),R) where .%R(er) is the R- subspace of

C";;(IR’.) of functions with compact support and where Hom denotes the
continuous R - linear functionals . Again %' (R") is the complexification of

Dr (R as D(RT) is that of D (R7) . |l

(24) Entire functions: As usual denote by 6&(CF)c C<t> ¢ C{t} the space
of all entire functions a=a(t)=a(ty,-,t.), teC" , which are, by definition ,
holomorphic in the whole space C* and thus representable as power series
a=X{a,t™;neN"} ¢ C<t> which converge everywhere. The C[s]- structure
is given by differentiation as in (19), (20) and (21). Thus 6(C") is not a
C[s]-submodule of C<t> with the structure from (7); the easy connection
between the two structures is discussed in §4 . By

(25) 6(C ;exp) c 6(CT)

I denote the C[s]-submodule of all entire functions of exponential growth .
The details are discussed in (4.27). [

For the examples (7) to (24) above I will prove the main theorem (2.54) of
this paper. There are, however, F[s]-modules A of interest for system theory
for which the main theorem of is not valid.

(26) Delay-differential equations: [n the simplest case consider the C-Vvector
space C*(R) with the C[s1,sz]—modulé structure given by

(27) sja=da/dt and (sjza)(t)=a(t-1)

for a=a(t)cC®(R). Such systems are often dealt with in the context

of "systems over rings"” (see, for instance, [KAM]). The theory of this
paper is not directly applicable. ||

Systems of equations

(28) Convention : For any set X and natural numbers k,l the symbol x k!

denotes the set of kxl-matrices with coefficients in X . In particular ,
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Xk := x¥'1 is the set of column vectors whereas the set of row vectors is
denoted by the complete symbol X1 If X is a module over some ring so is
X% with the componentwise addition and scalar multiplication . ||

(29) Assumption : Let D denote an arbitrary commutative ring , not necessari-
ly a polynomial ring , and A a D-module . Il

The scalar multiplication of a D-module M induces D-bilinear maps

(30) DV'™x M™P — MY™ (P,Q—PQ,

with (PQ)y; = 2 { Py Qy; ;k=1,--,m} . In particular , a matrix R=(R;;);

in D*'! induces a D- linear map

(31) R:Al— A¥ | w=(w, ,w)T — Rw ,
which , in turn , implies the D - linear map
(32) D*'!'— Homp(A', A¥), R—> (w—Rw)

Remark that the map (32) is injective if and only if for k=1=1 the map

(33) D — Endp (A) , p—( a=— pa)

is injective , i.e. if and only if A is a faithful D- module . This and mucﬁ more

is true for the F[s]-modules A from (7) to ( 24) . If A is a F[s]-module as

in (5) the map (pr— pa) is given as pa=p(L)(a) and hence (32) is given by

(34) R(L): Al A | wi—s Rw =R(L) (w) where
(Rw); = X i R“. w; = > j Rij(Lv'"’Lr)(Wj) for i=1,-,k -

Since (32) is D-linear its kernel {w;Rw=0} is a D-submodule of Al

(35) Definition (System): Assumption (29) . A system of linear equations in

the D -module Ais given as

(36) Rw=u, Re pk! WeAl,ueAk, i.e. as Z{Rij wj j=1,-,1}=u, for i=1,k .

For a F[s]-module A as in (5) a system (36) is more specifically given in the

form Z{RiJ(Li,"‘,L,.)(Wj);j=1,“'.1}: u,, i=1,-,k, with L,(a)=s;a,i=1,- k.

The solution space S:={weA'; Rw=0} ¢ Al of the homogeneous system Rw=0

is a D-submodule of A!and called a A- system in this paper . ||

I derived this system notion from [ WIL]. The general theory of linear systems

of partial differential equations with constant coefficients is mainly due to

Ehrenpreis, Malgrange and Palamodov ( see [EH ],[MAL] and [PAL]) . The

theory of such systems with variable coefficients is much more difficult and
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the subject of much active research ( see , for instance , [KAS] , [KKK] and
[BOR]). Multi- dimensional (r-d,r>1) system theory in the engineering
sense has been developed in the discrete case of example (7) , primarily
for r=2 ( image processing ) . Survey articles are , for instance , contained
in [BOS1] , [BOS2], [TZ] and [LO] . A new journal is exclusively devoted
to multidimensional systems under this title .

2. THE ABSTRACT THEORY OF SYSTEMS
(1) Assumption: Let D be an arbitrary commutative noetherian ring and A
a D-module. The notations are those from §'1. I
I am going to develop the theory of A-systems according to (1.35) in this
general setting, but with strong additional assumptions for the main results.
One should always think of the examples (1.7) to (1.24) with the noetherian
ring D = F[sy,,s ] for which the following theory is applicable. As usual I
(2) identify D*''=Homp( D!,D*), R= (w—>Rw)
where Homp (M,N) denotes the D-module of all D-linear maps between
D-modules M and N.
(3) Motivation: Let ReD*'! be an arbitrary matrix. Consider the A-system

S={w=(w;~w) TcA'; Rw=0} ¢ A!

according to (1.35). The image of the transposed matrix
RTeDl’k=HomD(Dk,Dl) is the column module RTD*=im(RT)c D!

of RT. It gives rise to the quotient module M:=cok(RT):=D!/RTDXK.

7]

An casy, but essential observation (see (13) helow for the details) furnishe
the D-isomorphism

(4) Homp(D'/RTD® A)xS={we¢A;Rw=0} , f —> (f(e,— f(e))T
where ei=(10"'O)TeDl,---,ef(O---Ol)_r are the standard basis of D' and
51,---,51 ¢eM=D'/RTD* are the corresponding residue classes. In the context
of systems of partial differential equations the preceding observation was
already used by Malgrange in [MAL]. The isomorphism (3) suggests to consider
its left side Homp(M,A) as a system too. ||

Functors of the type Homp(-,A) have been used to give concrete de-

scriptions of the duals of abelian categories. The Pontrjagin duality, for
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instance, is given by
M——Hom(M,S'),M an abelian group,

where S!:={zeC;lzI=1} is the circle group and Hom(M,S) carries the
topology induced from the product topology of (SYM, and furnishes a
duality between discrete and compact abelian groups. The most general
duality of this type was developed in [ROO] ans [OB1] and will be described
below. The crucial condition for Homp(-,A) to be a complete duality is
that A is a large injective cogenerator in the sense of the following defini-
tions. I refer to [BOU2], § 1, and the exerci;es, for the basic notions. The
theory from [OB1] is valid in more general situations, but this generality is
not necessary for the system theoretic applications of this paper.
Let Mod(D) denote the category of all D-modules and Modf (D) its full
subcategory of all finitely generated ones. Let further
(S) E:=Endp(A):=Homp(A,A)={e: A—> A D-linear}
be the D-algebra of all D-linear endomorphisms of A. Then A becomes a left
E-module via
(6) ea:=e(a),ec<E,acA,
and is trivially even a D-E-bimodule with this structure. Also if M is a
D-module the D-module Homp(M, A) becomes a D-E-bimodule via the
E-structure
(7) ef:=e composed with f, e<E, fctHomp(M,A).
Then the canonical D-isormnarphism
(8) Homp(D,A)=A , f—>f(1),
is a E-isomorphism too as is, more generally, the D-isomorphism
(9) Homp(D!' A)x A, fr—(f(ey),~fle;T,
where e;,-;e;| denotes the standard basis. Normally I will identify
(10) Homp(D' A)=A! via (9).
Denoting by Mod(E ) the category of all left E-modules we obtain the
contravariant functor
(11) Hom ,(-,A) : Mod (D) °P—Mod(E) , M — Homp (M ,A)

(f:M—>N)—(Hom(f,A):Homp(N,A)—Homp(M,A),g—>gf).
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Since D is assumed noetherian every finitely generated D-module M is, up to
isomorphism , of the form
(12) M:=D!/RTDX, R «D*'!,
and the D-E- isomorphism (10) induces the D-E-isomorphism
(13)  Homp(D!/RTDX, A)= {weAl;Rw=0} cA', fro(f(g, - f(E)T
Here ey,---,e; are the residue classes in M=D!/RTDX  of the standard
basis vectors ei,---,eleDl, and Rw=0 is short for the linear system
(14) S{Rjjw;; j=1,~,1}=0, i=1,-k,
with R;;¢eD and w;cA. The following defir;ition generalizes (1.35).
(15) Definition and Corollary ( A-systems) : Assumption (1). The E-modules
of the form
Homp(M,A)>{wcA!; Rw= 0}, M=D!/RTD¥"

and their E-isomorphic copies are called (A-)systems. The full subcategory
of Mod(E) of all A-systems is denoted by Syst(A ). The functor Homp(-,A)
induces the contravariant functor

S:=Homp(-,A):Modf(D )°P — Syst(A)

S(M):=Homp(M,A) , S(f):=Hom(f,A).
For a matrix ReD*X'! with its transposed matrix RT:p* D! in

D!'%“= Homp(D*,D!) the diagram
. . S(RT) k N
S(D!) =Hom p(D!,A)——— S(D*)=Homp(DX A)

{14 e

(wi-— Rw)

Al > AK

commutes where the vertical maps are the canonical identifications (9) or
(10). Hence

S(RT )=Hom(RT,A)=R (wr— Rw)
for short. But caution: The map w+—— Rw on Al may be zero, for
instance if A=0, without R itself being zero. ||
The main goal of this paper is to describe and prove conditions under which
S is a (contravariant) equivalence, i.e. a duality, and to point out the system
theoretic consequences of this result.

The results of this section can also be expressed by lattice dualities as in
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projective geometry. For this purpose consider a n>0 and the D-bilinear map

< -,- >: D"xA"—A, (q,w)—< q,w>:= Z{q,w, ; i=1,~,n}
where q=(qq-qg) " eD™, w=(w;~w_) T ¢cA™ and where {q,w) is given
like the usual euclidean scalar product. The form <{-,-> is not only D-bilinear,
but even E-linear in the second variable. The induced map
(17) A" XHomp(D"?, A), w—<-,w),
is obviously an isomorphism, inverse to (9). If U is a subset of D" its
orthogonal ( polar, conjugate) complement is the E—submodule
(18) Ul=={waAn;<q,w>.=Ofor all qeU }
of A" Obviously U'=(p <U>)* where p<U> denotes the (finitely
generated) submodule of D™ generated by U.

k.1 the identities

(19) Example: For a matrix ReD
Ri-w={Ry;w;;j=1,~1}=<(RT)_;,w>,i=1,~ Kk,

furnish the equation

(20) {weAl' Rw =0}=(RTD*)* 2 Homp(D /RTDK,A) .

In the same fashion one obtains the D-submodule

(21) S*':={qeD"™;<q,w>=0 for all weS}c D™

for a subset Sc A" and also S*'=(g<S>*. If

(22) P(D ™) respectively P(A™)

denote the lattices of D-submodules of D™ respectively of E-submodules

of A" , ordered by inclusion and usually called the projective geometries

of D™ resp. A" , the maps

(23) (=)* : P(D") «— P(A")

form a Galois correspondence. This means, by definition, that the maps (-)*

reverse the inclusion order and satisfy Uc U'* for Uc D™, Sc S*'! for

Sc A™. In particular U*=U***, S*=S*** for Uc D™,Sc A ™.

The first lemma gives an elementary characterization of certain exact

sequences . Recall the following

(24) Definition ( see [BOU1], Ch.I,§1.3): A short sequence
f f
2
(25) M1 —1_) Mz E— M3
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of modules M, over some ring and of linear maps f; is called a complex
if f5f;=0, or, in other terms, if im (f;)c ker(fy). The sequence is called
exact if even im(f,)=ker(f,).
A longer sequence is called a complex respectively exact if all three term
subsequences are such. ||

Consider in particular a sequence
T T

Q P
(26) px—pL—5Dp™ , QD¥! pD!™

This sequence is a complex if PTQT= (QP)T=0 or QP=0. It is exact if,
additionally, the relation xTeker(PT), i.e. PTxT=0 or xP=0, implies that
xTeim(QT), i.e. xT=QTyT or x=y Q , ye D!'¥. We obtain the

following easy

(27) Lemma and Definition: Let QeDX'! and PeD!'™ be two matrices.
The following assertions are equivalent:

(i) The sequence (26) is exact.

(ii) (@ QP =0. (b) If XP = O for some other matrix X then there is a
matrix Y with X = YQ.

If these equivalent conditions are satisfied I call the matrix Q " universal with
respect to QP = 0". For every matrix P there is always a matrix Q universal
with respect to QP = O.

Proof: The last statement follows from the noetherianess of D. As a submo-
dule of D! the kernel ker(PT) is finitely generated. A matrix Q such that
the columns of Q'r from a finite generator system of ker( PT) is universal
with QP = 0. ||

Generalizing the preceding terminology I make the

(28) Definition and Corollary: Consider block matrices Q=(Qy,-Q5) and

P= ( g;) such that QP=Q,P,-Q,P,=0,i.e. Q P, =Q,P, . I say that

Q; and Q, are universal with Q(P; = Q,P, if Q is universal with QP=0
according to (27). If this is the case and if X;,X, are some other

matrices satisfying X;P, = X,P, there is a matrix Y such that
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X1=YQy, X2=YQ, . |l
(29) Example (D =F[s], r=1) Let D be the polynomial ring in one indeter-
minate s over a field F and P« F[s]l’m an arbitrary matrix. By elementary

row and column operations P can be transformed into the matrix

D=( 3 8 ) where D'= diag(d,,-,d,) , r=rank(P) and dy ,~d,. are

elementary divisor polynomials of P . In other terms, this means

D' 0
0 o) UGl (F[s1), VeGI (F[s])

uPv =(
where one obtains U from the identity matrix I with the same elementary
row operations as D from P. Write U in block form U= ([11112 ) with
U,eF[s]""', U,eF[s]'""*'. Then obviously U,P=0. It is easy to see
that Q:=U, ¢ F[s]®'!, k:=1-r, is universal with QP=0. [|
(30) Remark: For r>1 and D=F[s,-;s.] a matrix Q universal with respect to
QP =0 can always be constructively found by the method of Grdbner bases
(see [BU],[PAU],[WIN]). The details will be explained in §5 . ||

Injective modules

The next lemma gives the standard characterization of injective modules
for noetherian rings .
(31) Lemma and Definition (Injectivity and fundamental principle):
Assumption (1). The following statements are equivalent:
(i) The module A is injective, i.e. by definitien. the functor Homp(-,A) is
exact. This means that this functor transformms exact sequences into exact
sequences or, sufficiently, injections into surjections.

(i) The module A satisfies the fundamental principle in the following sense:

If a sequence
QT PT
Dk — D!—D ™, QD*! pc.DI'™
is exact or, in other words, if Q is universal with QP =0 then also the

transformed sequence
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s(ph s@h
Homp (D™, A) —— Hom p( D!, A) —— Hom (D*, A)

!l N H

P Q
Am™ > Al — Ak

is exact. This means: The equation Pw =u ,uc¢Al , has a solution we¢ A™

if and only if Qu=0.

Proof: Obviously (ii) is a special case of (i). The implication (ii)= (i) is

"well known", and follows easily from Baer's criterion (see [BOU2], §1.7,
Prop. 10) and the assumed noetherian proper;:y of D .||

In connection with systems of partial differential equations the term

' fundamental principle’ is due to Ehrenpreis (compare [EH]) whereas the use
of homological methods is due to Malgrange ([MAL]) as far as I know.

As an application of injectivity consider a submodule U of D™ and the

exact sequence

inj can
(32) o—u D" - D" /U—>0.

Application of S=Homp(-,A) to (32) furnishes the exact sequence

S(can) S(inj)
0—>S(D™/U) —— S(D™)=A" ——>S(U) , S(inj)(w)=<{-,wD|U

Hence im(S(can))=ker(S(inj))=U".
If A is injective the map S(inj) is surjective and induces the isomorphism
A7/U'=S(U) by the homomorphism theorem. We obtain the
(33) Corollary: For a D-submodule Uc D™ the canonical map
can:D"——D" /U induces an E -isomorphism
S(can):S(D"/U)=Homp(D"/U,A)= U'cA".
If A is injective the map
A™/U" = S(UW)=Homp (W,A), w —><{-,w>|U,
is also a E -isomorphism. ||
The following theorem is of great importance in system theory and depends
essentially on the injectivity of A.
(34) Theorem: Let A be an injective D-module,

Si={w;<AX‘D, R w, =0} c AYD R pkD.1(D
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pl(2). 11 4 atrix. Then

a subsystem of A'Y and Pe
S,:=P Syi= {Pwy;w S c AP} c AL

is not only a D-submodule of AL(Z), but even a subsystem, indeed
S,=PS,;={weA'?’ R, w=0} where R,eD* % 1(2) 314 some matrix

Y DX (2 k(D) yre universal matrices with R, P=Y Ry (compare (28)).

Proof: (i) For weS; the relations Ryw=0 and Ry P=Y R; imply

R,Pw=YR;w=Y0=0, thus Pwe{w,;Ryw,=0}.

Hence PS; ¢ {wzeAI(Z);R2w2=O}.

The main part of the proof consists in the reverse inclusion. This trivial

part (i) of the proof is, however, a good motivation for the statement of

the theorem.

(i) The relation R,P=YR, induces a commutative diagram with exact rows

cany R,T
0e— plv, RiTDk(i)e D 1 p k(»
T T T
(35) T(P ) ind TP TY
canjy T
0 ¢— D!@/R,T pX? D {2 p k@

where (PT)ind is induced, from PT on the residue classes and not given

by a matrix since the factor modules are not free in general.

(36) Assertion: (PT)"!(R,TD*V)-g,Tpk@

Proof: PT(R,TDX()=pTR,Tpk(® g TyTpk(2)  p Tpkh oo

R,TDX(® ¢ (pT)~1(g, TpkV),

Let, ocn the other side, %! be a coiumn in (PT)_1(R1TDk(1)) , i.e.

PTxTeRiTDk(“, and thus

(37) PTxT=R,TyT or xP=yR,.

By assumption the matrices R, and Y are universal with R,P=YR,

('see (27)). This and (37) imply that there is some z such that
x=zR,5 , y=2Y , hence xTeRzTDk(Z).

Thus (PT) "Y (R, TD!*V)=R,TD'?) 45 desired.

The homomorphism theorem now implies that the map

(PT)ind: Dl(2)/R2TDk(2)=Dl(2)/(PT)—1(R1TDk(1)) EDl(i)/RiTDk(l)
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from (35) is injective. Since A is an injective module the induced map
S((PT)md)=HomD((PT))ind,A) is surjective.

(iii) Application of the exact functor S=Homp(-,A) to the diagram (35)

yields the commutative diagram with exact rows
S(cany) Ry
0 N S(Dl(i)/Rka(l)) S(Dl(i))zAl(i) — )Ak(i)

T
| SUPD, g lP lY
S(can,) R,
0 —— S(Dl(Z)/Rsz(Z)) ; S(DI(Z))=A1(2) SN Ak(Z)

Then im(S(can;)={w, <A’ ;K ,w,;=0} ,i=1, 2.
and, since S((PT)md) is surjective, this implies

P({wyeA R w,=0}) = {wpcA 2 Ryw,=0}
as asserted. ||
The preceding theorem yields several important examples. Let, for instance,
the subspace S c Al be given as

S ={weA;Ix<A™ : R'w =R"x }

with arbitrary matrices R'¢ DX'! and R"e¢D X'™. Define the system

Su={(2)eAt mir, ()0} . Ry=(R", =R

and the matrix P:=(I 0)¢eD"!*™ _ Then obviously S=(I 0)S;y cAl
and thus S is a subsystem of Al by the preceding theorem. Let R, and Y
be universal with

R,P=YR,, thus R,(I 0)=Y(R', -R") or R,=YR' and YR"=0.
But ihis means that Y is uiiversal with YR"=0 and then R,=YR' is deter-
mined by Y. The preceding theorem yields S={wsA1;R2w=YR'w =0}. Remark
again that the defining equation R'w =R"x implies YR'w=YR"x=0, hence
Sc{w;YR'w=0}. The theorem furnishes a Y such that S={w;YR'w=0}.
(38) Corollary: Let A be an injective D-module and Sc A! a D-submodule
defined by
(39) S={we¢A';IxcA™:R'w=R"x }
with matrices R'¢D*'! and R"¢<D*™ Then S is a subsystem of Al, and indeed

S={weA'; YR'w=0} where Y is a matrix universal with respect to YR"=0. ||
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A special case of the preceding corollary yields the Rosenbrock systems

(compare [ROS]) . Consider a system of equations

Px=Qu, xcA™ ucA™
(40)
y=Rx+Wu ,yecAP

with polynomial matrices of appropriate sizes. Then

S::{(;)eAm+p;3xEA" such that (40) is satisfied}

is of the form (39) by writing (40) as
Q P

, R":=
wor) R ()

P
Let (XY) be universal with (XY)(_ R) =0, i.e. XP=YR. Then

R(Y)= Rox, R o=

(XY)R'= (XY)( (v)v ?1 )= (XQ+YW,-Y)

(XY)R()=0 if and only if Yy=(XQ+YW)u.

The preceding corollary is applicable and yields the
(41) Corollary and Definition (Abstract Rosenbrock systems): Let A be an
injective D-module. Consider the system (40) of linear equations. Let X and Y
be universal with XP=YR. Then

S=={<;)€Am+p;HXGAn such that Px=Qu,y=Rx+Wu}

m+p
is a subsystem of A , and

s={(}):A™"P;Yy =(XQ+YW)u }.

I call such a system S an abstract Rosenbrock system . ||

Remark again that the equations X
Px=Qu,y=Rx+Wu , XP=YR imply Yy=YR>;+YWu=XPx+YWu=(XQ+YW)u
so that the vector x is eliminated from the equation. The main result is that
the latter equation is sufficient for (uy) to be in S.

(42) Standard example: Let A be an injective module over the polynomial

ring D=F[s]=F[s;] in one indeterminate over the field F. Take, for

instance, the module A from examples (1.7) to (1.24) for r=1. Consider the

standard state space equations
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sx=Ax+Bu,y=Cx+Du with AeE™' ™" BeF™' ™ CcFP'™ DeF™' ",

In the form (sl -A)x=Bu,y=Cx+Du these are Rosenbrock equations

P slh-A
with P=s1,-A,Q=B,R=C,W=D. The matrix (_p )=( _. ) has rank n.

By (29) construct a matrix (XY)¢F[s]?'""P, p=(n+p)-n,

universal with respect to

xy) ("

) = 0or X(sI,-A)=YC.

The preceding corollary yields

S:={(uy)eA™ "P.3xeA™ such that sx=Ax+Bu,y=Cx+Du} =

={(uy)cA™"P;Yy=(XB+YD)u} with YeF[s]P'P XB+YDeF[s]P ™.
The preceding calculation gives the well-known passage from the state
space to the transfer function description of a 1-d system. (|

Injective cogenerators
Next I investigate the notion of a cogenerator.
(43) Lemma and Definition (Cogenerator): For a D-module A over an arbitrary
ring D the following assertions are equivalent:
(i) Every D-module M can be embedded into a direct product of copies of A,
i.e. there is a monomorphism f=M—->AI,m*——->f(m)=(fi(m);ieI)
for some possibly infinite index set I.
(i) For arbitrary D-modules M and N the map
S:Homp(MN)— Homg(S{N),S(M),f—>S(f),
S(N)=HomD(N,A),S(M)='Ho\mD(M,A),S(f)=Hom(f,A)
S(f)(g)=gf for feHomp(M,N),geHomp(N,A)

is injective.
Under the additional assumption that A is an injective module (i) and (ii)
are also equivalent to
(iii) A D-module M is zero if and only if S(M)=Homp(M,A) is zero.
A module A satisfying these equivalent conditions is called a cogenerator .

The proof of the preceding lemma is simple and known (see [BOU2], §1.8). ||
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The circle group S':={zeC;|z|=1}, for instance, is an injective cogenerator
in the category of abelian groups.
Assume that A is an injective cogenerator and f:M——>N a D-linear map.

The latter gives rise to the exact sequence
inj f can
(44) 0—ker(f) > M > N ?»cok(f)=N/im(f)—>0

Since A is injective the functor S=Homp(-,A) is exact and transforms
(44) into the exact sequence

S(f)
0—>S(cok(f)—>S(N)—— S(M)—>S(ker(f))—>0,

in particular

(45) S(cok(f))=kerS(f),S(ker(f))=cok(S(f))=S(M)/im(S(f)).

If f is a monomorphism (epimorphism, isomorphism) then S(f) is an

epimorphism (monomorphism, isomorphism). If, on the other side, S(f) is

injective then S(cok(f))=0 by (45). The cogenerator property from (43),

(iii), of A implies cok(f)=0 and thus that f is surjective.

(46) Corollary: If A is an injective cogenerator a D-linear map f:M—N

is injective resp. surjective resp. bijective if and only if
S(f)=Hom(f,A):Homp(N,A)—Homp(M,A),g— gf ,

is surjective resp. injective resp. bijective. ||

(47) Corollary: If A is an injective cogenerator and Uc D" is a D-submodule

then U=U"* with respect to the Galois correspondence (-)* from (23).

Proof: Consider the commutative diagram

. cani
A/ ut S s(u)

Hel’ can 4 Hel S(inj)
canp
A/uttt ——— sttt )

where can,, can, are the isomorphisms from (33) and can 5 is isomorphic
since U*= U'** for every Galois correspondence. But then S(inj) is isomorphic
too. The preceding lemma implies that inj: U—>U"" is an isomorphism ,
hence U=U"". ||

(48) Corollary: Let A be an injective cogenerator. If S:={weAl; Rw=0},
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ReDX'! isa subsystem of A' then S*:=RTDX and S=S**.

Hence the maps (-)" induce order antiisomorphisms

(49) (-)*: P(DY)e= PF(A™)

where P(D') as in (22) and Pf(A™) are the ordered sets of all submo-

dules of D! resp. all subsystems S of Al

Proof:Let U:=RTD® be the column module of RT. Then S=U" by (20)

and hence S'*=U**'= U'=S since (-)* is a Galois correspondence. Moreover

U=U'*=S* by (47). The equations U=U'' and S=S'* imply that (49) are

inverse bijections. Il

(50) Remark: The module S*‘c D! consists of all vectors q=(q1~-q1)Te D!

such that qyw;+-+q;w;=0 for all weS<c A!, and is thus the largest

submodule U of D with UL S (with respect to <-,->). For the special case

D=F[s],r=1 and I=! the module S* is an ideal of F[s] and generated by

a unique monic polynomial which is usually called the minimal polynomial

of S. Thus S* generalizes the minimal polynomial of a recursive sequence. ||

(51) Injective modules over commutative noetherian rings according to Matlis

Now and later I need the following facts from the original paper [MAT] by

Matlis which are also well presented in [BOU2], §1.9, 1.10, Ex. 1.27. The

assumption (1) is in force, in particular D denotes a commutative

noetherian ring.

Every injective D-module is a direct sum of indecomposable direct summands

which are, of course, alsu injective. Assume thus that E is an indecomposable

injective D-module. Then E is the ihj‘ect'rve envelope (or hull) of its non-zero

submodules (see [BOU2], §1.9, Prop. 19). The set of annihilator ideals
(0:x):={peD;px=0}, 0% x<E,

admits a largest ideal p(E) and this is a prime ideal, the associated prime

ideal of E. Then, up to isomorphism, E is the injective envelope of D/p(E).

The map E+— p(E) induces a bijection between the class of indecomposable

injective D-modules and the set Spec(D) of prime ideals of D, the inverse map

being given by pr—>E(D/p) where E(M) denotes the injective envelope of a
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D-module M, unique up to isomorphism.
If, for instance, D is a noetherian integral domain with quotient field K then

K=Quot(D)=E(D/0)=E(D)
is an indecomposable injective with associated prime ideal p(K)=0 ( see
[BOU2], §1, Cor. 2 of Prop. 10). 1l
(52) Lemma and Definition (Large injective cogenerator) : Let D be a
commutative noetherian ring and A an injective D-module. The following
assertions are equivalent:
(i) For every finitely generated D-module M there is a D-linear monomorphism
f:M—>AX, m—(f;(m);i=1,~,k) , keN,

i.e. every such M can be embedded into a finite product AX of copies of A.
(i) The statement of (i) is true for all M=D/p where p is a prime ideal of D.
If (i) and (ii) are satisfied then A is a cogenerator and called a large
injective cogenerator.
Proof : (ii) is a special case of (i). Assume that (ii) is satisfied and that M is
a finitely generated D-module with injective envelope E(M)> M. Then E(M)
decomposes into a direct sum E(M)=®{Ei;iEI} of indecomposable
injectives E;. Since M is an essential submodule of E(M) the intersection
modules E;nM are not zero and thus @®{E;nM;icl} is a direct sum of
non-zero modules in the noetherian module M. This implies that I is finite.
By (S1) E,=E(D/p) ,p; :=p(E;) « Spec(D) , icl.
Ak (,vi)

The assumption (ii) yields embeddings D/p; — ,iel, which can be

extended to D-linear maps .

f:E(D/p;)—> AR, fil_‘(D/pi) injective,
since A and thus AKX are injective. But then

ker(f;)n(D/p;)= ker(f;|[(D/p;))=0

which implies ker(f;)=0 since D/p; is essential in E(D/p;). We derive
embeddings E,~E(D/p) — AW i<l ,  and finally

M c E(M)=0E,;>II, [E,—1II, AR (P =K
with k:=3{k(i);icl} ¢eN. Thus (i) is proven.
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Assume finally that N is an arbitrary non-zero D-module. Choose a finitely
generated, non-zero submodule M of N and an embedding f:M—> AKX as in
(i). Without loss of generality the component f; of f is non-zero. Since A is
injective this can be extended to g;:N— A with g;/M=f;. But then
0+g,;eS(N)=Homp(N,A), thus S(N)=*0.

Condition (iii) of (43) yields that N is a cogenerator. ||
(53) Remark (A new interpretation of the preceding theorem): An embedding
g=D/I——>Ak,ke[N, of a cyclic D-module D/I where I is an ideal of D can
be interpreted in the following fashion: Let

f:=g can:D—>D/I—AK, p—>(f;(p);i=1,---,k),
be the composed map with ker(f) =ker(can) =1 since g is injective .
The components f; of f are given as f;:D—A, p—pa;,a;:=f;(1), hence

ker(f;)={peD;pa;=0}=:(0:a;) and finally

I=ker(f)=n{ker(f;);i=1,-,k}=n{(0:a;) ; i=1,--,k}.
Thus the injective module A is a large injective cogenerator if and only if for
every ideal I of D there are finitely many elements a;,-;a; of A such that
I:={peD;pay=---=pay =0} is the exact annihilator of these a;. By lemma (52)
it is sufficient that this condition is satisfied for all prime ideals I=p of D.||

The main theorems

The technicalities developped above are justified by the following
(54) Main Theorem: The F[s;,-;s.]-modules A from the examples (1.7), (1.13),
(118}, (1.22), their real form~ & , 2nd {1.24) are large injective cogenerators.
The proof of this theorem is the main content of the paragraphs 3 and 4.
The injectivity in the continuous case is deri;’ed from famous work of
Ehrenpreis, Malgrange and Palamodov (see [EH], [MAL], [PAL]). The proof
of the large cogenerator property is new. ||
(85) Assumption: In the remainder of this paragraph I assume that A is a
large injective cogenerator over the commutative noetherian ring D. Always
recall that this assumption is satisfied for examples (1.7) to (1.24). [|

The next results describe the importance of assumption (SS) for system
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theory.
(56) Duality Theorem (Systems and D-modules): Assumption (SS), notations
as above.
(i) A left E:=Endp(A)-module S is a system, i.e. E-isomorphic to some
E-module
S(M)=Homp(M,A) ,McModf(D),
if and only if S is a finitely generated E-submodule of some Al, N, up
to isomorphism. In particular , a E-finitely generated submodule of a
system S is again a system.
(ii) The functor Homp(-,A) induces the duality (=contravariant equivalence)
S=Homp(-,A):Modf(D)°P—>Syst(A).
This means that for arbitrary finitely generated D-modules M and N the map
S:Homp(M,N)—Homg(S(N),S(M)), f—>S(f),

S(N)=Homp(N,A),S(M)=Homp(M,A),S(f)=Hom(f,A), S(f)(g)=gf
is bijective and even a D-isomorphism. In other words: A map F:S(N)—>S(M)
is of the form F=S(f) if and only if F is E-linear, and this f is then unique.
(iii) The full subcategory Syst(A) of Mod(E) consisting of all systems and
E-linear maps between these is closed under taking kernels, images and
finite direct sums. In particular, Syst(A) is an abelian category and, of course,
S=Homp(-,A) is an exact functor from Modf(D) to Syst(A). Also the set
Pf(Al),120, of all subsystems of Al(compare (49) ), i.e. of all E-finitely
generated submodules of Al, is closed under finite sums and intcrscctions
and thus a lattice. R
This theorem is a special case of propositior; 3.3 on page 488 of [OB1]. The
dataA, N, E from [loc.cit.] correspond to Mod(D), Modf(D) respectively A
here. The assertion (i) of the theorem follows from the fact that A=S(D) is
coherent in the sense of [loc. cit] and that a finitely generated subobject
of a coherent one is again coherent. ||
(57) Corollary: Assumption (55). The map

s:DV*=Homp(D*,DY2Homg(A',A*¥), RT— S(RT)= R( w—Rw)
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is a D-isomorphism. In particular
D=Homp(D,D)*Endg(A)cEndp(A)=E.
In other words this means that D is the center of the D-algebra E or again
that a D-linear endomorphism e<¢E of A is in the center if and only if
e has the form e(a)=pa,acA, some peD. ||
(58) Corollary and Definition: Assumption (SS). The quasi-inverse
functor of S:Modf(D)°P=Syst(A)cMod(E) is denoted by
M:Syst(A) = Modf(D)°P, S—>M(S).
This means: If S is a system then M(S) is the D-module, unique up to
D-isomorphism, for which there is a E-isomorphism
O, :S(M(S))= Homp(M(S),A)= S
If F:S;—>S, is a E-linear map between systems S; and S, and
M;:=M(S;), @, =<I>Si ,i=1,2 , the map f:=M(F):M,—>M, is the
unique D-linear map such that

(Dl
S(M,) — S,

l S(f) o lF

S(My)—— S,

commutes. ||
(59) Corollary: Let wi,---,wm be m vectors in Al. Then S:=Ew!+-+Ew™
is a system and S= U" where

u={q=(q;~q;) T«D%; <q,wj>:CI1W1j+"‘+q1W1"=0 for j=1.-m}
Proof: By {56), (i), this S is a subsystem. The rest follows from (48). [l

System theoretic applications ;)f the main duality theorem

In the sequel I use the main duality theorem to prove several results of
system theoretic significance.
(60) Corollary: The system A=S(D) is injective in Syst(A). This means that if
F:S, —S, is a E-monomorphism between systems S, and S, any E-linear
map Gy:S;,—> A can be extended to a E-linear map G, such that G,F=G;.

Proof : The proof follows directly from the duality S:Modf(D)°PxSyst(A)

and the trivial fact that the D-module D is free and thus projective which
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is the dual property of injectivity. ||
This corollary is the main ingredient for the following important
(61) Theorem: Let

S;:={weAl;R,w=0} , R;eD*1 i=q 2,
be two systems in A'. Then Sy ¢ S, if and only if here is a matrix
XDK(2) kM guch that XR =R ,.
Proof: If XR,;=R, then the relation Ryw=0 implies Ryw=X(Ryw)=0
and thus S; ¢ S,. Assume in return that S; ¢ S;. The system maps

k(i)

Fi:=S(RiT)=A1——>A ,w—>R w,i=1,2 ,

with ker(F;) =S, factorize as

canj (Fi)ind )
Al"'—'—) AI/Si——I' Ak(l), Fi= (Fi)ind'cani,

with a E-monomorphism (F;);,q. There results the commutative diagram

(Fl)ind
Al/51 N Ak(i)

lcan (Fa)ing lG

AI/SZ Ak(2)

where the canonical map can is defined since Sy ¢ S, and where G with
G(F{)ina=(F2)inq'can exists according to the preceding corollary. We
obtain
GF{=G(F{);,qcany=(F3);aqcancany= (Fy);,q'can=F,.
Let XeDK(2) k(D) o the unique matrix with S(XT)=G (see (57)). Thus
SUXR) TN =5(R ' X 1) =5(X")8(R;T)=GF;=F,=5(R,T).
Since S is injective on maps accordi.ng t(; thé main duality theorem or (57)
this implies XR=R, as asserted . ||
(62) Remark: For the preceding theorem it is essential that A is a Jarge
injective cogenerator. The theorem is interesting and new even for the
standard cases with r=1. (Compare [BY], Th. 1,2 on page 91). ||
(63) Corollary (Quasi-uniqueness of the representing matrix): If a system
Sc Al is defined by two matrices RieDk(“’l,i=1,2, i.e.

S={waAl;R1w=O}={WeA1;R2w=0} then there are matrices
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X, e DK@k apd X, DKWK(2) guch that R =X Ry and R{=X,R;. Il
Rank, IO-systems and transfer matrix
I sharpen the assumption (S5) to
(64) Assumption: Let D be a commutative, noetherian integral domain and
A a large injective cogenerator. Let
K:=Quot(D) > D be the quotient field of D. |l
This assumption is satisfied in the examples (1.7) to (1.24). The quotient
field of the polynomial algebra F[s;,-,s.] is the field K:=F(s)=F(sy,,s.)
of rational functions.
(6S) Theorem and Definition (Input and output dimension of a system)
Assumption (64). Let
S:={weA';Rw=0},ReD*" 1,
be a subsystem of Al. As a matrix with coefficients in K > D the matrix R
has a rank p:=rank(R). This rank depends on S only and not on the special
choice of the defining matrix R. The numbers p and l-p=:m are called the
(66) output dimension of S=o-dim(S):=p
(67) input dimension of S=i-dim(S)=m:=1-p.
Proof : Assume that S is defined by two matrices RieDk(i)’l,i=1,2, thus
S={W€Al;R1W}={W€A1;sz=0}. By (63) there are matrices Xj, X,
with coefficients in D, hence in K, satisfying Ry;=X;R; and R;=X5,R,. But then
rank(Ry)=rank(X Ry)<rank(R,)
and similarly rank{R;)srank(k3), hence rank(Rqy)=rank(R;) as
asserted. || SN i
That the terminology in (66) and (67) is justified will be demonstrated in the
next theorem (69),(iii). As a preparation for this consider a subset Oe¢{1,-, 1}
and define p:=|0O|,I1:={1,--,1}\ O, m:=1-p=|I|. Then
(68) {t,—1}=1U O
is a decomposition of {1,--1} into two disjoint subsets with m respectively
p elements. Using (68) identify
Al = A™'P = ATXAC=A™XAP | w=(w;;i=1,1)=(u,y)

where u:=(w1;iel)eAI=Am, y==(w1;ie0)er=AP.
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[ often write (uy) instead of (l;) for typographical simplicity. In the same

manner [ write

R=(-Q,P)eD*'!=p*-1xp* O=p* ™xD*'P with Q=-(R_j;jeI),P=(R_jjeO)
where the minus sign in Q is just a convention. Then

Rw=(—Q,P)(;>=-Qu+Py.

(69) Theorem and Definition (Input-output structure and transfer matrix)
Assumption (64). Let S={weA!;Rw=0} be a system and

(70) {t,1}=1JO ,m:=|I],p:=|0O],

a decomposition of the index set {1,-,1} with the corresponding decompo-
sitions w=(uy)cA™ P=A™x AP and R=(-Q, P) such that
(71) S={w=(uy)eA™ P, Py=Qu}

Assume that

(72) o-dim(S)=rank(R)2p

but not necessarily o-dim(S)=p. The following assertions are equivalent:

(i) o-dim(S)=rank(P)=p, i.e.o-dim(S)=p and the p columns R_j, j<O,
of R are K-linearly independent.

(ii) There is a matrix He¢ KP'™ such that PH=Q.

(iii) For every ue¢A™ there is a ye¢ AP such that (uy)¢S or, in other terms, the
projection proj:S—A™, (u,y)—u, is surjective.

If these equivalent conditions are satisfied the decompositions (70) or w=(uy)
are called an input-output structure (I1O-structure) and u resp. y are called
an input-resp. output vector of S. By (iii) this notion depends on S, but not
on the special choice of R. In gener"a'l, a system admits several distinct
IO-structures, indeed every family of p:=rank(R) K-linearly independent
column vectors of R gives rise to one.

If (70) is a IO-structure of S the matrix H from (ii) is uniquely determined
by the equation PH=Q and depends on S and the chosen 10-structure (70),
but not on the special choice of R=(-Q,P ). The matrix is called the transfer
matrix of S with respect to the IO-structure w=(u,y) and S is called a

realization of H .
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Proof : (i) =(ii) From o-dim(S)=rank(R)=rank(-Q,P)=rank(P)=p
we conclude that the p columns R_j,j¢ O, of R are a basis of the column
space of R in KX and hence that the columns of Q are K-linearly
dependent on those of P. But this means PH=Q with a matrix
HeKP™ (not DP™ 1), Since rank(P) = p the map P:KP— KX
in KX'P =Ho mK(Kp,Kk) is injective and this implies that H is uniquely
determined by the equation P H=Q.
(ii) = (i) From PH=Q we conclude
(73) R=(-Q,P)=(-H,I;)P, hence rank(R)srank(P).
By assumption (72)
(74) rank(R)=o-dim(S)2p2rank(P).
The latter inequality is trivial since P has only p columns. The combination
of (73) and (74) yields (i).
(i), (ii) =(iii) Let X be universal with XP=0. Then, by (31), the equation
Py=v has a solution y if and only if Xv=0. Let now u¢A™ be arbitrary and
v:=Qu, hence Xv=XQu. But XQ=XPH=0 since XP=0. There follows Xv=0
and the existence of y<cAP with Py=v=Qu, i.e. (uy)eS, as asserted.
(iii) = (i), (ii) By assumption (iii) the system map

(Im0)=s(lg‘)

S =S(D™*P/RTDX) c A™*P 5 Am=S(D™)

is surjective. By the main duality theorem this implies that the D-linear map
I
( g") can

Dm 5 Dm...p. ; 3 Dm+p/RTDk

~

X ——> (’c‘))r—————————> can(’;)
is injective or, in other terms, that (()6)=RTy ,yeDk) implies x=0. But
R=(-Q,P) hence
<x=-QTy, PTy=0) implies x=0 or {yeDk;PTy=O}c {yeD¥;QTy=0}.
By considering common denominators we conclude that also
(75) {yekK¥;PTy=0}c{yK*;QTy=0}
But if L denotes the orthogonal complement with respect to the standard

non-degenerate, symmetric K-bilinear form
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(=,=> K BxKR =K, <x,y>i=x Ty =xqy+ -+ XYk

there is the well-known result from linear algebra

(PKp)l={yEKk;PTy=O}, hence PKP={yeKk;PTy:O}J‘ in KX.
This, by the way, is a special case of (48). From (75) we thus conclude
PKP> QK™ for the column spaces since (=)' reverses the order. Hence the
columns of Q are contained in the columns space of P or, in other terms,
are K-linear combinations of the columns of P. But this means PH=Q for
some He KP'™, and thus (ii) is satisfied.
I show finally that H depends on S and the IO-structure (70), but not on the
special choice of R=(-Q,P). Assume that S is given in two representations

S={w=(uy)cA™"P;R.w =0} , R;=(-Q;,P;),i=1,2, hence
S={(uy)eA™"P;P,y=Q,u},i=1,2.
Let H, ¢ KP'™ be defined by P,H;=Q, , i=1,2, as in (ii) . By (63) there are
matrices X; and X, such that
R5=(-Q5,P5)=XRy=X{(-Q¢,Py) and Ry=X,R,, hence
Q2=X1Qy,P2=X Py and Q=X,Q;,P1=X,P5.
These equations yield
P2H2=Q2=X,Qy=XPH{=P>H;.

Since (70) is an IO-structure P, has rank p and can thus be cancelled on
the left hence H;=H, as desired. ||
(76) Remark: For the special case of example (1.18) and r=1 consult the
book [BY] where differentia! input-output systems and reiations are
considered. Willems [WIL] , for the'ca‘se of example (1.7) and r=1, talks of
IO-systems only if the transfer matrix H is proper. At this stage of my paper
the transfer matrix H always exists uniquely as was shown above, but there
is no causality structure. In particular H cannot be considered as an operator
from A™ to AP which assigns an output y to every input u for appropriate
initial conditions. The theory of transfer functions or operators and their
connection with the transfer matrix will be treated later and presupposes a
suitable operational calculus which I will develop along lines given in the

literature. Also the theory of minimal realizations will be treated later . ||
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(77) Corollary: Assume that the system S admits a IO-form
(78) S={(uy)cA™ P, Py=Qu}
with a square matrix P, i.e. P<DP'P det(P)¥0 ,QeDP'™ . Then the
transfer matrix of S with respect to this IO-structure is the traditional
(79) H:=P~'QcKP'™
where P,P—IeGlp(K) since det(P)*0. Moreover P is unique up to D-left
equivalence. This means that if also

S={(uy)cA™"P;P,y=Qqu}, P;<DP'P,
the matrix X==P1P'1 is not only in Gl,(K), but even in Gl (D), i.e.
both X and X! lie in DPP .
Proof: The equations PH=Q,P<DP'P and rank (P)=p imply directly
PeGlp(K),det(P)* 0, and H=P_1Q. Assume that also
S ={(uy)cA™*P;P,y=Qu},P;¢DP’'P, From (63) we derive

(-Q4,P=X,(-Q,P),(-Q,P)=X,(-Qy,Py)
with matrices X;,X,¢DP'P. Hence in particular P;=X P ,P=X,P, in
DP'P or X=P,P '=X,,X '=PP,7'=X, in DP'P as asserted. ||
In 1-d system theory (79) is called a matrix fraction description of H
(Compare [KAI ], 6.23). For arbitrary S a representation (78) with square P
and thus a matrix fraction representation (79) of H, however, cannot gene-
rally be achieved. This depends on the global dimension of D and will be
explained in a later paragraph. ||
{80) Remark: Assume that
S={(uy)¢A™*P;Py=Qu}, P<D*'P, rank(P)=p, Q=PHD*'™,

is given in IO-form and that P can be transformed by elementary row

operations into a block matrix (I(;l )’P1€ DP'P This can always be achieved if

D is a principal ideal domain, for instance the polynomial ring F[s{] in one
indeterminate over a field. Then
Py
UP=(O ) with uele(D),det:(P1 )+ 0, hence also

P Q
uQ=upH=(, )H=( ;' ).Q ¢« D P'™.
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Since Ue¢Gl, (D) this implies S={(uy);P;y=Q,u} and H=<P1)—1Q1 as in
the preceding corollary. ||

I am going to calculate the transfer matrix of Rosenbrock systems. But
first I give another useful
(81) Theorem: et F: AP —5 A2 e 5 system morphism, i.e. a E-linear
map, and let SchI(l) be a subsystem with image S,:=F(S{)c AY?)  Then

i-dim(S,) <i-dim(Sy).

Proof : By the main duality theorem of (57) F has uniquely the form
F=S(PT),PeD!? 1D The theorem (34) and its proof are valid, thus

(36) (PT)_1<R1T Dk(l))=Rng(2).

Taking common denominators we derive

(PT)_l(RlTKk(l))=R2T K2 and as in (34) the injection

(PT)ind:KI(Z)/RZT Kk(Z)—)Kl(“/ RITKk(l).

We conclude

i-dim(S,)=1(2)-rank(Ry)=1(2)-rank(R,T )=dimgK! @/ R, T KX?® <
SdimKKl“y RiTKk(1)=i-dim(Sl) as asserted. ||

(82) Theorem (Transfer matrix of Rosenbrock systems) Consider the Rosen-
brock equations

(40) Px=Qu, y=Rx+Wu

with the additional property that the system

(83) S"={(u,x)eA™ ™ ;Px=Qu}

's in 10O-form, i.e..rank(P)=n and Q=PH', H'« K™ | where U’

is the transfer matrix of S'. Then tﬁe Rosenbrock system

S:={(uy)cA™*P ;3x¢A™ such that Px=Qu, y=Rx+Wu}

has the I0-form

(84) S={(uy) e A™ P, Yy=(XQ+YW)u}

where X and Y are universal with XP=YR. The transfer matrix of S is
H=W+RH'".

Proof: The representation (84) has been proven in (41). Since S is an image

of S’ the preceding theorem implies
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i-dim(S)<i-dim(S')=m , hence o-dim(S)=(m+p)—i-dim(S)=zp.
This is the general condition (72) in (69). Moreover

XQ+YW=XPH'+YW=YRH'+YW=Y(W+RH')=YH.
Thus H:=W+RH" satisfies condition (ii) from (69) and theorem (69) shows
that (84) is a 10-form of S with transfer matrix H=W+RH". ||
(85) Example: In the situation of example (42) the state space equations
(sI,-A)x=Bu,y=Cx+Du satisfy the property that
S t={(u,x)eA™ ™ ;(sI -A)x=Bu}
is in 10-form with transfer matrix H =(sI,-A )"'B. Thus
S:={(uy)cA™ P ;3xcA™ with sx=Ax+Bu,y=Cx+Du}=

={(uy) eA™"P ;Yy=(XB+YD)u} with Y¢F[s]?P XB+YDe¢F[s]>™
is in I0-form with transfer matrix H=D+ CH'= D+ C(sIn-A)_iB as
usual. In particular rank(Y)=p, hence det(Y)*0 and

H=D+C(sI-A)"'B=Y "' (XB+YD). ||
The assocciated signal flow space

Assumption (64) is in force. In 1-d system theory the assignment of a signal
flow graph to a block diagram plays an important role, at least in the
engineering literature, and whole books are devoted to this subject. (see,
for instance, [CH]). The following considerations generalize those ideas sub-
stantially and give the algebraic, but not the graph theoretical background.
Even for the 1-d case the following results give something new. The graph
theoretical nart will be treated later. The main idea is to compare a system
(86) S={weAL,Rw=0}cA!, ReD*' !,

with the solution space

~

(87) S =={v,\;e KI;R$=O} c K1 of the system Rv/:'=0,ReDk’lc Kkl ,w eK!
of linear equations with coefficients in K . The main observation is that the
assignment S—>S is well-defined and an exact functor. For this purpose
consider the exact functor

(88) K®p(-):Modf(D)—>Modf(K), M—>K@pM,

given by extension of scalars. In more constructive terms K®&pM is the
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module of fractions K®@pM={m/t;teD,t+ 0} (Compare [S], ch. II, § 2.2).
Consider also the standard duality of finite dimensional vector spaces
(-)*:Modf(K)°P = Modf(K), V> V™,
with V¥*=Homg(V,K). Finally recall the duality ( see (58))
M:Syst(A)°P=Modf(D),S—>M(S),

with Homp(M(S),A)>S. Composition of these three functors yields
M - K®p(-) (-)*
Syst(A)°P x Modf(D)—2—> Modf(K) = Modf(K)°P

and hence the covariant exact functor
(90) Syst(A)—>Modf(K),S—§,
where S:=Homg (K@pM(S),K)XHomp(M(S),K), f— g,
with f (k@m)=kg(m) , keK, meM(S).
If S is given by (86) the module M(S) is M(S)=D!'/RTDX due to (13) and
thus S=Homp(D'/RT DX K) = S, g—— (gle,),~gle DT
where the latter isomorphism is deduced like (13). I identify S=S and obtain
(91) Theorem and Definition (signal flow system) The exact functor (90)
furnishes, by identification, the exact functor
(92) (-) :Syst(A)—>Modf(K), S—>§ ,
where S:={wc¢K';Rw=0} if S={weA;Rw=0} , ReD*"",
This means:
M S is well-defined, i.e. s depends on S only and not on the special choice
of the defining matrix R.
i) T S;={w <Al R w,;=0) , R, < D™ i=12, are two systems and
P=S(PT):5, —"S,, PcDUDLD,
is a system morphism , i.e.PSlcS2 , then also P§1c§2 .
(ii) The assignment S — S is exact.
Moreover dim ng i-dim(8S).
The K-space S is called the associated signal flow space of S.
The last equation comes from the standard equality
dimg{weKLRw=0}=l-rank(R)=i-dim(S). |

I will show instantly that S contains all the information on the I10-
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structures and the transfer matrices of S. Consider first the system
S={(uy)eA™P; Py=Qu}, PH=Q,
in I0-form with transfer matrix H. Then /S\={(/l;;)eKm+p;P;=Qa}. Since
rank(P)=p the map P:KP —KXis injective (P:AP—> A is not!) and thus
P;= QE=PH:1\ and )/'\=H:1\ are equivalent. This yields
S={(uy)cK™"P ;y=Hu}=:Graph (H)
where Graph(H) is the graph of the K-linear map H:K™ — KP. Assume
on the other side that for a system S:{WeAI;Rw=O},ReDk'1 , the
associated signal flow space S={wecK!;RW=0} is written in the form
(93) S ={w=(2y) <K ™P . Py=Qu}=Graph (H)
with (-Q, P):=R , HeKP'™ . This can always be achieved for a suitable
decomposition w=(u ;) and HeK ™*P by standard linear algebra results. In
particular then
m=dim§= i-dim(S), hence p=o-dim(S).
Moreover (93) implies P(ﬁ;)=Q,lI for all u¢K™ and finally Pﬁ=Q.
From (69), (ii), we conclude that w=(uy)cA™"P is a IO-structure of S
and that H is its transfer matrix. Hence the
(94) Theorem (IO-structures and transfer matrix via the signal flow space).
A system
S={we¢AL;Rw=0},ReD*!,
admits the 10-form
8 {w-inyi:A™P . Py=Qu}
with transfer matrix H<KP'™ if and'én!y if §={;v\eKl;R;=O} is the graph
of H with respect to the corresponding dec:omposition w=(u y) or, in other

terms , the map

(95) (Im

H ):Km x> §= {v/;=(g\) ¢ Km*P, ;'\:H/I.I}

(I-lllff>= (E,H{l\)

u— (IH’“)E

is an isomorphism. ||
(96) Example (Transfer matrix of Rosenbrock systems) Consider the situation

of theorem (82). The system S' has the transfer matrix H' which implies the

K-isomorphism
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(97) (o) k™= (s, @— (gﬁ)

Furthermore the map

(%) s 5.y

is a system epimorphism by definition of S. Since the functor (-)” is exact

(98) (IVT’ (I){) (S —— S is surjective.

Composition of (97) and (98) yields the surjection

K™ —S§, t—>(u,(W+RH)W).
But this map is obviously injective, thus an isomorphism and hence
§=Graph(W+RH'). This says that H:=W+RH"' is the transfer matrix
of the Rosenbrock system . Remark that the IO-representation (84) of

(82) cannot be derived from S. ||

Induced dualities

Here I assume that D is a commutative noetherian ring, not necessarily
integral, and that A is a large injective cogenerator. Thus theorem (56) is
applicable. Furthermore let Ic<D be an ideal and D/I the factor ring. A
D/I-module M is the same as a D-module annihilated by I, i.e. with IM=0.
The scalar multiplications are conncected by
pm=pm , peD, meM, peD/I.

In this fashion I consider the category Mod(D/I) as a full subcategory of
Mod(D) and similarly for the finitely generated modules. thus

Modf(D/I)cModf (D).
In both categories the morphisms é;e jUSt the D-linear maps. The finitely
generated D/ I -modules are exactly the D-epimorphic images of the
modules (D/I)k=Dk/IDk, keIN. Thus the duality

S = Homp(-,A) : Modf(D )°P = Syst(A)

maps the full subcategory Modf(D/I) onto the category of those
systems S which can be E-linearly embedded into some S(D/D)X. But the
E=Endp(A)-isomorphism S(D)=Homp(D,A)=A, f—>f(1),

induces the isomorphism
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S(D/D=Homp(D/I,A)x{acA;Ia=0}=:(0:I) ,=:(0:)

Hence, by identification,
S(D) = Homp(D, A = A

U U U
S(D/I)=Homp(D/1,A)=(0:1):={acA;Ia=0}.

(99) Theorem and Definition: Assumption (S5). Let I be an ideal of D. The
duality S=Homp(-,A) : Modf(D)°P = Syst(A)
induces the duality S=Modf(D/I)°p%Syst((0=I)A)
where (0:I)p:={acA;la=0}c A and where Syst((0:I) A) consists of
those A-systems S annihilated by I, i.e. IS=0, or, in other terms, which
can be embedded into some system (0:1)X keN. ||
(100) Remark: The preceding theorem can also be proven by the remark that
(0:1) ,=Homp(D/I,A) is a large injective cogenerator over D/I . For the
injectivity this is an easy lemma (see [BOU2], §1.8, Prop.11). If further M is
a finitely generated D/I -module and f:M—>AX keN, a D-linear embedding
then IM=0 implies I'im(f)=0, i.e. im(f)c(0=I)k, such that f induces
the embedding f:M—(0:1)* as desired. The theorem follows from the
identification S(M)=Homp(M,A)=Homp,/1(M,(0:I)4),McModf(D/I),
and the main duality theorem (56) applied to (0:1) A over D/I.||
(101) Corollary: If ReD*'! the module M:=(D/D!/ RT(D/DX,
Re(D/D*! gives rise to the system

S:=S(M)={we(0:D;Rw=0}={wecA'; Rw=0, Iw=0}
Hence, to consider systems in Syst((‘0=I)A) means to sclve systems
Rw=0,R<D*! with "functions" wj‘e.& which are themselves solutions
of the equations Iw;=0, i.e. pw;=0 for all peL. [
(101) Example: Consider example (1.18) with D=C[s,--,s.], A=CT(R")
and pa=p(9d4,--,0,.)(a). For the principal ideal I==C[s]A,A=(si)2+---+(s,.)2,
one obtains H:=(0:I) A={acC*®(R");Aa=0}, the set of all harmonic
functions. Theorem (99) induces the duality
(102) Mod(C[s]/<A>)°P =Syst(H)
The systems in Syst(H) of the form S={weH L, Rw=0}, ReC[s]%!,
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consist of solutions w=(w1--~w1)—r of systems of partial differential equa-
tions R(9)(w)=0 whose components w; are harmonic. The modules on the
left side of (102) are C[s]-modules M satisfying AM=((sy)2+-+(s_)2)M=0.]|
(103) Example: In the case of example (1.18) and r=1, i.e. D=C[s],
A=C®(R) with sa=a consider the ideal I=C[s](s%*+w?),0>0 real. Then
P:=(0:(s%+w?)) A={aeC®(R);a+w?a=0}
consists of all complex oszillations a(t)=a_sin(wt+e),a ¢C,pcR,
with complex amplitude a_,, period T:=2n/w and phase ¢. The factorization
s?+w?=(s-iw)(s+iw) induces the algebra isomorphism
C[s]/<sz+m2> > ¢2, p—(p(+iw),p(-iw))

by the Chinese remainder theorem. This decomposition again gives the
identification

Modf ( €[s]/<{s?+w?>) = Modf(C€)%c Modf(C[s])
where a pair (Cn(+), Cn(_))= c™M ™) of complex vector spaces is
considered as a C[s]-module via p-(v,,v_)=(p(iw)v,,p(~iw)v_)
for peCls],v, €™ v_ec™). The corresponding decomposition of P is

P=C e ¥t ® Ce 19t with Ceiwt={é;a=ima}, ce ot ={a;a=-iwa}.

System theory in Syst(P) plays an important role in electrical engineering
and is thus reduced to the easy theory of pairs (V,,V_) of complex vector
spaces with no interaction between V, and V_. Replacing s2+w? by an
arbitrary complex polynomial p=sd+pd_1sd_1+---+poeC[s]
gives the similar theory of szystems in

Syst((0:p)), (0=p)={aé(‘:°°(ﬂ1);j}(d)+"-+p1.a+p0 a=0}.
The main ingredient is again the Chinese remainder isomorphism

cls1/<p>=m{cls]/< (s~ 2 V9D [ i=1,. k)
where p=1'I{(s—)\i ) 4 ;i=1,.,k} is the decomposition of p into linear factors.
For r>1 , on the contrary , the structure of finitely generated modules
over C[sy,.,s.] or €[s]/I is very difficult in general (a wild problem
in the sense of representation theory). ||

(104) Example (General multiperiodic functions) This example generalizes
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the preceding one, but this time I formulate it for the discrete case with
Nr

D=C[sl,..,sr] and A=C" . Choose r "periods” d(j)>1, j=1,..,r, and

define the ideal I:= <std(1)—1,---,srd(r)-l > ¢ C[s]. Then
P==(0:I)={aeCNr; sjd(j) a=a, j=1,..,r }.

But (sjd(j)a )(n)=a(n(1),--n(j-1),n(j)+d(j),n(j+1),--,n(r))
Hence P=(0:1) consists of all multiindexed, multiperiodic sequences
a=(a(n);neNT) vyhich are periodic with period d(j) in the j.th direction.
Let Cj:=exp(2ni/d(j)),j=1,..,r, be the primitive d(j).th root of unity,
and define the index set K:={keN";osk(j)<d(j),j=1,.,r}.
The Fourier transform for the group Z/Z(1)x---xZ/Zd(r) or the Chinese
remainder theorem furnish the algebra isomorphism

clsl/1= ¥, p—(p( g P .t ) keK).
This algebra isomorphism induces the category equivalence
(105) Mod(C[s1/1) = Mod(C)X |, V—(V ;keK)
in the following fashion: If V is a C[s]-module with IV=0, i.e.

(sjd(j)—l)v=0 for veV, j=1,-,r, then

k“),"', Crk(r))v for all peC[s]}.

V=@{ Vi ;keK},Vy:={veV; pv=p(Ty
If, on the other side, the family (V;k¢K) of C-vector spaces is given the
C[s]-module V is defined by V=@ {V,;keK}=[[{V;keK} with the
C[s]-multiplication
p(Z{viikekh =S {p (P -t Ky ;keK}.
The equivalence (105) induces the equivalence Modf(C[s]/D=Modf(Q)¥.
Also P= o{P,;kecK}. It is not diffiéu}t to prove that
Pk=Cak,akeCNr=C{t1,--',tr} where ak=(ﬁi-C1k“)tl)_l---(l—Crk(r)t,.)—1
or ay(n)=g, KN ¢ kOn) g NT peNT
These conditions yield the following consequences for systems. The
endomorphism ring E is given by
E=Endgrey/r (P,P)=End k(€S , )=k,
Every system is, up to isomorphism, of the form

S= @{Sy;keK}, S;.=(€Ca )™ 1(k)=0,

and the l(k) are a complete set of invariants of S. The system morphisms
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(=E-linear maps) between S and T= @{Tk;keK},Tk=(Cak)m(k),keK,
are given by Homg(S,T)=Hom k(®Sy,®Ty)= m{g™ (1) K},
In this fashion system theory in Syst(P) is completely reduced to linear
algebra over C. In the continuous case with A:=C% (R ) the same results
hold with the modification

P.=Cay, , ap(tyt)zexpl2ri(Tc e+ +0 .t )] keK.
(106) Example: Consider the example (1.18) in an even dimension 2r with
the following notation. Identify CT=R?" with the variables
zp=xp+iyp=(xp,yp)eC=[R2,p=1,..,r. The functions a in A:=C®(C")
are written as a=a(zl,~--',’z,.)=a(x1,y1,---,xr,yr). The polynomial algebra
C[s,t]:=C[sy,ty,~,s,,t.] in 2r indeterminates operates.on A via
(107) spa=c)a/c)xp,tpa>'=<)a/c)yp-,o=1,..,r.
Consider the ideal I:={s;+ity,~,,sp*it.>c C[s,t] . Remark that
(sp+itp)a=c)a/c)xo+iaa/ayp=&a/()ip in the customary notation. Hence

(0:1) o ={acC®(R?7);0a/32,=0,0=1,..,r}= 6(C)
is the space of holomorphic functions on C'. Further, by identification
Cls]=Cls,t1/1I, sp=sy , to=is =isg.

The operation of C[s,t] on C®(R?") given by (107) induces the operation
(108) soh=0h/dx,=0h/0dz,, he 6(CT),
of C[s] on 6(CT). This is exactly the structure from example (1.24).
Theorem (99) or Remark (100) imply that 6(C") is a large injective cogenera-
tor over C[s] if C®(R?"} is one over ©{s,t]. This observation reduces the
work in the proof of theorem (S4).'léhr'enpreis in [EH] proves the injectivity

of C®(R%*) and 6(CF) separately. ||
3. THE MAIN THEOREM IN THE DISCRETE CASE

In this paragraph I prove for the discrete case of example (1.7) that F'Nr

is a large injective cogenerator over D =F[s,-,s.]. Both for applications

and the proof I generalize the theorem to arbitrary affine algebras.
Vector space duality

The following remarks of a technical nature are the simplest case of
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the main duality theorem (2.56). Let F be a field and

(1) (= => ¢ V xV —F

a F-bilinear form. As usual, (1) induces F-linear maps

(2) {’\—>HomF(V,F),/v\r———> <-,v>, and
(3) V— Homg(V,F), v —><v,->.

I call {-,-> non-degenerate if the induced map (2) is an isomorphism, i.e.
if every linear function on V has uniquely the form <—,;>,/v\e V.
Remark that for infinite dimensional spaces this definition is not symmetric
in V and ; If {-,-> is non- degenerate the map (3) is injective, but
bijective only if V is finite-dimensional ( see also [JA], Ch.4, §4, Thi).
(4) Examples: (i) The evaluation map

{-,->: Vx Homg(V,F)—F, v, v*> = v¥(v),
is trivially non-degenerate since the corresponding map (2) is the identity.
Up to isomorphism this is the only example. |
(ii) Let I be an index set and

F'D:={x ¢ F1; x(i)=0 for almost all i ¢ I } ¢ F!.
Then the standard "scalar product”

(=,->t F'UXFI—F, {x,y>:=3{x(Dy(i); iel } ,
is non-degenerate . ||
If <—,—>V=V><{/'\——>F and {-,->w* WxW—F are non- degenerate
any F-linear map f:V——W induces the adjoint map £ W— V via
(s) | CEOVL W= Cvu £X (W) Dy, VeV, W W,
The correspondence f——f* has the usual properties. ||
I return to system theory and make the N
(6) Assumption: Let F be a field, D a commutative F-algebra and
A:=Hompg(D,F) its dual space. ||
It is a standard fact that A itself becomes a D-module via the operation
(7) (pa)(q)=<q,pa>:={qp,a>=al(pq) for p,qeD and acA

or, in other terms, ( a— pa) = (q r—-)pq)a'E .

(8) Examples: (i) The polynomial algebra D:=F[s;,~,s,.] has the basis
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sP=(s )" P (s)™ ) n¢NT. The F-isomorphism
A==HomF(F[s],F)-——->FNr= F{t{, t.}
ar—(a(s™;neN") = 3{a(s™t"; ne N"}
suggests the identification
A =HomF(F[s],F)=FNr=F{t} ,a=(al(s™);n eNT)= 3 a(s™)t" .
The F[s]-structure of A from (7) is given by
(s%a)(n) = (s¥a)(s™) =a(sX*® )=a(k+n) for k,n « N", ac A=FN
and coincides with the left shift structure from example (1.7).
(ii) Consider the quotient ring
F[s,s 1]:= F[si,-~-,sr,s1_1,--~,sr_1]={ ps ™; p ¢ F[s], meN" }
of F[s] of all Laurent polynomials. As a vector space this has the
basis s”=s;"'" .2 ne¢Z", with n(i)¢Z instead of n(i)¢N
as in (i). Again I identify
HomF(F[s],F)=FZr, a=(a(s"); n e [Nr) )
The F[s,s !]-module structure of Fzr is given by left shifts. For
r=1 Willems [WIL ] considers this case too. The distinctive feature of
this example compared to (i) is that the left shifts are given by the
operation of the group Z' and are thus bijective. ||
If M is a D-module and V a F-vector space the F -space Homg(M,V)
becomes a D-module too via the structure
(9) D x Homg(M,V) — Homg(M,V),(p,f) — pf ,
(pOim)=f(pm), feHomg{(M,V),ptD, meM.
This is a generalization of (7). In pa‘rtiwlar,ﬂ.for M=D,
one obtains the functor
(10) Homg( D,-):Mod(F) — Mod(D), V—— Homg(D ,V) ,
which is right adjoint to the "forgetful” functor
Mod(D) — Mod(F) , M — M
where a D-module is just considered as a F-vector space only. The

adjointness isomorphism is given for M¢ Mod(D) and VeMod(F) by

(11) Homg(M,V) 2 Homp(M,Homg(D,V)) , fe—o g,
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f(m)=g(m)(1),g(m)(p)=f(pm).

Since every F-vector space V is injective as a F-module the functors
Homg(-,V) and hence also, by (11), Homp(-,Homg(D,V)) are exact.
This means that Homg(D,V), in particular Homg(D,F) = A, are injective
D - modules. This easy and well-known argument (see [BOU2], §1.8,
Prop. 11) furnishes the important
(12) Corollary: If D is a F-algebra its dual space A:=Homg(D, F) is
an injective D-module. ||
(13) Remark : By a similar argument ( [BOU2],81.8,Prop.13) it can be easily
shown that A in (12) is a cogenerator . It is much more work to show
below that A is a Jarge injective cogenerator and consequently satisfies the

hy potheses of (2.56) . ||

(14) Assumption: In the remainder of this paragraph I assume that D is an
affine F-algebra , i.e. a commutative algebra which is finitely generated
(=of finite type) over the field F . As above the dual space is denoted by
A:=Hom(D,F) . ||

(15) Theorem : Under assumption (14) A=Hom(D,F) is a large injective
cogenerator . ||

The proof of this theorem proceeds by a series of reduction steps . Consider
for a an arbitrary affine algebra D the following

(16) Property : D can be D -linearly embedded into some Ak=HomF(D,F)k ,
i.e. there is a D-monomcrphism L SAR . KN Obviously this is a special
case of the large cogenerator properﬁf (see (2.52)) . Il

(17) Lemma ( Reduction to property (16) ) : For the proof of theorem (15) it
is sufficient to show that each affine integral domain has property (16) .
Proof : Assume that each affine integral domain has property (16) . Let now
D be an arbitrary affine algebra with A:= Hom (D,F) and pcD a prime ideal.
By (2.52) it is sufficient to show that D/p can be D-linearly embedded into

some A, k¢N . But the D-linear surjection can:D— D/p gives rise to the
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D-linear injection
(18) Hom (can,F): Homg(D/p,F )—> Hom(D,F)=A
By assumption there is a D/p -, hence D-linear injection
(19) D/p— Hom ¢ (D/p, F)¥ ,keN .
Composing (18) and (19) yields a D-linear embedding of D/p into Al
(20) Lemma ( Reduction to polynomial algebras ) For the proof of theorem (1S5)
it is sufficient to prove property (16) for all polynomial algebras .
Proof: I assume that all polynomial algebras have property (16) and prove
the same for all affine integral domains . By (17) this is sufficient . By the
Noetherian normalization lemma ( see [BOU1], Ch.5,§3.1) D contains a poly-
nomial algebra F[s] , FcD':= F[sl,---,sr]c D , such that D'cD is an integral
extension . The D'-linear injection inj:D'— D induces the D'-linear surjection
(21) Hom (inj,F): A=Hom(D,F)— A'2=HomF( D',F), a—al|D’
where A is considered as D'-module by restriction of scalars from D to D°.
Using property (16) for the polynomial algebra D'=F[s] yields a D'~-linear
(22) injection D'—> A’k p—(pa/; i=t,-,k)
with elements a;',-,a,’ in A' . Since (21) is surjective the functions a,’ can
be extended to linear functions a,:D—F,i=1,--,k, with a,|D"=a, . These
a, give rise to the D-linear map
(23) D—> A", p— (pa; i=1,~,k)
Its kernel I is an ideal of D . Since (p'ai)ID' =p'a;, i=1,--,k, and since
(22) is injective there results I(1D’'=%er(D'— AK) =0 Since D'cD is an
integral extension of integral domains the relation IND'=0 implies I=0 (com-
pare [BOU1],Ch.5,8 2.1, corollary of lemm;Z ). Thus (23) is the desired
D-linear embedding . ||
Finally I prove property (16) for polynomial algebras . Consider first a poly-

nomial algebra F[s] , r=1, s=s,, in one indeterminate s . It is well known in

1 ’
this case that there is even a D-linear injection F[s]— A=FN, p— pa, l—a,
or , in other words , a D-linear independent element ae FN . To recall the

construction of such an element a remark that the equation pa=0 for
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(24) p=s? + p(d-1)s97! +4 p(0) ¢ F[s], deg(p)=d, means
(25) a(n)+p(d-1)a(n-1)+--- +p(0)a(n-d)=0 for nz2d .
Choose an increasing sequence
(26) w(1) < u(2) < @(3) < - in N such that
(27) limj_>w(u(j+1)-u<j)) = ®
Define S:={u(1),u(2),-} and ac FN as the characteristic function of S , i.e.
(28) a:=38g,al(n)=1if n=p(e S, aln)=0if neS .
If peF[s] is given as in (24) and if p(k)-u(k-1)>d for kzk, then for any
k2kg and n:=y(k)
a(n)=a(p(k))=1, but a(n-1)=--=a(n-d) =0 , hence

(pa)(n)=a(n)+p(d-1)a(n-1)+-+p(0)a(n-d)=a(n)=1%0.
and pa* 0. Thus a=3g from (28) is D-linearly independent.
In order to strengthen the preceding result consider, for an integral domain
D, the following
(29) Property : The D-module A:=Homg(D ,F) admits a countable family
of D-linearly independent elements. ||
(30) Lemma: The polynomial ring D=F[s] in one indeterminate satisfies
property (29).
Proof: (i) Generalizing the construction of (28) I construct countably

many characteristic functions

1 if neS(k)
(31) a, = Sg(k) » fnl= { 0 if neS(k)
where the S(k)={ a(k,1)< a (k,2)< a(k,3)-}, k = 1,2,

are countable subsets of N which ére s‘élected by induction on k below.
(ii) Consider first an arbitrary sequence p(1),u(2)-- in N with (26)
and (27). Using (27) select an increasing sequence
i(1) <i(2) < <i(k) <i(k+1) < -
such that
i(k+1)-i(k)2 2 and p(j+1)-p(j) 2 2k for jzi(k).
Define

(32) v (k):=p(i(k)) + k, k =1,2,-.
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Arranging the infinite sequences ¢ and v in one strictly increasing sequence
one obtains
(33) o< pli(k)) < v(k)< pli(k)+1) < - < p(i(k+1)) < v(k+1) < -
Since

v (k)-p(i(k)) = k s p(i(k)+1)-v(k), k ¢« N,
the sequence (33) satisfies condition (27) too. In particular the sequence v
satisfies (27) and
(34) lv (k)-p(j)| 2 k for all k,j.
The construction of v from p can now also be applied to the composite
sequence (33).
(iii) The construction of (ii) is now applied to the construction of a double
sequence a(k,l), k,1=1,2 --- . Start with an arbitrary sequence
a(l,1) < «(1,2) < a(1,3) < - such that (27) is satisfied, i.e.

limj , o (a(1,j+1) -a(l,j)) = o .

Pose B(1,-):= a(l,-) and construct a sequence «(2,1) < «(2,2)-- from
B(1,-)=a(l,-) as v from g in (ii). Also call B(2,-) the respective
composite sequence (33). Then both «(2,-) and B(2,-) satisfy (27)
and moreover | «(2,k) - a(1,j)| 2 k for all j,k. Construct «(3,-) from
B(2,-) as v from ¢ and so on. Inductively one obtains a double sequence
a(k,1), k,1 21, of pairwise different elements with the following properties :
(35) a (k,1) < a(k,2) < --and lim, o (a (k,1+1) - a(k,])) = @, k=1,2 -,
(36) fatk,l) - ati,ji! > 1 for k > i, all j.
Finally define the pairwise disjoint ée‘ts S

S(k) = { a(k,1), « (k,2),}, k =1,2, .
(iv) Now define ap:=8g(x), k=1,2,.., as in (31). I am going to show
that these aj,a,, - are F[s] - linearly independent. Assume this is not
the case and
(37) Pmam®* - *+ pjag; =0, p;e F[s], p,#0,

S{pi(i)sh; j < d(i)}e E[sT,
Pm(d(m))+0 . The relation (37) means that for all n

is a non-trivial linear relation. Let p;
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(38) 2i,jpi(jdaj(n+j) =1+ II = O where
[:=pn(dim))a(n+d(m)) + Z{pm(jlay,(n+j); j < d(m)-1}
I1:= 3{p;(jda;(n+j); ism-1, j < d(i)} .
Let then lg be such that a(m,l) - a(m,l-1)> d(m) for 12 15 and define,
for a suitable such | (see below ),
n:= a(m,l) - d(m), hence n+d(m) = « (m,1)e S(m).
By definition of a,, this gives a_(n+d(m))=1. On the other side
«(m,l-1)< n+j< a(m,1) for j=0,--,d(m)-1,
thus n+je¢ S(m) and a,(n+j)=0. The preceding calculations yield
[=p,(d(m))* 0 in (38). Consider now the arguments
n+j = a(m,l)-d(m)+j,j<d(i),i<m-1,
appearing in II of (38). These satisfy
(39) la(m,)-(n+j)| = [d(m)-jls M:=Max (d(i); i=1,--,m).
Now I choose | above such that 1215 and 1> M+1 and use
(40) la(m,1) - a(i,j')| 21>M for i<m, all j',
from (36). The inequalities (39) and (40) imply that
n+j¥a(i,j") for i=1,~--,m-1, j < d(i), all j°, hence
n+je S(i) and a;(n+j) =0 for i=1,--,m-1, j< d(i).
This yields II=0 in (38) and finally the contradiction
O0=1+1II=p,(d(m))*0.
Hence a linear relation (37) cannot hold. ||
The last step in the proof of theorem (15) consists in showing property
(29) for the polynomial algebra F[(s‘i,-:isrl\_ in more than one indeterminate.
(41) Technical remark: If
==+ V) x V(i) — F i<,
is a family of non-degenerate bilinear forms like (1) then also the bilinear
form {(=,=> @ V) x HieI-G(i) —>F

v (i);ieD), (VD 5ieD)Di= T<v(i), v D,

is non-degenerate. Consider, in particular, an affine integral domain D

and its dual space A:= Homg(D,F) with the evaluation form
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Dx A—> F, (p,a) — <{p,a) := a(p).
The construction above yields the non-degenerate form
(= =>: D N, AN __,

{p,ay:=<(p(n); ne N), (a(n); ne N)) = 2<p(n),a(n)> .
Identify
D™ =D [s] p=S{p(n)s®; n<N}and AN = Homg(D(s], F) where

a=(a(n);ne¢N)=<-,a>=(Zpn)s® —Z<pin),aln)>).
The D[s]- structure on AYN defined according to (7) is then given by the

componentwise D - multiplication on AY and (s™a)(n)=a(m+n),m,neN. ||

(42) Lemma: Assume that the affine integral domain D satisfies property
(29) , i.e. that the D-module A:=Homg(D,F) admits a countable family of
D-linearly independent elements. Then the polynomial algebra D[s] in one
indeterminate s satisfies (29) too.
Proof : I use the notations of the preceding remark, in particular the
identification AY = Homg(D[s],F). By assumption there is a countable
family of D-linearly independent elements in A. Using the bijection N = N?
choose a double indexed family ap(l)¢A,k,1=0,1,-, of D-linearly
independent elements in A and define

ar:= (ax(0),a (1), )e AN, k=01, .
I am going to show that these a, are D[s]-linearly independent. Assume
that Spya, =0 where p,=3{p,(1)s'; 1=0,1,"}¢ D[s] and almost
all pi(1l) are zero in D. Then

o=(zpkak)(vow?-zk,l‘pk(nak(l)

implies that all p = O since the aj (1), k, leifN, are D-linearly independent. ||
(43) Proof of theorem (15): Using (30) and (42) furnishes property (29),
in particular (16), for every polynomial algebra F[s;,-,s.]. The lemma 20
then implies the theorem. ||
(44) Remark: The proofs of (20), (30) and (42) show that an affine
integral domain admits even a D-linear embedding

D— A=Homg(D,F),p— pa.
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If D= F[si,-",sr] is a polynomial algebra and A=FNr then a can be

chosen as a characteristic function, i.e. as a sequence of O's and 1's only.

If pcF(sy,~,s.] is a prime ideal there is a F[s]- linear embedding

F[s]/p-—)FNr ,p—pa,
i.e. a multiindexed sequence ac¢ FrNr such that
p=1{pe¢F[s];pac=p(L)a)=0}

is the exact annihilator of a. ||

In [WIL] Willems characterizes discrete systems as closed subspaces of RN

or RZ for the cases
r=1,D=R[s],A=RNandr=1,D=R[s,s"'],A=R% .

This characterization can be generalized to arbitrary affine F-algebras

considered above. For this purpose I need some technical preparations

concerning linearly compact vector spaces.
Linearly compact vector spaces

The notion is due to S. Lefschetz. The basic material is, for instance,
exposed in [KOJ, Kap. II, §10.9. The categorical formulations below are a
standard technique of the theory of formal groups and schemes ala
francaise (see, for instance, [GA]) and are easily derived from [KO], but I
cannot give a reference where all the easy results and their proofs are
written down in detail. Consider the field F as a topological one with the
discrete topology and a topclogical vector spaces X over F. Such a space is

called linearly compact (l.c.) if it satisfies one of the following equivalent

~

conditions:

(45) X is (Hausdorff and) complete and admits a basis of neighborhoods
of zero (short: O-basis) of finite codimensional subspaces.

(46) X is topologically isomorphic to a space F'. Here I is some index set
and F! carries the product topology with the O-basis of all Flc F! where J
runs over the cofinite (i.e. with a finite complement) subsets of I.

(47) X is topologically isomorphic to a dual space v*= Homg(V,F) of a

(discrete) space V. The topology of V*, the so-called finite topology, has
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the O-basis of all subspaces

Hompg(V/U,F)={v* ¢ V ; v¥*(W)=0}={v* e V ;v*(uy)=-=v*(uy) =0}
where U=Fu,+-+Fu, runs over the finite dimensional subspaces of V.
If, in (47), (v;;ieI) is a F-basis of V then

V¥ = Homg(V,F)—F!, v¥*—(v*(v);i e 1),
is a topological isomorphism. The l.c. F-spaces with the continuous
F-linear maps as morphisms form the category Mod (F). Denote by
Hompg(X,Y), X,Y ¢ Mod(F), the F-space of continuous F-linear maps. The
category Mod(F) is abelian. The kernel, image etc. are the algebraic ones
with the induced topologies, the cokernel is the algebraic one with the
coinduced topology. The image of a map f: X —> Y in Mod (F) is a closed
subspace of Y. Every continuous F-linear bijection is bicontinuous, i.e. a
topological isomorphism. For a discrete space V the non-degenerate bilinear
map
(48) (-=> Vx V5 — F, v, v* = v*(v),
from (4), (i), is continuous in the second variable and induces the
Gelfand isomorphism
(49) V2 Homg(V5F), vi—<v,->.
This is most easily seen for v=FY where (48) specializes to (4),(ii).
Thus the introduction of the topology on V* reduces HomF(V*, F) to
Hng(V*,F) in such a way that the injection (3) becomes the bijection
(49). These ccnsiderations imply easily that the functor
(50) (-)*= Homg(-, F)* Mod(F)°P = MG&d(F)
V~——V*=Homg(V,F), f —¢* = Hom(f,F)

is a duality, in particular that for V,We¢Mod(F) the map
(51) Hompg(V,W) = Homg(W*, V¥, f—>f*,
is an isomorphism. The duality (50) is the oldest and simplest of those

which I derived in [OB1 ] and used in (2.56). ||

I return to system theory and assumption (14). If M is a D-module and

hence a F-space in particular, the dual space M*= Homg (M,F) is l.c.



- 60 -

and a D-module according to (9). The scalar multiplication satisfies

(dm™)(m) = {m,dm*> = <dm,m*> = m*(dm)

hence (m* —> dm™) = (m — dm)*.

As an adjoint map the multiplication m*——dm™ is continuous. Let then
Mod(D) denote the category of all l.c. D-modules X, i.e. of l.c. F-vector
spaces with a D-module structure such that the homotheties x——>dx,de¢D,
are continuous. The morphisms of Mod(D) are the continuous D-linear
maps. The duality (S0) induces the duality
(52) (-)* = Homg(-,F) : Mod(D )°P = MGd(D)

M—M" = Homg(M,F), f —f" = Hom(f,F).
For Me¢Modf (D) identify
(53) M* = Homg(M,F) = Homp(M,Homg(D ,F)) =Homp(M,A) = S(M)

m*(m)(d) = m*(dm) = <dm,m*> = <m,dm™>

via (11) and conclude that the system functor S=Homp(-, A) from
(2.56) and the duality (-)* coincide on Modf (D). In particular

(D*)* =s(D*) =AF  keN,
can be considered as a E=Endp(A)- module or as a l.c. D- module. For
finitely generated D- modules M{,M, ¢ Modf(D) and the systems
S;:=M,; " =S(M;), i=1,2, the dualities (2.56) and (52) furnish the
isomorphisms

(54) Homp(M;,M,)= Homg(S(M,), S(M,)) , f —> S(f)
*

(35) Homp(M{,M,) = Homp(M,* M, *}, ¢ —f* - Hom(f F) .

In analogy to (53) I identify .

(56) f* = Hom(f,F) = Hom(f, A) = S(f): Mp*= S(M,) — M, "= S(M,).

With this identification the maps (54) and (55) coincide and give
Hompg(S(M,),S(M;)) = Homp(M,*, M,*) .

(57) Theorem (Topological characterization of discrete systems) Assumptions

and notations as above, in particular D is an affine F-algebra and

A=Homg(D,F) with its linearly compact topology.

(i) For a F-subspace S of Al, leIN, the following properties are equivalent:
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a) S is a system, i.e. by definition of the form
S={we¢A'; Rw=0} ,Rc¢ DL
b) S is a finitely generated E = Endp (A) -submodule of Al
c) S is a closed D-submodule of Al.
(ii) For systems S, = Mia'E = S(M;), i=1,2, M; « Modf(D ),
the isomorphism
Homp(M;,M,)= Homg(S,,S;) =Homp(M,"* , M) c Homg(S,,S;)
g+—S(g) = Hom(g,A) = Hom(g,F) = g"E
holds. This means that a F-linear map G:S,— S is E-linear and thus a
system morphism if and only if G is of the form G = S(g) = g*,
g ¢« Homp(M{,M5), or if and only if G is D-linear and continuous.
Proof: Part (ii) follows directly from (54), (55) and (56). The equivalence
of (a) and (b) in (i) is a consequence of theorem (2.56). If
S={we A!; Rw=0} = Homp(D!/RTD ¥, A) =
= (D!/RT D* )* c (DH* = A!
is a subsystem it is closed in A! as the image of
can®: (D'/RTD*)* — (D)
If, on the other hand, Sc Al=(Dl)*e is a closed D-submodule of A! it
is a subobject of A' in Mod(D). The duality (S2) implies that then S
comes from a factor module M=D!/RTDX of D! in the form
S=M*=S(M)=S(D'/RT D¥) = {w « A'; Rw=0}
and is thus a subsystem of A!. ||
(58) Remark: The preceding theorefn.\significantly sharpens and general-
izes the proposition4 of [ WIL]. The topolo;ical characterizations of systems
and their maps is much easier to obtain than theorem (2.56) since only
the duality (52), derived from the standard vector space duality, is needed

whereas the difficult theorem (15) is not used. For the continuous case,

however, there is no analogue to theorem (57).]|

(59) Historical remark: A completely different proof of theorem (15) for a

field F of characteristic zero was given by G. Hauger [HA], Satz on page 196.
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The main work of the proof of (15), namely the construction of a
F[s]-linear embedding
Fls]1—F[s1*=FN =F{t,,—t.},
is easier in characteristic zero. Hauger also hints at the connection of the
large injective cogenerator property of FNr = F{t} with the work of
Macaulay in [ MAC1] . Indeed, identify as above
Homg(F[s], F) = F™N = F{t,,~ ,t,}
and consider the non -degenerate bilinear form
(60)  <-,->: F[s] x F{t} —F, (Zp,s”, Ta,t"> = T p,a, .
Of course, Macaulay considers the case F=C only. The inverse system of a
modular system , i.e., by definition , an ideal M of F[s] is nothing else than
M*' = (F[s1/M)* = Homg(F[s]/M,F) ¢ F[s1* = F{t}
where | denotes the orthogonal complement with respect to {-,-> from
(60) (See the definition on p. 68 of [loc. cit.]). Thus the inverse system
M*® of Macaulay coincides with the discrete system (F[s]/M)* of this
paper (compare (57)). By the proposition on page 91 of [ loc. cit.] every
ideal McC[s] has the form M = (Z{F[s]l':'i;i=1,---,k]"L with finitely many
Ey,~,Ere¢C{t}. But this means exactly that the C[s]-linear map
Clsl/M — c{t}*, p—> (pEy,—, pE)T
is injective. This is the main part of the proof of (15) for F=C . Macaulay
proves this result for zero-dimensional ideals M, i.e. for which C[s]/M
is finite dimensicnal over C, and proceeds then by reduction tc the zero -
dimensional case. As far as I underst’aﬁd it this reduction procedure is not
valid, at least not for M=0. In [loc. cit. ], p. 71, it is also asserted that
in the above situation
(61) M = S{F[ s]E;;i=1,-k}.
This is false. By theorem (57) it is true that
M*' = closure (Z{F[s]E;;i=1,",k}).
On the other side it is easily seen that a discrete system S in the sense of

this paper, i.e. a closed F[s]-submodule of some F{t}™, is finitely gene-
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rated as an F[s]-module if and only if S is a finite dimensional F -vector
space. Thus the relation (61) holds if and only if M is a zero -dimensional
ideal.

In remark (44) I indicated that every affine integral domain D=F[s]/M,
M a prime ideal of F[s], admits a D-, hence F[s]-linear injection

D=F[s]l/M— D *=(F[s]/M)*=M*c F[s]1*=F{t}, p— pE, E ¢ F{t},

which implies that M = (0 : E) ={pe¢F[s]; pE =0} .

In the language of [loc. cit.], definition on page 70, such an ideal is
called a principal system. In [loc. cit.], p. 72, it is proved that a zero -
dimensional ideal M which is a complete intersection, i.e. which can be
generated by r=dimC[sy,-,s,.] generators, is a principal system. But
this means that the finite dimensional algebra D:= C[(s]/M admits a
D -linear injection and thus bijection D = D*. In the terminology of ring

theory such a D is called a Frobenius algebra. In commutative algebra such

a D is called an (Artinian) Gorenstein ring. ||

4. THE MAIN THEOREM IN THE CONTINUOUS CASE

In this paragraph I show that the C[s]-submodules of the space of distribu-
tions appearing in connection with partial differential equations are large
injective cogenerators .

Topological algebras of convergent power series and analytic functionals
The material in this section is essentially huown , but I do not know a suit-
able reference for all details and my specific exposition . My rﬁain sources
were the books [GR1], [GR2] and [GR\3] by Grauert and Remmert and
[HO2],[LE] . Define R,:={ac¢R;a>0} . For a vector T=(T(1),-,T(r))e(R,)"
and a formal power series

a=Fa t"=3( a t, ™ -t " neNT} cc{t}=C{t,, -t}
define , according to [GR1] , p.15,
(1) lalpi= Sla | T® = Sla IT™® .7 < o and
(2) Br:=B{t}={aeC{t} ; lalp< @} .

Then B is a subalgebra of C{t} and indeed a Banach algebra with the norm
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-1 ( see [GR1],p.16, Satz 1 ) . The union
(3) C<t>:= U{By; Te(R)" }
is the C-algebra of convergent power series ( [loc.cit.],p.27 ) . On C<t>
consider the final topology coinduced by the injections B..c C<t> , Te (R))".
This topology is called Folgentopologie , the topology of analytic convergence
or Silva topology in [loc.cit.] , p.31, 32 and Kap.I,86,7. With this topology
C<t> is a topological algebra ( [loc.cit.], Satz 7 on p.66 ) . By
(4) C<t>' = Homg(C<t>, C)
I denote the dual space of continuous , C- linear functions on C<t> .By defi-
nition of the topology of C<t> a C-linear map v: C<t>— C is continuous if
and only if its restrictions vIBT, Te(R,)", are continuous . For Te (R)F let
(5)  Z(T):={teC |t |<T(i),i=1,~r} , Z(T):={teC [t |<sT(i),i=1,r}
be the open resp. closed polydisk. Denote by 6(Z(T)) resp. c®(z(1)
the C-algebra of holomorphic resp. continuous complex-valued functions on
Z(T) resp. Z(T) . The algebra Cc®(Z(T)) is a Banach algebra with the norm
(6) HEllp += Max{[f(t);[t;| <T(i) , i=1,~,r}
for feCo(i(T)) . For aeB, c C<t> the series a(i:)=Zant:n converges uniform-
ly on Z(T) and is thus a holomorphic function of t on Z(T) and continuous
on Z(T) . There results the inclusion

Brc 6(Z(T) N C°(Z(T)) .

Obviously la(t)| s Zla [t"]<Zla IT™ =]al and hence
(7) lallt < lal+ foraeBr.
On the other han>d Cauchy s inequality (see any book on complex variabies,
for instance [HO2], Th. 2.27) furnishe;
(8) lapgI T s lally forall n e N7 .
(9) Corollary: C<{t>={a=(a,; neN")e C{t} ; There are C >0 and
Se¢(R,)" such that |a,|<CS™ for all ne N }.
In words: C<t)> contains exactly the sequences of at most exponential growth.
Proof: If |a, |<CS"™ foralln, Se¢(R,)", then a=Xa_,t™ has the
geometric series C(XS"™t™) as a majorant with convergence for

lt;l <1/S8(i), i=1,-,r. If, on the other hand, a¢eBrc C {t)> then, by (8),
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lagl< lall¢+ S™, S(i) :=1/T) , i=1,--,r.|l

It is now obvious that the spaces 1P, O< p<® | and the space of
asymptotically stable sequences are contained in €C<{t)> . This was already
stated in (1.13).
The algebra C°(C") of all continuous functions on C* is a Frechet
algebra with respect to the topology of compact convergence, i.e. uniform
convergence on compact subsets of C' (compare [GR3], Kap. V, § 6, or
[LE], Ch. L., § 3), its topology being given by the semi-norms || - llg
where S runs over a countable, increasing family of a vectors in (R,)" .
The subalgebra 6(CT) of c%(C") of all entire functions, i.e. of all
holomorphic functions on C*, is a closed subalgebra of c(cT) and also
Frechet. Since every entire function has a everywhere convergent Taylor series
one obtains the natural inclusion
(10) 6(C") = N{Bg(s); S ¢ (R,)"} c €{s)
where the canonical coordinates on C' are denoted by S{,, s, instead of
ty,-t,. as above. For f=23f _s™¢6(C") the inequalities (7) and (8) imply
(11) [folS™ < [[fllg < |flg for all S ¢ (R,)F .
The dual space
(12) 6 (C7)':= Homg(6 (CT), C)
of 6(CT) of all continuous, C-linear functions on &(CY) is called the space
of analyic functionals on C" (compare [LE], p. 37 ff , or [HO2], p.100 ff).
I am now going tc define a bilinear form on &(C" ) x C<t» which is
analogous to <-,-> on C[s]xC{t}= C(Nrj «cN" from (3.4), (ii). Let
f=2f,s" e 6(CT) and a=3a t" e Bp{t>c C{t> be power series. By
(1) [f I<lfllj,+ T™ for all n¢ N", hence

Zlfal lagl s Z Nl T lagl = Iflly, ¢ lalt < o .

In particular
(13) {f,a>:= Z{f,a,; ne N"}
converges absolutely and
(14) [<f,a>| s lIfly,rlaly foraeBy, fe 6 (CF).

This means that
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(15) (=,->: 6(C") x CLt) —C
is a C -bilinear form which, by (14), is partially continuous in both
variables f ¢ 6(C") and ae¢C<t> where the topologies on 6(C") resp.
C<t> are those of compact resp. analytic convergence. In particular, {-,->
induces C -linear maps
(16) c<{t) — 6(CT) ,ar—<~,ay and
(17) 6(CT) — <ty , f—f, - .
By definition
(18) (s",aY>=a, , {ft">=f,,nelN",
which implies that the maps (16) and (17) are injective. In particular,
(19) s™,t"> =8, 0
so that the s™ resp. t™ are dual bases with respect to <{-,-).
(20) Theorem: Situation as above. The bilinear form

{=,=->: 6(CT)x €C{tD) —>C
from (15) is non-degenerate in the strong sense that the induced maps
(16) and (17) are C-isomorphisms.
Proof : It remains to show that the maps (16) and (17) are surjective.
(i) Let first g ¢ 6(CT)" be an analytic functional. Any f=2f_ s%c¢ 6(CT) is
the compact limit of its finite partial sums

f=2f,s" =limy 2{ f,s";nel}, I cN" finite .

Since p is C-linear and continuous this implies

imp2{f u(s™;nel}=3f_ uls™.

-

{21) il =
Further, since p is continuous, there is a (semi-) norm | ls on 6(C") and
a neighborhood
U={fe6(C");lfllgse}of Oin6(C"), >0,

such that |u(U)|s1, hence

lu(f)] < 1if Ifllg s e or [u(f)] s (1/€)lfllg for all f ¢ & (cH.
In particular |p(s™)| < (1/¢) 8™ for all n ¢« N' . This again implies that
(22) 2 u(s™t™ e By {t> c C<{t>
for all Te¢(R,)" with T(i)<1/S(i), i=1,--,r.The results (21) and (22) yield

p=<-,a> with a:=2Zu(s™)t™ ¢ C{t> .
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and therefore the surjectivity of (16).
(ii) For a continuous, C-linear ve C<t> = Homg(C<{t>,C) I show in
the same fashion that Jv(t™)s™ ¢ §(C7) and v={Zv(t™)s™, - > . Indeed ,
the restrictions of v to all Bp{t) are C-linear and continuous. The same
proof as that of (21) gives
(23) v(iZa,t™) = Za, v(t") for a:= Ja t™ ¢« B {t).
In particular, for Se¢(R,)", the geometric series > S™t™ is convergent. The
relation (23) yields v(XS™t™) = 3 S"v(t™) , S ¢ ( R,)" . But this means
that the series f:= 2{v(t™)s™; neN"} converges everywhere and repre-
sents an entire function fe¢ 6(C") with v(a) =<{f,a> by (23) . This says
that (17) is surjective too. ||
The following theorem shows that the examples (1.13) and (1.25) are
essentially the same. Trivially the map
(24) C{t} — C{t}, Za,t"—3d:= Z(a,/n!)t "
is a C-linear isomorphism. This map is even C[sy,,s.]- linear if C[s]
operates on the left side by left shifts and on the right by partial differen-
tiation. I am going to show that the image of C<{t> under (24) is the
space of entire functions of exponential type. I derived the fact, the idea of
the proof and the relevant notions from [HO2], Ch.IV, § 5, p. 100 ff.
The details are different, however. Take
a=2apt® e BpcC<{t>, T e (R,)" . Then |a,|T" <|lall+ by (8), hence
Zlag/ntlt® sllalo (/e [tIPT™ ™) = lalirexp(lt |/ Ty++lt 1/T.)
with [t]:=(|ty]|,~,|t.]). This implies that a(t)=3(a,/n!)t™ is entire
and satisfies i
(25) la(t) < llallpexp (ltlh
where [[tll:=]t |/Ty+--+[t.|/T, is a norm on C" . An entire function
fe 65(CT) is called of exponential type if |f(t)] < C exp ([t]), t e C7,
for some constant C >0 and some norm ||-|| on C*. Call
(26) 6 (CT; exp) ¢ 6(CF)

the algebra of alle entire functions of exponential type.

(27) Theorem: The isomorphism



- 68 -
c{t} —c{t}, a=Xa,t" — 2 =X (a,/n!)t"
induces the C -isomorphism
(28) c{t> = 6(C"; exp), ar—a.
The map is even C[s]- linear if the C[s]- structures on C<{t> resp.
6(CT; exp) are given by left shifts resp. differentiation as in examples
(1.13) resp. (1.25).
Proof : By (25) the image of C<t> under the bijection (24) lies in
6(C"; exp). Let, on the other side, f=2f_ t"¢ 6(C") be holomorphic and
of exponential type with [f(t)| < C exp(llt]), C>0, for some norm | -|
on C". I am going to show that f comes from C<{t)> by an argument from
[15], bottom of page 101. Since all norms on C' are equivalent there are
constants S(i)> 0, i=1,-,r, such that
It < S(Ityl+—+ S(r)t_| forall t e C™, hence
(29) [f(t)] < C exp(S(D]tyl) - exp(S(r)|t.|).
The inequalities (8) and (29) imply for every Te¢(R,)" and ne<N" the
inequality
[E,IT? < | fll+ s Cexp(S()T(1)) -+ exp(S(r)T(r)).
in particular, choosing T(i) := n(i) /S(i) , i=1,.., r , we obtain
£ 1< CIl{exp(n(i) SO/ n(i)™ ;i=1,..,r} and finally
Ifalnt < CI{n(texp(n(iNSMH™> /nm™ P i=1, 1}
By Stirling's formula the limit of k!exp(k)/kkﬂ/2 , kelN, exists and the
sequence is bounded in particular. This yields
|faln! < C; (n(1)-—n(r))? S™ for all neNT
and some constant C; > 0. This again shows 2f n!t"¢ C{t> as in (9).

Under (28) this function is mapped onto f. Hence (28) is surjective. ||

(30) Corollary : The composition of the isomorphisms (28) and (16) yields
the isomorphism
(31) 6(CT)' = C{t> = 6(CT; exp)
prF—2u(s™Mt? —U(t): = X(u(s™)/n)t"
g(t) = S(u(s™/nt)t™ = u( Ts™t™/n1) = u_(exp(s -t))

with s't =s;ty+--+ s .t.. This shows that a is exactly the Fourier -
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Laplace transform of y, and that the isomorphism (31) coincides with the
one in [HO2], Th. 4.5.3 on p. 101, so that the theorems (20) and (27)
are just a reformulation of [loc. cit.], Th. 4.5.3. I regard the detailed
exposition above justified because the formulations are better adapted to
system theory and the proofs are elementary which is not so obvious when
reading [HO2] or [LE ].

Injectivity

The basic results in this context were obtained by Ehrenpreis as the so-
called "fundamental principle” for systems of constant linear partial
differential equations. Other principal contributors were Malgrange [ MAL]
and Palamodov. Both Ehrenpreis and Palamodov wrote books on the subject
(LEH], [PAL ]) which, however, are not easy to read. Refer to
[PAL ], p. 427 ff, for a historical account.
(32) Theorem: The C[s,,~-s.]- modules C®(R") and $'(R") from
(1.18) and (1.22) are injective C[s]- modules. More generally the same is
true for the spaces C%(Q), $'(Q) and z'F(Q) where Q ¢ RY is an open
convex subset.
Proof : These are, for arbitrary (), exactly the theorems th.1 on page 300,
th. 2 on page 304 and th. 3 on page 305 in [PAL]. For Q = R" these
results are contained in [EH] as th. 5.11 on page 145 for PF(RT),

th. 5.14 on page 150 for $'(R") and th. 5.20 on page 156 for

C(R™). |l
(33) Corollary : The space o .
6(CT) « C®(R?T), €T = R?",
of all entire functions is an injective C[sq,--,s,.]- module.

Proof : This follows from the preceding theorem via (2.99) or coincides with
th. 5.4 on page 126 of [EH]. ||

(34) Theorem: The space 6(C ;exp)c 6(C") of all entire holomorphic
functions of exponential type (see (26)) is C[s]-injective. Hence, by (28),
also the C[s]- module C<t) is injective.

Proof: This is example 2 on page 138 of [EH]. ||
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(35) Corollary : The C[s]- modules A from the examples (1.13), (1.18),
(1.22), (1.24) are injective or, in other words, satisfy the fundamental
principle ( compare (2.31)). ||
(36) Corollary : The injective C[s]- modules A from the preceding corollary
are related by the C[s]- monomorphisms
(37) C{t} = 6(C%;exp) ¢ 6(CT) — CP(R") « P(R)

Zantnr——%Z(an/n!)t", f— f|R".

In particular, if C<t> is a large injective cogenerator then so are all other
C[s]- modules appearing in (35). ||
The remainder of this paragraph is devoted to the proof that the injective
C[s]- module
(38) C<{t> = 6(CT; exp) = 6(C")"
(Compare (31)) is a large injective cogenerator. The proof copies that of
theorem (3.15) by replacing formal power series by convergent ones, and

requires several results on complex spaces wich I recall or cite first.

Reduced complex spaces and Stein spaces

For the known, but non-trivial technical remarks which follow I refer to the
books [GR1], [GR2], [GR3], [HO2] and [LE].
(39) Assumption: In this paragraph X denotes a reduced complex space with
its sheaf &6y of holomorphic functions on X. The C -algebra of global
sections of &y , i.e. of holomorphic functions on X, is denoted by & (X).
Since X is reduced 6y is a subsheaf of the sheaf Cy of continuous
functions on X ( Compare [GR2], Kap. 1, § 1.6). ||
(40) Standard example : This is the compI;x manifold C* with the usual
holomorphic (=analytic) functions on open subsets of CT. In this particular
case I omit the index by writing

6:= 6 ¢grand 6 (U) := 6 ¢r(U), Uc C" open. ||
(41) Example (see [GR2], p. 88): Let X be a reduced complex space, for
instance C", and let Y ¢ X be an analytic subset. Let J:=i(Y) c 6 be

the ideal sheaf of holomorphic functions vanishing on Y. By [loc.cit.], p.77,
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JOW) ={f e 65(W); f(YNU)=0}.

Then Y itself is a reduced complex subspace of X with the function sheaf

vy i=(6x/])IY cCy.

A continuous function g ¢ C®(Y)=Cy(Y) on Y is holomorphic and

contained in 6+ (Y) if and only if for every y¢Y there is an open neighbor-

hood U of y in X and fe¢ 6% (U) such that fIYNU=glYU. I need this

construction for X = C" only. ||

(42) Definition and Remark ( Stein space, see [GR3], p. 128 and Ch. V):

For a complex space (X, & x ) the property of being a Stein space is

defined. The manifold €' and its closed subspaces are Stein according to

[loc.cit.], p.130, Bemerkung, and p.129, Satz 1. If (Y, 6y):=(6x/]IY)

is a closed reduced subspace of the reduced Stein space (X, §y) the

canonical map

(43) 6 x(X) — 6 v(Y) = (6x/INX), f—flY,

is surjective or, in other words, every holomorphic function on Y can be

extended to a holomorphic function on X (see [GR3], Satz 4 on p. 156).

Again I need this only for X =C" . ||

The topology on 6x(X) ( see [GR3],Kap.V,86,p.166 ff )
Let (X, 6x) be a reduced complex space and S a coherent & x - module or
analytic sheaf . The 6 (X) - module S(X) of global sections becomes a
Frechet space with respect to the canonical topology ([loc. cit.], Satz 4
on page 168 and Satz $ on p. 170). In particular, for 8§ = 6., the
canonical topology on 6y« (X) coincides wit}u the topology of compact
convergence (= uniform convergence on compact subsets), see [loc. cit.],
Satz 8 on p. 174. Moreover 6 x(X) is a closed subalgebra of the algebra
C°(X) of continuous functions on X ([loc. cit.], lemma on p. 174).
Since C%(X) is a topological algebra with continuous multiplication the
same is true for 6y (X).
(44) Corollary : If (X, £x) is a reduced complex space the C -algebra
6 x (X) of holomorphic functions on X is a topological Frechet algebra with

respect to the topology of compact convergence. ||
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Analytic functionals
The following considerations generalize (12).

(45) Definition: Let (X, §x) be a reduced complex space. By (44) 6y (X)
is a Frechet algebra with the topology of compact convergence. Its dual space
Ex(X)' = Homg( 6 x(X), C)
of all continuous, C - linear functions on &6 x(X) is called the space of
analytic functionals on X . As in (3.4), (i), define the C-bilinear form

(46) C=y=D ¢t 65 (X) x 65 (X)) —>C, {f,u> := p(f)

for fe 6% (X), pe 6 (X)) . ||

In analogy to (3.7) the scalar multiplication

(47) Fx (X) x 6 (X)' —> 6 (X)", (f,u) —> fu
(fu)(g) = {g,fu> := {fg,u> = ulgf), g ¢« 6x(X),

is well-defined and turns 6y (X)' into a 6y (X)-module. The linear

function fy is again continuous since, by (44), the multiplication on

6x (X) is continuous. A holomorphic map F: Y —> X between reduced

complex spaces induces a C -algebra homomorphism
*

F': 6, (X) — 6,(Y)
(48) N M
F*:C% (X) —> c%(Y) , f —— F*(f):=fF

(Compare [GR2], 4.3.3 on page 89). This map is continuous on c®(X) and
thus on 6y (X) and induces the ad joint C- linear map
(49) F, = Hom(F*, €) : 64 (Y)' — 65 (X)"

CE,Fye(v)) = <’F§(f),v> = vif F)
for ve 6 (Y)" and f e 6y (X). This n;\ap Fi satisfies the relation
(50) FLLF (f)v] = FF,(v), fe 6x(X), ve 6y (Y) .
This means that F, is 6x(X) - linear if 6y (Y)' is considered as a 6y (X)-
module via (47) and the scalar restriction F*. ||
After these technical preparations I return to the main task, namely to prove
the large cogenerator property of the C[s]- module
C<{t>= £(C";exp)= £ (CT)' in analogy to the proof of theorem (3.15).

Remark that C[s] = C[sy,~, s.] c 6(CT).
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(51) Lemma: There is a 6 (C") - monomorphism

(52) 6(CT) —6(CT), fr—"fy,

i.e. a 6(C7)-linearly independent analytic functional ¢ on C* . The
6(CT) - structure of &(CT)' is that of (47).

Proof : Choose a test function ¢*0, @egm(er) , i.e. a real-valued C* -
function with compact support . Now define ¢ by

plg) == er" p(s)g(s)ds , g «e6(CT) .

Remark that the integral is taken only over the real domain R™ . This
definition was suggested to me by my colleague Peter Wagner. There is no
convergence problem since ¢ has compact support . Choose a vector
S=(5(1),~,5(r)) e (Ry)" such that {s; ¢ (s) + 0} ¢ Z(S) (see (5)).Then
(53) lu(g)l < ([lots)ds) lighs , g ¢ 6(€7)

where | - |g is the maximum norm from (6). The inequality (53) implies the
continuity of y with respect to compact convergence and hence pe 6(C")" .
Assume now that fyu =0 for some fe¢ 6(C") and thus (fu)(g) = u(fg) =0
for all g « 6(C 7). The assertion of the lemma is that f is zero . In particular,

0=(fu)(sk)=u(fsk )szR" cp(s)f(s)sk ds for all keN" . Since

s=Re(s) on R" and ¢(s)e¢R" the preceding equality implies

O=f[Rr <p(s)Re(I"(s))sk ds = LRr cp(s)Im(f(s))sk ds for all k « N¥.
Hence the real-valued C® - functions @(s)Re(f(s)) and ¢(s)Im(f(s)) with
compact support are orthogonal to all polynomials and thus zero by the
Stone - WeierstraB3 thecrem . Choose a So ¢R" such that cp(so)¢0 . Then
Re(f(s)), Im(f(s)) and finally f(s) Vitsei\f aré zero near for real s, and hence
f is identically zero by the identity theorem . ||
The following theorem is the main new result of this paragraph.
(54) Theorem : For every prime ideal p of C[s]=C[sy,~-,s,] thereis a
C[s]- linear embedding
(55) Clsl/p— 6(C"), 1—>X, f— f.
This means in other terms that p ={f ¢ C [s]; fXx =0} for this

particular analytic functional X\ . Since C{t> = 6(C¥)' by (20) this result
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implies that all the injective C[s]- modules appearing in (35) are large
injective cogenerators to which the main duality theorem (2.56) is applicable.
Proof : (i) Let

X := V(p) ={z ¢ C"; p(z) =0 forall pep}
be the vanishing set of this prime ideal p. By Hilbert's Nullstellensatz
(56) p={feCls]lc6(C"); f(X)=0}.
This X is an irreducible algebraic subset of C* and thus an affine variety
with C[s]/p as C-algebra of regular functions (compare [MU], Ch.I,
§ 4, Prop 3).
Since X is algebraic it is also an analytic subset of C". We obtain the
closed, reduced complex subspace (X, 6x := (6/]J)|X) of (C", 6) and the
canonical injection

F:=inj: (X, 6x) —(C", §)

as in example (41). Here Jc 6 is the coherent ideal of all holomorphic
functions vanishing on X and given by
(57) JU) :={f e 6(W) :={f e 6 (W); f(UN X) =0}
for an open subset U of C”. Since C" is a Stein manifold the map
(58) F¥: 6(CT) — 6x(X) = 6 (CT)/J(CT), f—>f X,
is a surjective and continuous C-algebra homomorphism by (43) and (48)
and induces the injective C- linear map
(59) F, = Hom(F", C) : 65 (X)' — 6(C")’

according t= (49 Marecver F, is 6(CT) - linear by (50). The equalities
(56) and (57) imply p = C[s] ﬂ]_(ﬂCr.) from which I derive the commutative

~

diagram
can -
Cls] —— c[sl/p > f
(60) N N |
F* —
6(CT) —— 6 (X) f|X=f (by identification)

of canonical horizontal surjections and vertical injections. By this
identification the algebra C[s]/p of regular or polynomially defined
functions on the affine variety X lies inside the algebra &6y (X) of all

holomorphic functions.
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(ii) In analogy to the proof of (3.20) I apply Noether's normalization
lemma to C[s]/p and obtain an injective and integral C- algebra
homomorphism
(61) G*: €[z] = Clzy,~,24] — C[s]/p ¢ 6x(X)
z,—> G *(z;) = Q; = Q;IX
where C[z] is a polynomial algebra and the s;¢C[s]/p,i=1,~,r, are
integral over im(G* ). The number d is the Krull dimension of C[s]/p
or X. The Q; induce the polynomial map
Q = ( (21,---,(gd):‘11’,‘r —c¢cd =7
which is a morphism both with respect to the algebraic and the analytic
structures ( structure sheaves ) of € and €9 . The same results for the
restriction
(62) G:= QIX = (QIX,QqglX): X —cC?=2Z.
This map induces the injective, integral map G* from (61) on the affine
algebras and is thus a finite, surjective morphism of affine algebraic
varieties according to [MU], § 7, Prop. 3 on page 77. Since G is surjective
the induced map
(63) G*: 6(CY) — 65 (X), h=—>G™(h) = hG ,
is also an injective C -algebra homomorphism. I will show below in (iv)
that the induced map
(64) G*: 6(€Y)2im(G™) c 6 x(X)
is a topological isomorphicm “where the topologies on 6(C<) and 6x (X)
are those of compact convergence and i,r\n(G*) carries the induced topology
from 6x(X). Since 6x(X) is a Frechet space and locally convex in
particular every continuous C - linear function on im(G™) can be extended
to 6x(X) due to the Hahn-Banach theorem. With the topological
isomorphism (64) this implies that the induced map
G.=Hom(G", C): 6x(X)'—> 6(C)"
is surjective . This means that every analytic functional v on €9 has the
form

(65) V=Gu(p) =pG*, v(h) =u(hG), g ebx(X),hes(CY.
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(iii) Postponing to (iv) the proof that G~ from (64) is a topological
isomorphism I apply (S1) to Cd and choose an analytic functional
ve 6(CY)" such that the map
N:6(cd) — s(c?)  h—h v,
is injective where hv is defined according to (47). Then write

v=G,(g),pe 6 x(X)' , as in (65) . Finally define the analytic functional

X:= Fo(p) ¢ 6 (CT)' with F, from (60).

Altogether there results a commutative diagram

*
Clz] —S 5 ¢lsl/p e—B%  ¢[s]
N N N
d G* F* r
(66) 6(eH—2— 6 (X) ¢ 6(CT)
[N L™ L
sey e s xr—L2 5 sy

~

where the maps N, M and L are defined by

N(h) = hy, M(g) = gu, L(F) = £ X.
The commutativity of (66) follows from (50). Denote the restrictions of

these maps to the affine algebras of regular functions by

N := N|€[z], M := M|(€[s]/p), L= LIC[s].
By construction the maps I:Il and N are injective. Consider the kernel

m:= ker(M) c C[s]/pand let he (G*) ' (m) c €[z]. Then
N(h) = hv =

hG.(p) = GL(G*(h)y) = G,(0)=0
since G*(h) eker(M) c ker(M ). This gives

heker(N)=0and (G™)'(m) = 0.
Since G ™ is injective and integral this yields m =0 (Compare the same

argument in the proof of (3.20)). Hence M is injective too. Finally, since
F™ is surjective and thus F, injective

ker(L) = ker(Fx -M: can) = ker(can) = p
and L induces the desired C[s]- linear embedding .

(iv) I prove here that the bijection

(64) G*:6(cd) =

2 im(G™) ¢ 6x(X)
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is a topological isomorphism. As a finite algebraic morphism the map G is
closed with respect to the Zariski topology. By lemma (65) below G is
also closed with respect to the strong topologies (those induced from the
metric topologies on €9 and C7) (Compare [MU], § 10, p. 109 ff). This
implies that G is also finite as a morphism of complex spaces according to
[GR2], p. 47. By the finite mapping theorem ((GR2], th. 3 on p. 64) the
image sheaf G .(6 x) is coherent, i.e. a coherent &6¢d- module. Since G
is surjective the sheaf map G ™ : 6§ cd — G.(6x) given by

G ™ 6 cd(V)—G (6x)(V) = 6x( G HV)), h—>h(GIG H(V),
is injective and thus a monomorphism between coherent & ¢d - modules. By
the "closure theorem” of [GR3], p. 172, G * induces an injection

G*:6(CY) —G.(6x)(CH

onto a closed subspace where G, ( 5x)(Cd) is endowed with the canonical
topology (see [GR3], Kap. V, § 6). The canonical topology on
G.(6x y(cd) = 6x(X) derived from the coherent 6¢d - module G . (6x)
coincides with that induced from the coherent 6y -module & x by [GR3],
Kap. V, § 6, Satz 6c), and is the topology of compact convergence on
6 x(X) according to [loc.cit.], Satz 8 on p. 174. Altogether the
preceding considerations imply that the map G ~: s(c?) — 6x (X) is
C - linear, injective, continuous with closed image between Frechet spaces ,
the topologies being those of compact convergence. Since a closed subspace

of a Frechet space is again such the mep

(64) G*: 6(Cc%)=imi{G™)

~
-

is a continuous C-linear bijection between Frechet spaces and then a topo-
logical isomorphism by the "open mapping” theorem. But this was to be
shown. ||

(65) Lemma: The map G from (62) is closed with respect to the strong

(standard) topologies on c? and X cC~.

Proof: The lemma is known, but I cannot find an explicit reference. I
learned its proof from Richard Swan. Both the lemma and its proof are a

relative version of the result that complete and compact complex varieties
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coincide (see [MU], § 10, Th. 2). The argument appears at the end of
the proof of [loc.cit.], th. 2. The notations are those from theorem (54).
Since G ™ is integral there are equations
s; 3 + Z{G"(py)si); 05 jsdli)-1}=0,i=1,-r
of integral dependence where the p;;« C[z] are polynomials. In other terms
this means
(66) x4 4 sip 60X, 05 d) -1} =0
for all i=1,--,r and xe X with G(x)=(Q¢(x),-,Qq(x)). I am going to
prove that for every compact set K c C€? the inverse image G YK) s
compact, i.e. bounded, in X c €. By [GR2], Ch. 9, § 2.4, this implies
that G is closed and the assertion of the lemma. But define
M := Max{lp;;(z)|; z ¢« K, i= 1,~-,r,0 < j < d(i)-1}.
This maximum exists since K is compact and the p;; are continuous. From
(66) we derive
t=-3{p;;(G(x)x 74D ;j=0,-,d(i)-1}
if x;#0 and conclude
1< M(Ix;l 78+ +1x; 174 for x « GTHK) .

Hence the |x;|™', i=1,--,r, are bounded from below and thus G~ !(K) is
bounded from above as asserted. ||

The proof of the duality theorem in the real case
The proof of the theorem 2.54 for the examples (1.13 real), {1.18 reai) and
(.22 real) can be easily deduced from the complex case by means of a
descent argument with respect to the‘ field extension Rc C. Assume more
generally that FcK is a field extension, that D is a finitely generated
commutative. F-algebra and A a D - module. By scalar extension
K®D:=K® D is a finitely generated commutative K-algebra and
B:=K® A is a K®D-module. I am going to show by a well-known argu-
ment that if B=K® g A is a large injective cogenerator over K® gD then so

is A over D . Indeed, consider a finitely generated D-module M and the

canonical map
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(67) can:K®@ gHomp (M,A) — Homggp(K®M,K®A),
a®f — a®f, («¢®f)(BO@m):=af®f(m).

This map is obviously an isomorphism for M =D and then for M=D¥, keN.
Since K® g(-) is exact and Hom is left exact both functors of M in (67)
are left exact and the standard argument implies that (67) is an isomorphism
for all finitely generated modules M over the noetherian ring D. The
injectivity of B=K®pgA over K®D implies the exactness of
Homggp(-,K®A), hence of KegHomp(-,A)ZHomggp(K®(-) ,K8A)
and finally of Homp(-,A) on Modf(D) since FcK is faithfully flat. Since
D is noetherian this implies by (2.31) that A is an injective D - module.
Also, for any M«Modf(D), there is a K®D - linear monomorphism

®=(0;; i=1,--,m): KoM — (K®A)™= K®A™ .
Because of the isomorphism (67) the ®; have the form

®;=3{a;;®¢;;; j=1,"-,n}, ¢;;eHomp(M,A)

and give rise to the D-linear map

o:=(py;; i=1,-,m, j=1,-,n):M — ALmIxtal
If e(x)=(p;;(x);1i,j) is zero then so is ®(1®x)=(Zja;;@¢;;(x);i=1,--,m).
The injectivity of ® implies 1®x=0 and finally x=0 since Mc K@M, x— 19 x,
is injective too. We have proven the
(68) Lemma: Assume that FcK is a field extension and that A is a D-mo-
dule over the finitely generated commutative F-Algebra D such that K@ A
is a large injective cogenerator over ‘K®F D . Then A is a large injective
D -cogenerator too . ||
(69) Theorem: The R[s]=R[sy,,s,.] modules Ar from the examples
(1.13 real), (1.18 real) and (1.22 real) are large injective cogenerators, hence
the duality theorem is valid in the real continuous case .
Proof : The theorem follows from the canonical C[s]= C®RxR[s]- iso-
morphism

(70) AR? = CORARXAR®iIAR=A, (b,c) — b+ic
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where A is the C[s]- cogenerator from (1.13) resp. (1.18) resp. (1.22). The
map inverse to (69) is given as
(71) A —> Agp?, ar— (Re(a),Im(a)).
For instance, if Ag=R<t> and A=C<t>, then
C<t>=R<t > ® i R<t>, a=Re(a) + i Im(a)
with a=Ya(n)t™,Re(a):=YRe(a(n))t™, Im(a):=ZIm(a(n)t™. ||

Appendix : Partial difference equations of infinite order
In § 3 I gave an easy proof for the fact that Homg(D,F) is an injective
D - module, i.e. satisfies the fundamental principle , for an affine F-algebra D.
This result has a topological analogue which I mention without proof. The
needed technical prerequisites are contained in [ GR3].
Consider a Stein space X and its ring 6(X):= 6x(X) of global sections
which is a Stein algebra (see [GR3], Kap. V, § 7). Stein algebras have
many interesting algebraic properties, but are not noetherian in general.
Consider the dual space 6(X)':= Homg(6(X),C) of analytic functionals
as a 6(X)-module via (47). As in the abstract situation of § 2 the linear
system
(72) Py=u,Pec6(X)"™, y e 6(X)™, ue6(x)h,
makes sense. It is reasonable to ask under which circumstances (72) has a
solution y for given P and u.
(73) Theorem: Let X be a Stein space, P ¢ 6'x(X)l'm a matrix of
holomorphic functions and u = ('ui--'-ul}-r € ¢§';.<(X)'/i a vector of analytic

~

functionals. The system t ~
Py=u,yebx(X)™,
has a solution y of analytic functionals if and only if for all solutions
q =(qq,~,qy) ¢ 6')4()()1’I of qP =0 the relation
(74) qu = qquq+—-+ qqu; = 0 in Gx(X)’ holds . ||
The 6(X) - submodule {q ¢ 6 (X)!'!; q P =0} cs(x)!
is not finitely generated in general or, in other words, there is no matrix

Q¢ 6(X)*%'! which is universal with respect to QP =0 (see (2.27)).
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This means that the condition (74) of the preceding theorem has to be
checked for infinitely many q. For practical purposes, therefore, the
preceding theorem is of limited value only.
The theorem (73) is applicable to X =C* and C<{t>x §(C")" by (20).
The 6(CF) - structure of €C<{t)> extends the C[s]- structure of C{t)
from example (1.13) and is given by
(75) (fa)(n) = Y{f ,a(m+n); m ¢ N"}

for f = 2f s™ ¢ 6(C"),a=(aln);neN") e C{tD.
Since infinitely many a(m+n) appear in (74) a corresponding system Py =u
as in (71) is called a system of partial difference equations of infinite
order . ||
5. THE CONSTRUCTIVE SOLUTION OF THE CANONICAL
CAUCHY PROBLEM FOR DISCRETE SYSTEMS

The paragraph heading explains what I am going to do in this paragraph .
The abstract Cauchy problem

The considerations in this section were influenced by ideas , but not the de-

tails from J. Gregor [GRE] .

(1) Assumption : [ consider discrete 10-systems

S={(u,y) e A™P; P(L)(y)=Q(L)(u)}, PeF[s]¥P, Qe¢F[s]®¥™, rank(P) = p,Q=PH,

as in (2.69) with the signal space A=FN =F{ty,~,t.}= F{t} from (1.7)

and the transfer matrix HeF(s)P'™, F[s]=F[sq, -, s.]1, F(s)=F(s;,~,s_) .

The vector L=(L;,,L.) consists of the r left shifis L;: F{t}— F{t}

.

from (1.10). || S

In (2.69) I have shown that the projection S—>A™, (u,y)—>u, is sur-
jective or, in other words, that the equation P(L) (y) = Q(L)(u) has a
solution y for any given ue¢A™. Because of this I have called u resp. y an
input resp. an output vector of S. The Cauchy problem consists in solving
Py = Qu under a suitable initial condition which forces the solution y to be

unique.

(2) Identification: Let [p]:={1,--,p} denote the set of numbers from 1 to
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p. I identify
(3) AP = (FNT)P <(pR)N = pLRINT oy

y:(yl....yp)T=((yi(n)‘..yp(n))T ;ne NT )= (yj(n) ; j=1,-,p,neNT )
with yj=(yj(n);nefNr)=Z{yj(n)t";ne[Nr} and
[pIxN"={(j,n);j=1,~,p,neN"}. Remember that AP, FP etc. always mean
the spaces of column vectors. Analogous identifications are valid for A™, Ak
etc. If Gc[p]xNF is an arbitrary subset I identify FGcFCPJXNr=Ap as
a subspace by extension by zero, i.e. for x¢FC I define xj(n):= 0 for
(j,n) ¢ G and identify x=(x;(n); (j,n)¢G)=(x;(n);(j,n)e[p]xN") . The
complement of G is denoted by G':=([p]x[Nr)\G, hence [p]xN"=GUG"
is a disjoint union. This disjoint union induces the direct sum decomposition
(3) AP = FC@F% with y=(y;(n);(j,n)e[p]xN") = y|G + y|G"
where y|G=(y;(n);(j,n)e¢G),y|G =(y;(n);(j,n)¢G"). The projection from
AP to FC is just the map proj:AF— F¢, y—y|G. ||
Since ker(P(L)) cAP=F[p]X'Nr is a closed subspace with respect to the
linearly compact product topology on F[P:l><lNr there is a subset G'c[p]xNT
such that
(4) ker(P(L) g FO =plPIxN"_ 4p
The existence of such a G’ follows from the Steinitz exchange theorem for
infinite dimensional spaces via the duality (2.50). I omit the detailed proof
since it is unconstructive and has no practical significance. The main con-
structive task below will he to fini = =i Z'={plxN" and its complement.
G=G"=[p]xN"\G' which are canonicélly associated with S or P only.
(S) Theorem and Definition (the abstract Cauchy problem). Assumption (1).
In addition let [p]xN" =GUG" be a disjoint decomposition. The following
assertions are equivalent:
(i) The inhomogeneous Cauchy (or initial value) problem
(6) P(L)(y) = Q(L)(w), yIG = x , u¢A™ , x¢F©,
has a unique solution y ¢ AP for any given input u and initial data x¢FC.

(ii) The homogeneous Cauchy problem
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(7) P(L)(y) =0, yIG = x, x¢F®,
has a unique solution ye¢AP for any given initial data x .
(iii) The decomposition (4) holds, i.e.
(4) AP = ker(P(L)®F€ .
Proof: Obviously (ii) is a special case of (i).
(ii)= (i) Consider the equations P(L)(y)=Q(L)(u),ylG=x, ue A™,
x ¢ FC. By (2.69) there is a z¢ AP such that P(L)(z) = Q(L)(u) and then,
by (ii), a unique we¢AP satisfying P(L)(w) =0 and w|G =x-2z|G. Then
y:=z+w satisfies

P(L)(y)=P(L)(z)+P(L)(w)=Q(L) (u)+0=Q(L) (u)

and y|G=z2|G+w|G= z|G+x-z|G=x.

Thus y is the desired solution. Assume that y; is another solution of (6).
Then P(L)(y-y4)=0 and (y-y,)|G=x-x=0, hence y-y,=0 by (ii). Thus y
is the unique solution of (6).
(i), (ii)=(iii) Any yeker(P(L))NF  satisfies P(L)(y)=0 and y|G=0
since FG'=ker(proj=Ap—9FG, y—y|G). Condition (ii) implies y=0
and thus ker(P(L)NE® = 0.
For x<F€ the solution y of (7) according to (ii) implies the decomposition
x=y+(x-y) with yeker(P(L)) and (x-y)|G=x|G-y|G=x-y|G=0, thus
X-Yye FC and xcker(P(L))+F€ . We deduce FCc ker(P(L))+FS’, thus
AP=FC®+F® =ker(P(L))+F® and finally AP=ker(P(L))®F%".

,,,,,

{4) and thé homomorphism theorem imply the
isomorphism P(L)IFG’=FG'—% im(P(L) and its inverse
IE==(P(L)!FG')_1: im(P(L))—FS c AP, By definition ﬁ satisfies the
relation P(L)Iz=idim(P(L)) and is thus a linear section of P(L). According
to the following standard lemma 9 this section induces the direct sum
decomposition

(8) AP=ker(P(L)@im(K)=ker(P(L)®F% s y =m (y)+(id ,p-7 ) (y)
where = ==idAp-IZP(L) resp. id-=« =IN(P(L) are the projections onto

ker(P(L)) resp. im(K)=F€" with respect to this decomposition. The direct
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decompositions (4) in (iii) and (8) obviously coincide.
The surjectivity of S={(u,y);Py=Qu}—>A™,(u,y)—>u, implies or is
actually equivalent to the inclusion im(Q(L))cim(P(L)). Since IZ is
defined on im(P(L)) the map

H:=KQ(L):A™—> AP, u— H(u):=K(Q(L)(u),

is well-defined.

~

Now let ucA™ and x<FS be given as in (6) and define y:=m(x)+H(u).
This vector satisfies

P(L)(y)=P(L)(1t(x))+P(L)IN(Q(L)(u)=O+Q(L)(u)=Q(L)(u)
since © is the projection onto ker(P(L)) and P(L)I~(=idim(P(L)). More-
over ylG=ﬂ:(x)|G+I—~I(u)|G. But mn(x)|G=x|G=x according to the
following lemma 10 and ;I(u)lG=0 since IN-I(u)eim(IN()=FG'=ker(AP—>FG).
Hence y|G=x and y is a solution of (6).
Assume finally that z is another solution of (6). Then by (8)

2= (2)+KP(L)(2) = (2)+KQ(L) () =7 (z) +H(u).

Also z=2|G+z|G'=x+z|G' and z|G'¢FS =ker(x), thus w(z|G")=0 .

We derive z=n(z)+H(u)=n(x)+H(u)=y and hence the uniqueness of the

solution y of (6). |l

(9) Lemma: Let f:M——>N be an epimorphism between modules over some
ring and g a linear section of N satisfying fg=idy. Then M decomposes as
M=ker(f)®im(g)s y = (y-(gf)(y))+(gf)(y)=m(y)+(idpg-m ) (y)

where m  ~id ;-gf resp. idy-m= gf are the projections onto ker (i)
resp. im(g) with respect to this ded&mpositﬁon. In particular ker(f)=im(m)
and im(g)=ker(m) . |l |

(10) Lemma: In the situation of theorem S one has w (y)|G=y|G and
n(y|G)=n(y) for all y ¢ AP. In particular w(x)|G=x for all xc¢ FC.
Proof : The assertion follows from

y-m(y)=KP(L)(y)¢ FS = ker(AP—FS, y—>y|G), hence (y-(y))[G=0.
Similarly y-y|Ge¢FS =ker(n) and n(y)=n(y|G) . ||

The proof of (iii) =» (i) in theorem S implies and suggests the following
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(11) Corollary and Definition (State space and transfer function): Assume
that the equivalent assertions of theorem 5 are satisfied. Define
K:=(P(L)IF®) ™'+ im(P(L)—> AP, H:=KQ(L):A™—> AP and
T = idAp-IZP(L) as in theorem S, proof of (iii)= (i). Then:
(i) m resp. IZP(L) are the projections onto ker( P(L)) resp. FC in (4)
and P(L)H=Q(L).

~

(ii) The vector y:=m(x)+H(u) is the unique solution of

P(L)(y)= Q(L)(u), y|G=x.

(iii) The maps

(12) ker(P( L)) ¢« FS, y=n(x) ¢ x=y|G, and

(13) S« A™xFY, (u,y) > (u,x), y==« (x)+H(u) , YIG=x,
are inverse isomorphisms. In particular

(14) A" S, u— (u,H(u),

is a linear section of the projection S—>A™.

In analogy to the 1-dimensional situation I call FC the Sstatespace ,

H: A™ — AP the (0O-state) transfer function ( or operator) and

n: FS— AP the O -input transfer function of the IO - System S with
respect to the initial set G. It is also customary to consider the mixed
transfer operator

(15) AmeGéSMAP, (u,x) —> y=m(x)+ H(u)

where m(x)+H(u) is the unique solution of (6) and m(x) resp. H(u)

are the components of the outpui depending or the initial state x resp.

the input u.

Proof: (i) and (ii) were proven in (iii)= (i) of theorem 5. The bijections

(12) resp. (13) follow directly from (S), (ii), resp. (5), (i). ||

(16) Remark: In the situation of (5) and (10) we have the transfer matrix

HeF(s)P'™ with PH=Q and the transfer function He Homg(A™, AP)

with P(L)P~I=Q(L).In general there is no direct connection between H and ﬁll
The following sections give an introduction to the theory of Grébner or

standard bases adapted to the needs of this paper. The ideas go back to
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Macaulay [MAC2] ( compare [LJ ] ), the algorithms are due to
Buchberger [BU ] and many others. I learned the theory from my
colleague Franz Pauer [PAU] . I omit the proofs or give indications only.
The orders on NT

(a) The cw-(componentwise ) order : The cw- order on Z* and then N” is
given by
ms_.,n® Yi=1,-r:m() s n(i) ® 0s_,, n-m © JkeN" with n=m+k.

The monoid NT is the positive cone with respect to this order. The
cw - order is the standard (partial) ordering of Z* and makes it a lattice
with sup.w(m,n)=(max(m(i),n(i)); i=1,--,r) and inf_,, (m,n)=
=(min(m(i),n(i));i=1,--,r). The monoid N is a sublattice of Z* and
artinian, i.e. every non-empty subset of INY (trivially) admits a minimal
element with respect to the cw-order.
(17) Lemma: Let G be a subset of N" and D:=Min_., (G) the set of its
minimal elements with respect to the cw -order. Then D is a finite, discrete
subset of (N", < _, ) and GcD+N". If G=G+NT or, in other words,
if meG and m<_,,n implies n¢G then G=D+N" .
The proof is easy and known. (Compare [HI], [BU], [L]J], [PAU]) . ||

(b) Well- orders on N": Consider orders < on N* with the following

(18) Property: (i) the order is strict, i,e. m<n or nsm for all

m,n ¢ N". (ii) The order is compatible with the algebraic structure, i.e.
m<n and k<N" implies m+k$n+k.‘ (111} O is the smaliest element of
NT, iie. 0<sm for all me NT.| ~ - _

The standard example is the lexicographic order on N' . All orders on N*
with the property (18) are classified by Hahn's theorem (see Fuchs [FU], p.91).
(19) Corollary : Any order < on N" satisfying (18) is a well-order or ,
equivalently, artinian. This means that every non-empty subset G of NT

admits a smallest element with respect to < . With the data from (17) the
smallest element of G is the smallest element of the finite set D with

respect to <. ||
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(20) Assumption: For the remainder of this paper choose a fixed order <
on N' satisfying (18). Several later definitions depend on this order. On

the other side, the order can often be suitably chosen for a given system S. 1]

The degree of functions with finite support: Assume that F is a field and
(I, <) a strictly ordered index set. The support of a function x=(x(i); iel)eF!
is given by supp(x):={iel; x(i)*¥0}. Then FD:={xeFT; supp(x) is finite }
is the subspace of F! of all functions of finite support (compare (3.4,(ii)))
and has the standard basis §;,iel, §;(j)=8;;.

(21) Definition (degree) : For x% O in FU the non-empty, finite set supp ( x)
admits a largest element d with respect to the strict order s. This d is
called the degree deg(x) of x and x(d)=x(deg(x)) is its leading
coefficient. Define deg(0)=-o with -0 <i for all ieI. |

Obviously the vectors §;,icl, of the standard basis have the degree
deg(38;)=1i. The basis representation of xeF'D x# 0, can be written as

(22) x=2{x(1)8;; iel }=x(d)d4+Z{x(i)8;;i<d } , d:=deg(x).

The representation (22) implies that for vectors x and y of the same

degree de¢l the vector x-(x(d)/y(d))y has a degree smaller than d. By

transfinite induction with respect to the degree one derives the easy

(23) Lemma: Let I be a well-ordered index set, e.g. N* from (20), and
F a field. Any family x;,i ¢ I, of vectors in F'Y with deg(x;)=1i for all
icl is a basis of FP. [
(24) Standard example (Macauiay { MAC2]) : Consider the well-order <
on N* from (20) and identify SR -

Fls]=F[sqy,,s.]1= F(Nr), p=2{p(n)s™; ne N'}=(p(n); neN").
If d:=deg(p)e¢N" denotes the degree of pe¢F[s] this polynomial can be
written as

p=p(d)s¥+3{p(n)s™; n <d}, p(d)+0,

a special case of (22). The preceding lemma shows that any family
(pg; deIN") of polynomials pq¢ F[s] of degree deg(py)=d is a F-basis

of F[s]. For polynomials in one variable this fact is proven by induction
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instead of the transfinite induction in the proof of (23). ||

The degree of polynomial vectors : I consider the module of polynomial row

vectors q=(q1,---,qp)eF[s]1’p ( F[s]=F[s4y,,s,]) with the notations of

(1.28). In analogy to (2) I identify

(25) F[s]P = (FND) 1P o (p1P)(ND - g ([Pl
q=(q1,---,qp)=((qi(m),---,qp(m));merNr)=(qi(m);i= 1,~,p,meN")

where q;=(q;(m); meN")=3{q;(m)s™;meN"}.

Using the fixed well-order < on N” from (20) I order [p]xN" lexico-

graphically via

(26) (i,m)<(j,n) if i<j or (i=j and m<n).

This order on [p]xNY is again a well-order on [p]xN", and hence the

considerations in (21) and (23) are applicable to F([p]er)=F[s]1’p.

The standard F-basis of F[s] are the monomials s™,meN", the standard

F[s]- basis of the F[s]-module F[s]!'P is given by the vectors

e =(10--0),+,e,=(0--01) in FU'Pc F[s]!'P. Finally the standard F-basis

8i m,(i,m)e[p]xN", of F[S]I’P=F(EPJXNr) is formed by the vectors

8. m=s7e;=(0""0s™0°-0), s™ at the i.th place, (i,m)e[p]xN". Since

the degree of a non-zero vector q=(q1,---,qp)eF[s]1'p is defined as

deg(q)=Max{(i,m)e[p]xN"; q;(m)*0}e[p]xN" one obtains the

(27) Corollary: A non-zero vector q=(q1,---,qp)eF[s]1’p has the degree
(i,d)e[p]xN" with respect to the order (26) if and only if q has the form
q={(g;,~q;,0,--,0), q,;7q,{d)s? 1 T{q;(m)s™;m<d}, q;(d)$ O

In other terms this means that q can be written as
q=qi(d)sdei+2{qi(m)smei; m<d} +Z{qj(m)smej; j<i, me N7},

In particular deg(q)e{i}xN" if and only if q;*0, but q;,4=-~-=q, =0. ||

For a non-zero F-subspace UcF[s]P define

(28) deg(U):={deg(q)e[p]xN" ; qeU, q$0 }c[pIxNT

as the set of all degrees of non-zero vectors in U.

(29) Lemma: If U is a non-zero F[s]-submodule of F[s]!'P and

(i,d) edeg(U) then {i}x(d+N")c deg(U).
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Proof: The proof is simple. The relation deg(q)=(i,d),q=(qy,,qp)eU,

means q;.1==q, =0 and deg(q;)=d. But then, for any

meN",s™q=(-,5™q;,0,--,0)¢U and deg(smqi)=deg(sm)+deg(qi)=m+d,
hence deg(s™q)=(i,d+m)edeg(U). ||

(30) Corollary and Definition: Let UcF[s]!"P be a non-zero F[s]-sub-
module. For i=1,--,p define E(i):={meN"; (i,m)ecdeg(U)} and
D(i):=Min.y (E(i)) as in (17). Then deg (W) = U{{i}x(D(i)+N"); i=1,,p}. |l
The notations in the corollary come from Hironaka [HI], p.244 .

1V %pcF[s]!'P be the row module of a polynomial

(31) Lemma: Let U=F[s
matrix PeF[s]¥'P, j.e. the F[s]-submodule generated by the rows
P,_,i=1,-,k, of P. Then the following assertions are equivalent:

(i) rank(P) =p.

(ii) M:=F[s]""P/U=F[s]1"P/F[s]V'¥P is a torsion module.

(iii) All the sets E(i):={meN";(i,m)edeg(U)},i=1,--,p, are non-empty.
Proof : The equivalence of (i) and (ii) is an easy fact for torsion modules
over integral domains. The module M=F[s]''P/U is torsion if and only

if there is a polynomial a40 in F[s] such that aF[s]''P=(aF[s])!'PcU.
But deg(aF[s]''P)=[plx(deg(a)+NF).

(ii) = (iii) If F[s]!'P/U is torsion then the sets E(i) contain
deg(a)+N" by the preceding considerations and are consequently not empty.
(iii) = (i) Since all E(i),i=1,---,p, are assumed non-empty it is possible to
choose a pxp-matrix Q such that thg i.th row Q- of Q is in U and has the
degree (i,d(i)), d(i)eN". This means that Q- has the form

Qi-=(Qi1,7 Q4;,0,-,0) with deg(Q;;)=d(i), in particular Q;;# 0. Hence
Q is lower triangular with the non-zero elements Q; in the main diagonal
and has therefore the rank p. Moreover the row module F[s]l'pQ is con-
tained in U=F[s]!"®P which implies a representation Q=XP,X¢F[s]P'¥,

and finally rank(P)2rank(Q)=p, thus rank (P)=p as desired. ||
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The canonical Cauchy problem for a IO-system
and its Griobner or standard basis.

I return to assumption (1) and the IO-system
S={(u,y)eA™ P, P(L)(y)=Q(L)(u)} where in particular rank(P)=p such
that (31) is applicable.
(32) Lemma: Assumption (1). The row module U:=F[s]V'XP of the
matrix P depends on S and its given IO-structure (u,y)¢ A™ P  but not on
the special choice of the matrix P.
Proof : Assume that S is also given as S={(u,y)cA™ PP (L)(y)=Q(L)(uw)}
where P ¢F[s]%‘"'P Q,eF[s]* ™ By (2.63) there are matrices X and
Xy such that P;=XP and P=X,;P,;. In particular
F[s]l’k(“P1=F[s]1’k“)XPsF[s]i’kP=u and similarly Uc F[s]“‘(“Pl,
hence U=F[s]"¥p=F[s]"'*Vp, . |
(33) Corollary and Definition (the canonical Cauchy problem of a system)
Let S be a IO-system as in (1) and choose orders < on N” and [p]xN" as
in (20) and (26). The module U:=F[s]''*P depends on S and its given
[O-structure, but not on the special choice of P. The same is true for the
torsion factor module F[s]!'P/F[s]'XP. The degree set
G':=deg(U)={deg(q);0%#qeU} depends on S, its IO-structure and the
given order <, but not on the special choice of P or Q, and has the form

G"=deg(U)=U{{I}xE(i);i=1,---,p}=U{{i}x(D(i)HNr); i=1,---,p} where
E()={meN";{i,m)edeg{U)}=D(i}:N"#C, D(i)=Min . (E(i)),i=1,-,p.
The complementary set G:=([p]er‘)\aeg(AE[s]1’kP) of initial conditions
( compare (5), (11)), the state space FC and the Cauchy problem
P(L)(y)=Q(L)(u), y|G=x,u¢A™,x¢FC, are termed canonical . They depend

on S , its IO-structure and the chosen order s . ||

(34) Theorem: Under the assumptions of definition (33) the canonical
decomposition

(35) F[s]"'P=F'® gF[s]" kP

holds.
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Proof : Pose U==F{s]1’kP. For each of the finitely many elements (i,d),

(.4 U. For every

i=1,---,p, deD(i), choose a vector q
(i,m)eG'= U{{i}X(D(i)HNr); i=1,---,p} choose a representation m=d+k,
de D(i),keNT, or ds_.,, m and k:=m-d, and define q‘""™ =s¥q‘'?  Then
q(i’m)eu and deg(q“’m))=(i,m)eG'. For (i,m)eG=([p]xN")\G" the
standard basis vector §(; .,)=s™e; has the degree (i,m). By lemma 23
the family

s™e;, (i,m)eG , q"'™) (i,m)eG'=deg(W),
is a F-basis of F[s]!"'P, hence
(36) Fls]1"P=9{Fs™e;; (i,m)eG}oa{ Fq'""™; (i,m)<G'}.
Since the §(; ,)=s™e; come from the standard basis the first summand on
the right is F(G)=€B{Fsmei;(i,m)eG}. The vectors q(i'm) of the second
summand are in U, thus (36) implies F[s]*"P=F‘S’+U. But the inter-

‘GYNU is zero. For assume that q # 0 is contained in F(® and W

section F
Then supp(q)c G and deg(q)¢G and deg(q)edeg(U)=G', a contradiction.
We conclude F[s]V'P=F(®gu. ||

Moreover (35) and (36) together furnish U=e{Fq(i’m);(i,m)eG'}. This
implies U=3{F[s]q‘""¥; i=1,---,p, deD(i)} since q(i’m)=skq“'d) by

¢.d) iz1,..,p, deD(i), from a finite F[s]-generating

definition. Thus the q
set of U=F[s]""®P. These generating systems can be constructed from P

and are called standard of Grobner bases of U [loc.cit].

(37) Definition and Corollary ( standard or Grébner basis ) in the situation
of the preceding theorem a finite fér;niljf of yectors from U=F[s]'¥P is
called a standard or Gribner basis of U or S if all the degrees

(i,d), i=,~-,p, deD(i), appear among the degrees of vectors from the family.
A Grébner basis of U generates U as an F[s]-module. This notion depends
on S, its IO-structure and the order on IN' , but not on the special choice

of P. ||

(38) Division algorithm (see [ PAU] ) : In the situation of theorem 34 the

division algorithm furnishes a decomposition q=q'+q",q'eF(G), q"eF[s]l’kP,
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for any q¢F[s]''P in finitely many steps . |

The decomposition (35) implies that the canonical Cauchy problem of

(33) is uniquely solvable as I am going to show now. For this purpose I

consider the non-degenerate F-bilinear form

(39) (- ->F[s]"Pxp{t)P=p{PIxN ElRIxN"__, ¢
<(qi(m);(i,m)e[p]x[N'),(yj(n);(j,n)e[p]x[Nr)>==

=>{q;(m)y;(m); (i,m)e[p]xN"}

In particular {s™e;, t"e;>=8,, ,8; ; for the standard F-basis s™ e; of

F(EPJXNr) and the topological F-basis tmej of AP=F{t}P. The form

{-,-> is F[s]-bilinear where the F[s]-structure of F{t}=A=FNr is that

given by left shifts (see (1.10), (3.53)). For q=(q1,---,qp)eF[s]1’p and

y=(y1---yp)—r the matrix product furnishes q y=quyi+--+qpy,. Using

q;=2{q;(m)s™;meN"} we obtain q;y;=2{q;(m)s™y;; meN"}. But

(s™y;)(D)=y;(I+m), hence the

(40) Corollary: For q=(q1"-qp)eF[s]1'P and y=(y1-~yp)TeAp

(a) <s™e;,y>=y;(m), (i,m)e[p]xN"

(b) (qy)(0)=<q,y> =2{q;(m)y;(m); (i,m)e[p]xNT}

(c) (qy)(I)=(slqy)(O)=<slq,y>=<q,sly>=Z{qi(m)yi(m+l);(i,m)e[p]XlNr}. Il

I use the linearly compact product topology on FEP]X[NX.=Ap and the

duality V—V* from (3.50) and identify (F[s]i'p)*=Ap=FEP]x‘Nr as

in (3.8,1i)), i.e. y =C(-,y>. In particular the orthogonal complement (-)*

with respect to {-,-> defines a order reversing involution between the

F[s]-submodules of F[s]!'P and ‘ﬁhé‘closed F[s]-submodules of AP.

The duality (3.50) also implies that for a F-linear map

¢:F[s]1V"* —F[s]!'P the adjoint map ¢*: AP— AKX | defined by
<b(a),y>=<q, b (y)>,q¢F[s]11' , yeAP,

satisfies ker(tl.:a.e)=irn(q.))l and im(¢*)=ker(¢)l. A direct decomposition

F[s]''P=U@V with projection ¢ onto V, i.e. ¢ =92, im(@)=V,ker(p)=U,

implies in this fashion a direct decomposition AP=U'@ V' with projection

e =(p =(¢2)* onto U*, ie. im(p*)=U* and ker(e*)=V* . These
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considerations are now applied to the direct decomposition
Fs]1''P=F'® gu, U=F[s]"*P from (35) . Denote by o its projection
onto F'©. In this case (40) implies (F{G)*=FC . Moreover
U=F[s]V%P =im( F[s]i'kL F[s]!'P, z—>zP) and
(F[s1V% D F[s1VP)* = (P(L):AP—>AX) as in (2.15), thus U*=ker(P(L)).
Hence AP =ker(P(L))® F€ with the projection m:=¢* onto ker(P(L)).
But this is exactly proposition (iii) of theorem 5. We have thus proven the
following
(41) Theorem ( Unique solution of the canonical Cauchy problem) Let

S={(u,y)eA™"P; P(L)(y)=Q(L)(w},PeF[s]1*'P , QeF[s]*'™,
rank(P)=p, PH=Q, be a I0-system as in (1). Choose an order < on N
as in (20) and consider the canonical data (33). Then the canonical Cauchy
problem

P(L)(y)=Q(L)(u), y|G=x, ueA™ xF®,

is uniquely solvable or, equivalently, AP=ker(P(L))®FS . The projection
m onto ker(P(L)) with respect to this decomposition is nch* where ¢ is
the projection onto g(G) belonging to F[s]i’p=F(G)eF[s]1’kP and
constructively given by the division algorithm.

The inverse i:=(P(L)lF Gy -t

of the induced isomorphism

P(L)FS: FS > im(P(L)) is related to = via KP(L)=id-r, i.e.

K (P(L)(z))=z-m(z) (see (11)). In particular if ue A™ and z¢AP is a
solution of P(L)(z)=Q(L)(u) then ﬁ(u)ﬂ?(Q(L)(u)hz-n(z) is the
unique solution of P(L)(ﬁ(u))=Q€L‘)(u) wjth H(u)|G=0 (see (11) for
the transfer operator H ). ||

The projection m in the preceding theorem can also be given by the matrix
coefficients of ¢ . Consider for this purpose the decompositions

(42) s%ej=( O---snO---)=<p(snej)+(s"ej-<p(snej)) ¢F[s]V'P = F'®gF[s]l'kp
of the standard basis vectors snej of F[s]i’P=F([p]er) which can be
constructively found by the division algorithm (38). Write

(43) cp(snej)=Z{eismM((i,m),(j,m));(i,m)eG}eF(G)=®{Fsmei;(i,m)eG}
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Writing the Gx([p]xN")-matrix M in block form with respect to
[p]XN"=GU G’ furnishes M=(M(G,G) M(G,G')) and M(G,G)=Ig = the
GxG-identity matrix since ¢ is the projection onto F'© and hence
e(s™e,)=s™e, for (i,m)eG . For y=(y;(n); (j,n)e[p]XNr)eFEPJXNr=Ap
the equation y;(m)={s™e;,y> from (40) yields
Tt(y)j(n)=<s"ej,rc(y)>=<s“ej,<p*(y ) >=
=<<p(s"ej),y>=<Z{smeiM((i,m),(j,n));(i,m)eG},y) =
=3{<{s™e;,y>M((i,m),(j,n));(i,m)eG} =2{y;(m)M((i,m),(j,n));(i,m)eG}.
In particular we see that m(y) depends on y| G only which, however , is clear
since y-y|G ¢ FC =ker(n).
(44) Corollary : Situation of theorem 41 and (43). Then the projection =«
is given by the formula
m(y);(n)=2{y;(m) M((i,m), (j,n)); (i,m)eG}.

In particular, for all yeAP, y|G=n(y)|G, and =n(y)=n(y|G). ||

The constructive calculation of functions defined by transfinite recursion
By (41) the canonical Cauchy problem can be uniquely solved. The next goal
is to show that the solution can be constructively found. In this section I
develop a general technical preparation for this purpose.
Consider a well-ordered index set I and a disjoint decomposition 1=G J G".
The later application will be to the case I=[p]xN"=GUJG' as in (33) and
(41). Moreover let F be any field; for the following abstract argument an
arbitrary set F or an even more genera! situation wouid suffice. |

(45) Lemma (Definition by transfiriit‘e recursion) Assume that for all i¢G'
a function cpi=F(_°°’i)—> F is given where (-w,i):={jel;j<i} is the open
interval ending in i. Then, for every xeFG, there is a unique yeFI satisfying
the equations

(46) y(i)=x(i) for i¢G or y|G=x and y(i)=¢;(y|(-,i)) for ieG".

One says that y is constructed from x by transfinite recursion via the ¢;.

This construction gives rise to a section

(47) ©:FS—F! x>y, of the projection proj: Fé—F! yr—y|G.
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The proof is a special case of [BOU3 ], Ch. II], § 2, C 60, p. 42. ||

(48) Corollary (The constructive case of (45)): In the situation of the
preceding lemma assume that cpi(z),zeF(_w’“ , depends only on finitely
many z(j) with j<i. More precisely, assume that for every i¢G' a finite
subset S(i)c(-w,i)={j; j<i} and a function cpi=FS(i)-——-> F are given. Then,
given x<¢FC, there is a unique solution yeFI of the equations

(49) y(i)=x(i) for all ieG and y(i)=¢@;(y(j);jeS(i)) for ieG".

This construction gives rise to the section

(50) (D=FG—->FI,X)—-)y,of proj=FG——> Fl,y’——>y|G.

The proof is a special case of that of (45). Il

The following considerations are intuitively clear and show that in the
situation of (48) every y(i) can be calculated from x in finitely many steps.
The data of (48) are assumed.

Consider on I the relation <<. defined by

(S1) j<<.1:®ieG" and jeS(i).

In particular j<<.i implies j<i since S(i)c(-w ,i) by assumption. The rela-
tion <<. induces the new order relation <<= on I defined via

(52) j<<=i: ©® There is a chain j=j(0)<<.j(1)<<.---<<.j(r) =i

Again j<<i, i.e. j<<=i and j#i, implies j<i, in particular the ordered set
(I,<<=) is artinian since the well-ordered set (I,<) is. Also j<<i implies
ieG' since by (51) the relation j(r-1)<<.j(r)=i implies i¢G'. Hence the set
C is a discrete subset of (I,<<=) Tet

(53) I(i)='='{je1;j<i=i}

be the closed interval of (I,<<=) ending in i. Then

(54) 1(i)={i} if i¢G, and I(i)={i}UU{I(j); jeS(i)} for ieG'.

The following argument is trivial but nevertheless crucial for the constructive-
ness argument.

(55) Lemma: The sets I(i),icl, are finite.

Proof: This follows directly from (54) by transfinite induction. If ieG then

I(i)={i} consists only of the element i. If ieG' then S(i) is finite by
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assumption and the I(j),jeS(i), thus j<i, are finite by the inductive
hypothesis. But then, by (54), I(i) is a finite union of finite sets and hence
finite itself. ||
In analogy to the argument in (48) we now construct a section

o FInG S EUD x sy of proj s EIV— FING v 1 11(1)nG.
by finite induction. Indeed, the finite subset I(i) of the well-ordered set I
is strictly ordered with respect to < and has i as its largest element. Assume

DG 44 given and that for any keI(i) the values y(j) for all

that xe¢F
j<k in I(i) have already been constructed. If k is contained in G and thus in
I(i)nG pose y(k):=x(k). If k is in G’ then all elements jeS(k) are con-
tained in I(i) and satisfy j<k such that the y(j),jeS(k), are known by
inductive hypotheses. We define y(k):=¢, (y(j); jeS(k)) as in (49). We have
thus proven the

I(i)nG

(56) Lemma: Assumptions as in (48). For every iel and x¢F there

T which solves the equations

is a unique ye¢F
(57) y(k)=x(k) for all kel(i)nG and y(k)=p (y(j);jeS(k) for kel(i)nG".

The preceding construction gives rise to a section

I(i) I(i)nG “

<Di=FI(i)"G——>FI(”,xr——> y, of proj: F — F

A simple induction in the finite set I(i) using the equations (49) and (S7)
proves the

(58) Corollary (Constructive calculation in finitely many steps) Assumptions
and noiations as in (48) and (36). The diagram FG——-Q—D——-——% F!

{ proj  proj
~ N FI(i)ﬂG_i_) Fl(i)
commutes. In particular, the value y(i) of y:=0® (x),x¢FS, can be calculated
from x|I(i)nG in finitely many steps via ¢ ; as y(i)=0;(x[I(i)nG) (i).
Suggestive language: The solution y of (49) can be constructively calculated
from x¢FC in finitely many steps. ||
Remark that I do not make any statement on the number of necessary steps

to calculate y(i), i.e. on the size of I(i). This, however, is not necessary

when, for instance, one writes a recursive solution program.



- 97 -
The constructive solution of the canonical Cauchy problem
In this section I explain what the heading indicates. The situation is that of
theorem 41. I will apply the preceding section to the well-ordered set
[p]xNT={(i,m);i=1,--,p,meNT"} and its canonical decomposition
[pIxN"=GUG", G := U{{i}x(D(i)+N"); i=1,~,p}
(59) Deflnition ( Grobner or standard matrix ) A matrix P® whose rows are
a Grobner basis of the row module U:=F[s]""*PcF[s]!'P and are normalized
with highest coefficient one for simplicity is called a Grobner or standard
matrix of U respectively S={(uy);Py=Qu}. |l
(60) Result (Existence of Grobner matrices) Given P a Grobner matrix
P& of F[s]!"®P can be constructed by Buchberger's algorithm and its
variants (see [PAU ] and [WIN]). Also matrices X and Y such that P8=XP
and P=YP® can be found in finitely many steps according to [loc.cit. ] . ||
Remark that a Grobner matrix P® for P is automatically constructed when
the canonical decomposition [p]xN" =GJG' from (33) is determined.
Consider now the Cauchy problem
P(L)(y)=Q(L)(u),y|G=x,uc A™ x<F®

from theorem 41 where the input u¢A™ and the initial data x¢F€ are
arbitrarily given and the unique solution yeAP=F[p]x[Nr shall be calculated.
Choose a Grobner matrix P® for P as in (60) and a matrix X such that
PE&=XP. Pose v:=Q(L)(u) such that y satisfies the equation P(L)(y)=Py=v.
For every index (i,m)sG"=U{{ﬁ}x(D‘(‘ith); i=1,---,p} choose an index
d=d(i,m)eD(i) such that med+N" ;)r’m—diINr. Since the rows of P& are
a Grobner basis of U=F[s]''¥P I can and do choose a row
(61) q:=(P8), _=s%e;+T{q;(Ns'e;; (j,D)<(i,d)},
p=pli,d), e;=(0--1(i.th place)--0), of P& of degree deg(q)=(i,d). The
equations Py =Qu=v and P8=XP imply

m-d

s qy=sm_d(Pg)“_y=sm_dX

“_Py=sm_qu_v and , using (61),

sm—dqy=smeiy+2{qj(l)s“m'dejy ;(j,l)<(i,d)}=sm-qu_v.
For (sm—dqy)(O) the preceding equation and (40)(c) imply

yitm)+3{q;(Dy;(I+m-d);(j,D <(i,d) }=Z{X,;(Dv;(1+m-d); (j, 1) e[pIxN"}
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or
(62) yi(m)=-3{q;(Dy;(I+rm-d);(j,D<ti,d) }+
+Z{Xuj(l)vj(l+m-d); j=1,-,p,leN"}
Of course, since q=(Pg)u_ is a polynomial row vector, almost all q;(1) up
to finitely many are zero, and the same holds for the Xuj(l). Moreover the
relations (j,1)<(i,d) for the indices of the first sum in (62) imply
(j,1+m-d)<(i,d+m-d)=(i,m). Hence the indices (j,1+m-d) in the first
sum of (62) are smaller than (i,m) with respect to the lexicographic order
of [p]xNT. With the abbreviation
SGi,m):={(j,l+m-d)e[p]xNT; (j,D)<(i,d), q;(1)*0}
the equations (62) are of the form
yilm)=o ¢ m)(y;(n);(j,n)eS(i,m)) , (i,m)G",
as in (48). Thus (58) is applicable and furnishes the
(63) Theorem (Constructive solution of the Cauchy problem) Situation of
theorem 41. Additional data as chosen above. The unique solution y of the
canonical Cauchy problem
P(L)(y)=Q(L)(w=:v, y|G=x, ueA™, x<FC,
can be calculated in finitely many steps from the recursive equations

y;(m)=x, (m) for (i,m)¢G
(62)

yitm)=-2{q;(Dy;(1+m=-d);(j,D<(i,d) }+ Z{X () v;(1+m-d);

j=1,--,p,1eNT} for (i,m)eG' . |l

The following choices are involved: de¢D{i) is chosen such that m-deN"; y

is a row index of the Grobner matt;i; P® with deg(Pg)u_=(i,d); q==(Pg)u_.
Normal forms for IO - systems

In this section I assume more generally than in (1) that A is an arbitrary

large injective cogenerator over the polynomial algebra F[s]=F[s{,--,s.].

The main examples have been derived in theorem 2.54. The module A =F{t}

of formal power series is one of these. But also the "function” modules of

the continuous case can be used. Assumption (20) is in force.

I consider I0-systems S with a fixed 10-structure (uy)cA™" P and a
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transfer matrix HeF(s)P'™ . These have the form
S={(uy)cA™"P; Py=Qu}, PH=Q, rank(P)=p.

where P and Q are polynomial matrices with k rows, kzp.
Let now P8 be a Griobner matrix of S whose rows are a Grobner basis of
the row module U=F[s]"'¥p, uniquely associated with S according to (32).
Let also X and Y denote polynomial matrices satisfying P®=XP and P=YP®
as in (60). Then
(64) Q8:=XQ=XPH=P&H
is polynomial too and satisfies
(65) YQE=YPEH=PH=Q.
We obtain the new [O-representation
(66) S={(uy)cA™"P;P8y=Q&u}.
Indeed, if (uy) is in S and satisfies Py=Qu then P8y=XPy=XQu=Q¥&u
by (64). In the same fashion P&y=Q&u and (65) imply Py=Qu and finally
(66). The representation (66) is called a standard or Grobner representation
of S. Remember that, by definition, all degrees (i,d),deD (i), in

deg(S):=deg(F[s]1""*P)=U{{i}x(D(1)+N");i=1,~,p}
appear among the degrees of the rows of P®. The requirements for the rows
6f P& can be sharpened and lead to special types of Grobner matrices.
A Grobner basis of a module U=F[s]V"*PcF[s]!'P is called simplified
according to [PAU] if it does not contain any superfluous vectors. A matrix
PSEF[s]¥'P is called a simplified Grébner matrix of U=F{s]t'=p if its
rows are a simplified Grobner basis’ of W. This means that for all
(i,d),deD(i),i=1,---,p there is a unique row index p such that
deg((Psg)u_)=(i,d). For simplicity I include in this definition of P8 again
that the rows of P®8 are normalized, i.e. that (P58),_=s%e;+- . One
derives a simplified Grobner matrix P°8 from an arbitrary Grobner matrix P&
of U=F[s]!'*P by omitting as many rows as possible without destroying

the Grobner property.

(67) Definition (Reduced Grobner matrix, see [PAU],[WIN ] ): A Grobner ma-

trix P*€ of the module U=F[s]'®P or of the system S={uy);Py=Qu} is
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called reduced if it is simplified and if the row (P"%), _ of P"® of degree
(i,d) has the form

(PT8), _=s%e;+Z{(P"E),;(m)s™e;j; (j,m)<G}
with G==[p]xlNr\deg(F[s]1’kP) as in (33) or, in other terms, if the
support of (Prg)u_eF[s]l’p=F([P]er) satisfies

Supp((P"8) ) N deg(W)={(i,d)}

A representation
(68) S={(uy)eA™ P, P'8y=Q"8y=Q"8u}, Q"8=P"EH,
is called a reduced standard or Grobner representation of S. ||
(69)Result ([PAU ], [WIN] ): Every submodule U=F[s]V'¥PcF[s]!'P admits
a, up to a permutation of the rows, unique reduced Grobner matrix P*® such
that U=row module of P = row module of P*®. This P"® can be constructed

from P in finitely many steps. ||

The preceding result and the earlier considerations imply that the matrices
P8 and H form a complete system of invariants for the system S. In more
detail: Denote by Syst the set of all IO-systems in A™ P with the given
10 -structure (uy)eA™ P j.e. of all systems

S={(uy)A™"P;Py=Qu}, rank(P)=p,PH=Q.
According to (32) the row module U=F[s]*'XP is uniquely associated with
S and, by (69), gives rise to its reduced Grobner matrix P*® which is
polynomial and unique up to a permutation of the rows, and to the reduced
Grobner representation | ‘
(68) S={(uy)cA™*P, PrEy=QtEy}, QTE=PTEH.
The matrix Q" # is also polynomial by (64). The matrix P*® has rank p like
P itself . Thus let Inv be the set of all pairs (P,H) where P is a poly-
nomial reduced Grobner matrix with p columns and of rank p and where
He¢F(s)P'™ is rational such that PH is again polynomial. For simplicity
I identify pairs (P,H) and (P',H) when P’ results from P by a permutation

of the rows. The above considerations furnish the map

(70) Syst—Inv, S — (P"8 H).
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(71) Theorem (Normal form of IO-systems) Let A be an arbitrary large
injective cogenerator over F[s]=F[sy,-,s.] (see theorem 2.54) and < an
order on N* and [p]xNT' as in (20). Any IO-system
S={(uy)¢cA ™ P; Py=Qu} with IO-structure (uy) and transfer matrix H
admits a reduced Grobner representation
(68) S={(uy)eA™"P,p"8y =Q 8y}, Q"8= P8 H,
where P'8 is the reduced Grobner matrix of S or U:=F[s]"'*P. The pair
(P8 H) is a complete system of invariants for S, i.e. the map
(70) Syst - Inv , S— (P"8 H) ,
is bijective. Here I identify the matrix P*® with all matrices derived from
P'® by permutation of the rows.
Proof: By the preceding considerations and essentially due to (32) and (69)
the map (70) is well-defined. It is injective since S can be reconstructed
from (P*8 H) according to (68). If finally (P,H) is any pair in Inv the
system
S:={(uy)¢A ™"P; Py=Qu}, Q:=PH ,
is a system in Syst which has (P,H) as its invariants. Thus (70) is
surjective. ||
The one-dimensional "classical " case . Connection with the

Hermite form of matrices

In the situation of the preceding section assume in addition that
Fls]=F[sy,,s.] has just one indeteiminatc s;, i.e. r=1 and s=s;. In this
situation the reduced Grobner mat’.rix‘i"ﬂg is in Hermite form (compare [KAI] ,
6.7.1, p. 476) as I am going to show below. The notations are those of
the preceding section. The order on N=N" is of course the natural one and
and on [p]xIN the lexicographic one. Consider the I0-system S with
transfer matrix H

S={(uy)eA™"P, Py=Qu},PeF[s]k’p,rank(P)=p, PH=Q.
As is well-known and recalled in (2.29) P can be transformed into a matrix
(P' ), P'¢F[s]P'P,det(P')#0 , by elementary row operations, i.e. by left

0
multiplication with an invertible (or unimodular) polynomial matrix. The rows
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of P’ are then a F[s]-basis of F[s]!'XP. Without loss of generality I
assume P’'=P or, in other terms, that P is already a square matrix with
det(P)+0. This matrix P is now subjected to further elementary row
operations and transformed into the reduced Grobner matrix P& . By a se-
quence of elementary row operations as in [KAI ], p.375,476 , or in [BY ],
p.327,328, P can be transformed into a lower triangular matrix

#0, R, =0 for i< j .

ii

R=(R,;5i,j=1,p) , R,
Let d(j)==deg(Rjj),j=1,---,p, and hence deg(RJ._ )=(j,d(j)) . Without loss of
generality R, has the highest coefficient 1, so RjJ.:sd(j) +--- and
llj_:sd(j)ej +--- .1 am going to show now that P°&:=R is a simplified
Grobner matrix of U=row module of P=row module of R. This means that
deg(S)=deg(W)=G"=U {{j}x(d(j)*N);j=1,~,p}
Let for this purpose x=qR#*0 be an arbitrary nonzero vector in U of degree

(k,m). It has to be shown that m2d(k). But deg(x)=(k,m) means that

x=(xq,",X,0,-,0) with deg(xy)=m. Write
RI,I 0
R Ry )

x=(x;0), q=(qyqyq) and R=(
in block form where x  and q; have k components and Ryjis a
kx k - matrix . Then x=qR means

arRy*aqm Ry 1= X1, q 11Rygmm =0 .
But the lower triangular matrices R and Ryyy; with nonzero coefficients in
the main diagonal are invertible as rational matrices which implies q{;=0 and
Xy =qrRy (- qrRyk), hence x; =q Ry and deg(xk)=m2deg<Rkk)=d(k).
Thus R= P®® js indeed a simplified Gr'c;bne;"matrix of U.
Again as in [KAI ] or [BY] further elementary row operations can be applied
to P°8 =R in order to obtain a lower triangular matrix P*® like R with the
additional property that
deg((P"8 )ij)<deg((Prg) j;)=d() for i > j .

(72) Theorem (Normal form of one-dimensional IO-systems) In addition to

the data of (71) let r be equal one, i.e. let F[s] be the polynomial ring in

one indeterminate s=s;. The above algorithm (P+— P"8) yields the unique
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reduced Grobner matrix of the IO-system

S={(uy)¢cA ™*P; Py=Qu},P<F[s]*'P, rank(P)=p, PH=Q
with transfer matrix HeF(s)P*™. This P'® is also the unique square matrix
in row Hermite form such that P and (Porg) are row equivalent. The pair
(P"8 H) is a complete system of invariants for S in the sense of (71).
Proof : As shown above the matrix P"® is a simplified Grobner matrix of S
and deg(S)=deg() =U{{j}x(d(j) +N);j=1,~,p} where

deg((P"8), )= d(j) , (P'8),, =597+ and deg((P"8),_)=(j,d(j)) .
Additionally the inequalities deg((Prg)ij)<d(j) for i>j hold . For i=1,--,p
the i.th row of P8 has thus the form
(P™8),_=((PT8), - (P"8),,0,~,0)=s% Ve +T{(PT8) (m)s™e ;jsi,m<d(j)}.
The indices (j,m),j<i,m<d(j), of the right sum lie in
G:=([p]xMN)\ G"=[p]IxN\U{{j}x(d(j)+N) ; j=1,~,p }={(j,m);j=1,~p,m<d(})},
hence Supp((P"®),_)NG"={(i,d(i))} . By (67) this means that P"® is the
unique reduced Grobner matrix . The remainder follows from (67) . ||
The preceding theorem is an extension and sharpening of [ KAI] , §6.7 , and
[BY 1,p.93
The alternative order on [p]x N*

The preceding considerations are also valid for the following well-order on
[p]xIN" . Consider an arbitrary order on N satisfying (18) and define
(73) (i,m)< (j,n) if and only if m<n or (m= n and i<j)
This is the lexicographic order on [p]xIN" where , contrary tc (26 ) , the
second component me¢N" of (i,m)e[p‘]xlNr is the dominant one . The monoid
IN" operates on [p]xN" via k+(i,m):=(i,k+m) , ie[p] , k,meN", as before ,
and the orders (26) and (73) satisfy the following conditions (74) in gene-
ralization of (18) :
(74) (i) The order is a well-ordering .
(ii) The order is compatible with the operation of N" on [p]xNT .
(iii) (i,0) < (i,m) for all i=1,--,p and O¥meN" .
Consider the order < from (73) in the remainder of this section . Let

0+ q =(qy 4 p )=Z{q1(l)sle1;i=l,-",p and 1eNF }eF[S]l’p =F([PJXNr)
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be a non-zero vector of degree
deg(q)=(i,d):=Max{(j,m)e[p]xN ; qj(m)¢0 }
Then q can be written as
q=q(d)sd+q,q:=Z {q(1)s';1<d}, q(d):=(q,(d),~,q,(d),0,-,0),q;(d)*0
where q(1):=(q,(1),~,q (1)) ¢ FU'P _ Obviously d has the property of a de-
gree of a vector as often in the one-dimensional case . I therefore define
(75) N "-degree of q := degr (q):=d
such that N"-deg(q) is the second component of deg(q) . Consider now a
matrix P ¢ F[s]*"P with non-zero rows for simplicity . Let d(i):=N"-deg(P,_)
be the N"- degree of the i.th row of P . Each row can thus be written as
P, =s%VPp _(d(i))+P,_ with N ™deg(P, )< d(i)=N"-deg(P ,_) .
Altogether P admits the unique representation
(76 ) P=A(s)P,_+P
with the following specifications : A(s):=diag(sd(1) ,---,sd(k)) where
d(i):=N"-deg(P, ), Py_:=(P (d(i));i=1,~k,j=1,,p)eFP
P = ( Z{P, (Ds'; 1< d(i)} ; i=1,~k and j=1,--,p) with
Nr-deg(f’li__) < d(i)=NT- deg(P,_) . If , in particular , P is a pxp- square-
matrix and deg(P,_)=(i,d(i)) for all i=1,--,p then
P,_(d(i))=(----, P,,(d(i))#0,0,-,0) and hence
(77) P=A(s)P, + P, PhceGlp(F) lower triangular
Compare [ KAI], (3), p.404 , in the one-dimensional situation. The following
lemma says that (31) is valid for f.he alternative order used n this

section too . BN -
(78) Lemma : Let P ¢ F[s]*'P be a matrix with non-zero rows and
P= A(s)Phc+I; a representation as in (77 ) . The following assertions are equi-
valent : (i) rank(P) = p . (ii) For every j=1,---,p there is a row index i such
that deg(P,_)=(j,d(j)) for some d(j)eN", ie.

deg(F[s]™ P)= U {{j}x( D(j)+N"); j=1,~p } and D(j)*O !
Proof : The implication (i)=>(ii) is the same as (i), (ii)=> (iii) from (31) .

(ii) = (i) After a permutation of the rows and after omitting the last k-p

rows of P I can and do assume without loss of generality that P is
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pxp-square with the representation (77) . It has to be shown that
rank(P)=p or , in other terms , that the linear system

Px=0, x =(xy,7,x, )T <Fls1P ,
has only the trivial solution x = 0 . But
(79) 0 =Px= A(s)y +Qy , y=P, _x and Q:= P P, 7"
Since P, _ is invertible it is sufficient to show that y=0 . Since
Q=X P, (P, "), and deg(P )< d(i) , (P, "), ¢F also deg(Q;;) < d(i) .
Assume that y is not zero and that y, is a component of highest degree .
From (79) we conclude sd(i)yi+ZjQijyj= 0. But deg(sd(“yi)=d(i)+deg(yi)
and deg(ZjQijyj )< Max( deg(Q; )+degly;);j=1,,p)< d(i)+deg(y,) ,
a contradiction , hence y=0 and x=0 . ||
Since the Grobner basis theory is valid for the new alternative order too
( see [FSK] ) and indeed for any order satisfying (74) ( oral communication
by Franz Pauer ) one easily sees that the results (31) pp. of this paragraph
are true for the alternative order mutatis mutandis . I elaborate only on the
constructive solution of the Cauchy problem in analogy to (63) . I consider
the Cauchy problem
(80) P(L)(y)=v:=Q(L)(u), y|G=x for given u¢A™ and x¢EFS
where G':=deg( F[s1"®P). I indicate the recursive equations for the values
yj(n) of the unique solution y . Without loss of generality I assume that
P is already a Grobner matrix , i.e. that for every (j,d), deD(j), there is a
row fudex y=1,--k such that deg(P _)=(j,d) . Let now (j,n)e [p]«N* be-
arbitrary such that yj.(n') is already‘knpwn for all (j',n") < (j,n) . If (j,n)
is in G then the initial condition yj(n)=xj(r?) holds . If (j,n)e¢G’ choose
a deD(j) and a row index p such that n=d+ked+N" and deg(P,_)=(j,d) .
The p.th row of the equation y=(A(s)P,_+P)y=0 evaluated at k gives
(81) P‘_Lj(d)yj(n)+Z{Pm(d)yi(n) ;iSj—1}+Z{Pui(l)yi(l+k) sielpl, l<d}=vu(k).
The indices (i,n), isj-1, and (i, l1+k), 1<d and l+k<d+k=n, are smaller than
(j,n) in the alternative order and ng(d) is not zero as the leading coeffi-

cient of Pu- . Thus yj(n) can be determined from (81) recursively in finitely

many steps as in (63) .
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§ 6. CONVOLUTIONARY TRANSFER OPERATORS

Motivation : The canonical Cauchy problem for a IO- system

S={(uy)eA™*P.Py=Qu},P<F[s]%'P, rank (P)=p,Qe¢F[s]*'™, PH=Q
gives rise to the operator I~(==(P(L)|FG')_1 , the transfer operator
;I=IZQ(L) and the projection ® as in theorem 5.41. Remark that ?( depends
on P and not on S only. According to (5.11) the unique solution y of the
canonical Cauchy problem

P(L)(y)=Q(L)(u),ucA ™ ,x¢F, is y=n(x)+H(u) .
Theorem S.63 contains a constructive algorithm for the calculation of y,
hence of H and ~. However, in general it is rather difficult to derive the
properties of H, for instance BIBO-boundedness, from the algorithm. In the
one-dimensional case it is known that such conclusions can be drawn if the
transfer function is given by convolution with the transfer matrix, and that
every system admits at least one IO-structure where this is the case. This
paragraph contains generalizations of these results to the multidimensional
case. It was again influenced by ideas, but not by any details from the paper
[GRE] of J. Gregor.
It is possible and useful here to consider multidimensional systems over
rings K instead of fields F. I develop the theory in this more general
frame - work. There is a connection with the usual theory of one- dimensional
linear systems over rings (see for instance [ BM] ) , but only a slight
one.
Discrete sj's‘teins over rings
(1) Assumption: Let K be a noetherian integral domain and B a K-module. ||
(2) Standard example: This is given by the polynomial algebra
K=F(Np)=F[o]=F[01,---,op] in indeterminates oy,~-,0, over a field F and
the F[o]-module B:=FN° . The F[o]-module structure of B is given by
left shifts as in (1.11), i.e.
(6¥b) (v)=b(p+v),o¥=0* Vg By veNe . ]

Now define
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(3) Di= K[s]=K[s,~s,] and A:=BN =B{t}=B{t;,~,t,}
The elements of A are power series in tg,,t,. with coefficients in the
module B and can be written as
a=(a(n);neN")=Xa(n)t™ , a(n) ¢« B .
With the componentwise addition and scalar multiplication A is a K-module.
It becomes a D =K[s]-module given by left shifts via
(4) (s™a)(n)=a(m+n), a=(a(n);n eN" )eA=B'Nr, m,nelN T .
For the case K=B=F the preceding data are those of (1.7). The algebra

D=K[s] is again a noetherian integral domain like K itself ([MATS], Th.3.3)
el
(5) Standard example: In the situation of (2), i.e. K=F[s] and B=FN |

the preceding construction gives rise to
D=K[s]=F[o][s]=F[o,s]= Floy,~ ,0,,84," ,s,] and
A =B{t}=FN (t}= BN = (FN®)NLpNC N7 peTE
The elements of A can be written as
a=(a(v ,n);(v ,n)eN® ") =(a(-,n)); neN" )=3{a(-,n)t™; neN"}
where a(-, n):=(a(v,n); \)ele)eF[Np =B.
Altogether the polynomial algebra D=F[o,s] in the p+r indeterminates
c4y,",S, operates on A=FNp+r by left shifts as in example (1.7) and
gives nothing really new. However, in the following theory the two families
¢ and s of indeterminates will not be treated symmetrically which will create
new solution possibilities. ||
Under the general assumptidns (1), £3) and (4) above I willi consider
IO -systems of the form , B
(6) S={(uy)eA™"P;P(L)(y)=Q(L)(u)}cA™"P
where Pe¢K[s]P'P s a square matrix with nonzero determinant, det(P)#0,
and Q¢F[s]P'™. Of course, S is again a F[s]-submodule of A™"P. [ will
show later in (84) and (86) that in connection with the question whether
the transfer operator K is a convolution essentially only systems of the

form (6) with square P and det(P)+0 appear.

Convolution and right shifts

The assumption (1), (3) and (4) are in force. In addition consider the power
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series algebra
(7) K{t}=K{t1,---,tr}=K[Nrwith elements a=(a(n);neN")=>a(n)t",a(n) K.
The multiplication of this algebra is the convolution. Since K is a noetherian
integral domain by (1) so is K{t} according to [MATS ], Th.3.3 .
The algebra K{t} contains the polynomial algebra

K[e]=K[ty,— ¢, 1=K N ek {e}=k N
as a subalgebra. Again with the convolution as scalar multiplication the
K-module A=B{t}=B[Nr becomes a K{t}-module via
(8) a*b=(2{a(k)b(l); k+l=n}; neN"),acK{t},beB{t}
where a=(a(n);neN")=Ja(n)t™<K{t} and b=(b(n);neN")=>b(n)t"¢B{t},
b(n)e¢B. Since B is a K-module by assumption the finite sums
>{a(k)b(l);k+l=n} make sense. In particular
(9) tPx(T{b(n)t™;neN"}=3{b(n)t™ ™ ;neN"}.
The right shift R; in the i.th direction is defined via
(10) R;:A=B{t}—> A ,b— Ri(b)=t:i*%b=2b(n)tn+ei

with e;=(0---1 0--- 0), one at the i.th component, or, in other terms

(11) R, (b)(my={ RS A ntD>O
! 0 if n(i)=0

For r=1 the map R=R; is given by R(b(0),--- )=(0,b(0),b(1),--- ) and this

explains the terminology "right shift” as usual. The K{t} -linear maps

Ry, R, in Endg(A) commute pairwise which implies that for any

polynomial a=2a(n)t™ ¢ K[t]cK{t} the operator a(R):=>a(n)R" =

=Za(ﬁ)R1n(1)---?‘:an(r) in Endg (A) is well-defined. Since R; is the

convolution with t; the map a(R) is the\ convolution with a(t), i.e.

(12) a(R)(b)=ax*b , acK[t], be A=B{t} .

Finally, as for any commutative ring, there is the K{t}-algebra homomorphism

(13) K{t} — Endg(¢}(A),ar—> (b axb).

The preceding formula (12) suggests the definition

(14) a(R)(b):=ax*b also for acK{t},beB{t}.

Remark that at this stage I do not define a(R)=3a(n)R,‘?.....r ("

as a power series of operators in Endg (A) since this would require
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a notion of convergence and since (14) gives an easier alternative definition.
The "operator calculus” in more general situations, for instance in the
continuous cases, will be treated later. By (14) the map (13) gets the form
(15) K{t} — Endgq.;(B{t}),a — a(R).
More generally we obtain the K{t}-linear map
(16) K{t}™" — Homyg .} (B{t}",B{t}™),P— P(R) ,
where P(R) (x)=P*x=(2{P;;*x;; j=1,-,n}, i=1,--,m).

The map P(R) is calAled the convolution with the matrix P. For m=n the map
(17) K{t}™™ > Endg ¢} (B{t}"),P— P(R),
is even a K{t}-algebra homomorphism.
(18) Remark and Definition (The two module structures on A) There are
two structures on A of a module over the polynomial algebra K[s] or K[t]
defined by left respectively right shifts. These have to be carefully
distinguished. For the scalar multiplication I use the distinguishing symbols
(19) prpb=p(Ly,~,L.)(b), peK[s],beA , and
(20) p'rb=p(Ry, ,R)(b)=p(t)*b(t),peK[t] beA .
I use the ambiguous symbol pb only if its meaning is clear from the
context. ||
The algebra homomorphisms (15) and (17) induce the group homomorphisms
(21) UW(K{tHh— Glg (¢} (B{t}) and Gl ,(K{t})— Glg ey (B{t}"™)

where U(K{t}):={a=3a(n)t™eK{t}; a(0)eU(K)} and U(K)
denote the groups of multiplicatively invertible elements or units of the
commutative rings K{t} resp. K and '\;vh\ere
Gl (K{t})={PeK{t}™ ' ™;det(P)cU(K{t}), i.e. det(P)=a(0)+- ,a(0)eU(K)}
is the general linear group of K{t} and consists exactly of those matrices
whose determinant in K{t} has an invertible constant term .
(22) Corollary : For the special case B=K the maps (15), (16), (17) and
(21) are isomorphisms. ||

The commutator rules

The data of the preceding section are given. The operators R,,--,R, resp.

Li,~ Ly in Endg(A) commutative pairwise. It is also easy to see that the
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relations
(23) LiR;=idA, i=1,--, r and L;R;=R;L; for i%*j
hold . The equation L;R;=id , means that the right shift R, is a right inverse
or, in other words, a section of the left shift L;, and induces by (5.9) the
direct decomposition
(24) A=BN"-ker(L,)® im(R;), a=(a-R;L;(a))+R;L;(a)
with ker(L)=B{ReNn(=0} L 4 jm(R,)=B{t}t,=B{n<N ;n()>0}

which is of the type (5.3). The projection onto the kernel of L; is given by

0 if n(i)>0
a(n) if n(i)=0

r
and coincides of course with the canonical projection from A=BYN onto

(25) e;i=Id-RyL;,¢;(a) (n)=]

ker(Li)=B{"€Nr;n“)=0}. The main observation is that L; and R; satisfy
the easy rules

(26) LiRj=id, and R,L;=idp-¢;,i=1,--,r,

but they do not commute. The above derived commutator rules for the R;
and L; are the basis of an algebraic "operator calculus” and are fully
developped, mainly for r=1, in the standard book [BE] and the papers of
L. Berg and the comprehensive book [PR].

As seen above, the maps R; and L; are not bijective, but are one-sided

inverses of each other. Therefore I define

R, if k20

(k) _p (k(1)), o (k(r)) r
(Li)—k if k<0 ,keZ, and R :=Ry R, JkeZ .

(27) R, %=

The commutator rules for the R; and L; imply the _
{28) Corollary : Data as aBove. Then
LmRrr=R{nm) ¢o n,meNT. ) In particular (see (5.17) for < _.)
L™R™=R"™™ if n-me¢N" ,i.e. ms_,n, and
L™R™=L™"" if m-neN" , i.e. ns_,m. ||
Derived Algebras
The data are those of (1), (3) and (4). The rings K,K[t],D:=K[s] and
K{t} are integral by assumption (1) and admit quotient fields

Q:=Q(K) cQ(K[t])c Q(K{t}). All rings I consider in this context are

contained in the large field Q(K{t}). In particular
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(29) Q(t):=Q(ty,~ ,t):=Q(K[t]cQ(K{t})
is the field of rational functions in ty,-,t. over Q:=Q(K). This field
contains t:1—1.---,t,._1 and the polynomial algebra K[ti—i,---,tr_l].l identify
(30) s1=t1—1,---,sr=tr_1, hence D=K[s]=K[t 1]cQ(K{t})
which implies that
(31) Q(s):=Q(K[sD=Q(D)=Q(K[t])=Q(t)cQ(K{t}).
Next I introduce the algebra K{{t}} of formal Laurent series as the quotient
algebra of K{t} with respect to the monomials t™ meNT, via
(32)  K{{t}}:=K{e}[t,"  — t. " =K{t}[t T ]=K{t}[s]:={t ™a=s™a;

meNT,aeK{t}}.
A Laurent series t ™a, a=>{a(n)t™;neN"}, is formally written as
(33) t"™a=3Y{a(n)t™™ %, neN"} =
=>{a(m+n)t™; ne-m+N"cZ", i.e.-mscwn}: =(a(m+n); nle,-mScwn).

The latter sequence can be considered as a sequence in KZr whose

support is bounded from below. Thus
(34) K{{t}}={bsKZr; Supp(b) is bounded from below}
where Supp(b):={n¢Z“;b(n)*0}. The boundedness condition means that
there is a meN" such that Supp(b)c -m+N"={ne¢Z";-ms_,,n}cZ” .
In analogy to (33) the sequence b=(b(n);ne¢Z") with Supp(b) c ~-m+N"
is then identified with the Laurent series t~ ™ (X{b(-m+n)t™;neN"}).
The algebra K{{t}} contains both D=K[s] and K[t] as subrings. This is
one of its main advantages for system theory.
(35) Theorem (The extended operato‘r. qalcul:ts) Let A=s™a=t" MaeK{{t}},
meN" , acK{t}, be a Laurent series. Then the operator A (R):=L™a(R) in
EndK(A),A=B{t}, is well-defined, i.e. A(R) does not depend on the special
representation A=s"a of \. The map
(36) K{{t}} = Endg(A), x— X (R),
is K-linear, however not an algebra homomorphism, but satisfies the

restricted product rule

(37) (pA)(R)=p(L)X(R) for peK[s], A eK{t}.

Proof : (i) Assume that A=s™a=s"b where m,neclN",a,beK{t}, s; =t !

i ’
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i=1,--,r. Multiplication with t™"™ yields t™ " x=t"a=t™b.
Substituting R; for ti=si_1,i=1,~,r, implies R"a(R)=R™Db(R) since (15)
is a algebra homomorphism. Multiplication of this equality with L™ on
the left finally gives
L™ ""R™a(R)=L™""R™b(R) or L™a(R)=L"b(R)

by (28). This shows that A (R):=L™a(R) is well-defined.
(ii) The elements 1, s; resp. t; are mapped onto id ,,L; resp. R; by (36).
Thus the product 1=s;t;=t;s; is mapped onto id ,=L;R;#R;L;=id 5o-¢; .
This shows that (36) is not multiplicative in general.
(iii) For a Laurent Series A=s™a,me¢N", acK{t}, and a monomial
s¥eK[s]c K{{t}},keNT , one obtains

(s*0)(R)=(s%s™a) (R)=(s*"™a) (R)=L*"™a(R) = LXL™a(R)=L*A(R)
which means that (37) holds for monomials p=skeK[s] and then for
arbitrary polynomial p¢K[s] by linear extension. ||
(38) Cautionary remark : There is a notational problem in the preceding
theorem. A monomial A:=s™=s™1¢K[s] is mapped onto X (R)=L™ by (36).
On the other side s™(R)=R,;™‘V...R_™{")=R™ makes good sense. The
reason for this ambiguity is that A is a rational function in t or s and that
in an expression like XA (R) it does not follow from the notation whether s;
or rather t; should be replaced by R;. I will use the notation

X(t=R):=Xx(ty=Ry, -, t . =R_):=X(R)

if necessary. The idea behind (26) is that R; is substituted foi i; and the
left inverse L1=Ri(_1) (see (27)) for s'\l=ti:1. Il
The map (36) induces (15) , i.e. the diagram

K{{t}} = Endg(B{t}) , x— X(R)
(39) U U
K{t} — Endg.}(B{t}), a— a(R),

commutes.
(40) Theorem Data as above. Assume in addition that B is a faithful
K- module, i.e. that the map

K — Endg(B), a+— a idg=( b+ ab),
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is injective or, in other terms, that a"b=0 for all b ¢ B implies «a=0. Then
the map

(41) K{{t}} — Endg(A), x=s™a(t) — X(R)=L™a(R),

is injective. The operator X(R)=L™a(R) is K{t}-linear if and only if
A=s™a(t)eK{t}.

Proof : (i) Assume that A (R)=L™a(R)=0. This implies for every be¢B
0=L™a(R)(t™b)=L™(a(t)t™b)= L™ (t™ab)=L™R™(ab)=ab=
=>{a(n)bt™; neN"} , a(n)e¢K , beB.

The equality L™ R™=id follows from (28). Hence for all n and b¢B
a(n)b=0 which implies a{n)=0 for all n since B is faithful. But this means
a=0 and XA =0 and finally that (41) is injective.

(ii) If XeK{t} then X (R)¢Endg(}(A) by (39). Assume on the other side
that X(R)=L™a(R), x=s™a(t)eK{{t}} , acK{t},

is K{t}-linear. Then in particular A (R)(t™b)=t™X(R)(b) for all beBc A.

But

(42) MR (t™b)=L™(a(t)t™b)=L™R™(a(t)b)=
=a(t)b=2{a(n)bt™; neNT} and

(43) t™A(R)(B)=t™L™(a(t)b)= t™L™(X{a(n)bt™; ncN"})=

=t™Ya(m+n)bt?=3{a(m+n)bt™ ™, neN"}= S{a(n)bt™;nem+N"}.
Comparing (42) and (43) gives a(n)b=0 for all n¢ m+N" and be¢B and
again, since gB is faithful, a(n)=0 for n¢ m+N" or a=t™a',a' ¢K{t},
and finally A=s™a =" ¢™a =a':K{t}. |l
The theorems (3S) and (40) can b'e‘ge'neral‘i\zed to matrices. If
HeK{{t}}P'™ is a matrix with components H;; then the K-linear maps
H;j(R):A — A induce the K-linear operator

H(R):A™ — AP, u=(uy —u,) T — H(R)(u):=
=(2{H;;(R)(u;); j=1,~-,m}; i=1,~,p)
and the K-linear map
(44) K{t}}?"™=Homy ((¢)) (K{{t}}™ K{{t}}P) — Homg(A™ AP),
H — H(R) ,

(45) Corollary : Assumptions as above. (i) For matrices P¢K[s]1¥'P and



- 114 -

HeK{{t}}P'™ the product PHeK{{t}}*'™ and the operators P(L),
H(R)=H(t=R) and (PH)(R)=(PH)(t=R) are defined and satisfy
P(s=L)H(t=R)=(PH)(t=R)
(ii) If B is a faithful K-module the K - linear map
(44) K{{t}}P"™ — Homg(A™,AP) , H+— H(R),
is injective, and the operator H(R) is K{t} - linear if and only if
HeK{t}P'™  and then H(R) is the convolution with H.
Proof : (i) follows at once from (37).
(ii) The K-linear map H(R):A™ — AP is zero resp. K{t}-linear if and only
if all its components H;;(R),i=1,--,p,j=1,-,m have this property. By (40)
this is equivalent to H;;=0 resp. H;;eK{t} for all i and j , or to H=0
resp. HeK{t}P'™ | H(R)(u)=Hx*u . |
Invertible Laurent series
It is clear that in K{{t}}=K{t}[t '] the monomials t™, m<Z", and more
generally the elements t™u, ueU(K{t}), are units. Recall that ue¢K{t} is
invertible in K{t} if and only if u(0) is invertible in K. The next theorem
shows that under an additional assumption there are no other units in K{{t}}.
(46) Assumption: In addition to (1) I assume from now on that the ring is
factorial and regular (see [MATS ], § 19, 20 , for these notions ) .
(47) Result: If K is noetherian, integral, factorial and regular then so are
the polynomial algebra K[t]=K[t;,-,t,.] and the power series algebra
K{t}=K{t;,, ¢t }. This ic an tmportant result of commutative aigebra and
proven, for instance, in [ MATS ] , Eh‘eoi~ems\19.5, 20.8 . ||
(48) Corollary: If F is a field the polynomial algebra K:=F[o,,,0,]
and the power series algebra K{t}=F[oc]{t} are factorial and regular. In
particular assumption (46) is satisfied in the situation of standard example
(s). |l
(49) Theorem ( Units in K{{t}} ) Assumption (46). Then
U( K{{t}})={t™u; meZ", ueU(K{t}H}.

Proof : As explained above the elements t™u are invertible in K{{t}}.
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Assume on the other side that A=t Xa, ke N*, aeK{t}, is invertible in
K{{t}}. Then

t ®at 'b=1 or ab=t®"leK{t}
for t 'b:=(t"®a)™!. By (46) and (47) K{t} is factorial and obviously
ty,t, are irreducible elements. The unique factorization in K{t} and the

k*1 imply that a has the form a=ut™, meN", ueU(K{t}),

equation ab=t
and hence A=t ¥a=t " X¥"™y _k+meZ", ucU(K{t}), as asserted. ||
The following theorem is the key result for the construction of column
reduced matrices in the multidimensional situation.
(50) Theorem and Definition: Assumption (46). Let p=Z{p(k)sk;kefNr}
be a polynomial in K[s]cK{{t}}. Then p is invertible in K{{t}} if and only
if p has the form
(51) p=p(d)s? + T{p(k)sk; k<o d} , deN" , p(d)eU(K).
[ call such a polynomial cw-unital.
(52) Remark: Recall that k<., d means k(i)<d(i) for i=1,--,r and k#*d
(see § S ). For a polynomial p in one indeterminate over a field the form
(S1) is always valid where d is the degree of p. On the contrary, the poly-
nomial p:=sysy+sy{-s,+1 in two indeterminates is cw-unital, but s;+s,
is not.
Proof of (50) : The form (51) is sufficient since

p=p(d)s¥+I{p(k)sk; k<o wd}=sUp(d)+Z{p(k)s* 9, k<, d}1=

= sUp(d)+IT{p(d-K)tc; 0<_ ks _,d}]

The second factor u:=p(d)+--- is a éol&nonﬂgl, hence a power series in t
with invertible constant term p(d) and thus invertible in K{t}. This implies
that p=s@u is invertible in K{{t}}.
Assume on the other side that p(s) is invertible in K{{t}} . By (49) p has
then the form p(s)=t™u, meZ™,u=3{u(k)t¥;keNT}, u(0)cU(K). Choose
Ne¢N" large enough such that p=Z{p(k)sk;ksch} and such that

m+Nu

-ms_,,N, i.e. m+NeN". The equation p=t™u implies p(s)tN=t or

S{p(k)tN ks N}=S{u(k)t™ Nk keNT} and
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S{p(N-k)t*¥; k< N}=Z{u(k-m-N)t*; m+Ns_,k}
Comparing coefficients furnishes

(53) { p(N-k)=u(k-m-N) if m+Ns<s_, ks N
p(N-k)=u(k-m-N)=0 for all other k.
For k=m+N the element u(k-m-N)=u(0)e¢U(K) is not zero. The first row
of (53) yields ks<.,N, i.e. m*+N<_ N or —-meN", and p(-m)=
=p(N-(m+N))=u(0)¢U(K). The polynomial ptN can thus be written as
p(s)tN=3{p(N-k)tX; m+Ns_, ks.nN} , hence
p(s)={p(N-Kk)sN ™K, m+Ns_, ks N} =

=S{p()s'; -m21:=N-k2_,0}=p(-m)s ™+3{p(k)s"; k<o,-m}.
But this is exactly the form (51) with d:=-m . ||
(54) Definition (cw-degree) A polynomial p(s)e¢K[s] has a cw-degree smaller
or equal to deN" , written cw-deg(p)<_,d, if p can be represented as
p=S{p(k)s™; ks_,d}. If additionally p(d) is not zero then I call d the
cw-degree of p and write cw-deg(p)=d. If the "highest coefficient” p(d)
is invertible in K then p is cw-unital. ||
For instance cw-deg(sy+sy)s ., (1,1), but cw-deg(s;+s;) does not
exist, whereas cw-deg(sysy+si-s,+1)=(1,1).
(55) Corollary: A square matrix PeK[s]P'P is invertible in K{{t}}P'P,
i.e. contained in Glp(K{{t}}) if and only if its determinant p:=det(P)e¢K[s]
is invertible in K{{t}}, i.e. cw-unital by the preceding theorem. Let this be
the case and write
pr=s?u(t) , p(s) !=tdv(t) , v(t)=ult) ™! = (p(d) "'+~ )e U(K{t}). Then
(56) K(t):=P(s) 1= P_g(s)p(s)™t = Pogq(s)tdv(t)
where P_4(s) is the adjoint matrix of cofactors of P(s). It should not
create a problem that the letter K denotes both the ground ring and the
inverse matrix K(t):=P(s)~! of P(s). Define the operator IN( by
(57)  K:=K(t=R)=(Po4q(s)t%v(t))(t=R)=P_q(L)RIV(R):AP — AP
where the last equality follows from (45), (i). The equation P(s)K(t)=I,
and (4S5) imply

(58) P(L)K = id,p .



- 17 -
In particular P(L) is surjective and 12 is injective , but these maps are not
bijective in general since the map K — f(' :=K(t=R) is not a ring homomor-
phism. ||
Theorem S50 induces the notion and properties of proper rational functions.
Recall that Q:=Q(K) is the quotient field of K and that
Q(K[sD=Q(K[tD=Q(t)=Q(s)cQ(K{t}).
The polynomial p(s) in (50) is invertible in K{{t}}, hence p(s) and p(s)~!
are contained in the subalgebra Q(s)NK{{t}} of Q(s). The algebras
Q(s)NK{t} and Q(s)NK{{t}} can be completely characterized. For this
purpose consider first the multiplicatively closed subset
(59) S:=K[tINU(K{t})={beK[t]; b(0)cU(K)}
of K[t]. This gives rise to the quotient algebra
K[tls:={b 'a; a,beK[t],b(0)eU(K)}cQ(t)NK{t}

(60) Theorem and Definition (Proper rational functions, compare [BA], pro-
position 1, for the case of a ground field ) Assumptions (46) . Then
(61)  Kltlg=Q(t)NK{t}, S:=K[tINUW(K{t})={beK[t] ; b(0)eU(K)}
The elements of this algebra are called proper (rational functions). A rational
function h=p(s)_1q(s)eQ(s)=Q(t),p(S),q(s)eK[s], p*0, is proper if p
is cw-unital and cw-deg(q)scw-deg(p) (see (54)). These conditions
are also necessary if p and q are relatively prime in the factorial ring K[s].
Proof : (i) Let h=p(s) 'q(s) be a rational function with cw-unital
p=p(d)sd+-, p(d)eU(K), and q=3{q(k)s*;ks_,d}. Then

p(s)=sdb(t), blt):=T{p(k)td™*; k< . d}

a(s)=s%a(t), a(t):=3{q(k)td K ks.wd}  and finally

h=p(s) " 'q(s)=b(t) ta(t)eK[t]g since b(0)=p(d) ¢U(K)
(ii) Assume that
h=p(s) !q(s)=b(t) ta(t)eK[tlg , b(0)cU(K),
where p(s) and q(s) are relatively prime in K[s]. This is a factorial ring
by GauB' Lemma. Choose N large enough such that
b(t)={b(k)t ;ks_ N},a(t)=3{a(k)t®;k<_, N} .

Then sNb(t)=Z{b(N-k)sk;ksch} is cw-unital of degree N since its
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highest coefficient b(N-N)=b(0) is invertible in K, and similarly
sNa(t)=3{s(N-k)s¥;ks_, N} is of cw-degree (s™a(t))sN. Furthermore
h=b(t) 'a(t)=(sNb(t)) " H(sNa(t)) "'=p(s) 1q(s).
Since p and q are relatively prime in K[s] this implies that there is a
polynomial r¢K[s] such that
(62) pr=sNb(t) , qr=sNa(t).
But sNb(t) is cw- unital and thus invertible in K{{t}} by (50). The first
equation of (62) implies that p and r are both units in K{{t}} and thus,
again by (50), cw-unital in K[s]. In particular (62) implies
cw-deg(p)+cw-deg(r)=cw—deg(sNb(t))=N and
cw-deg(q)s_ N - cw-deg(r)=cw-deg(p),
i.e. in the reduced representation h=p(s)—1q(s)eK[t]s of h the polynomial
p is cw - unital and cw-deg(q)<.,, cw -deg (p) holds as asserted.
(iii) Let finally h be any element in Q(t)NK{t} and write
h=b"'a, a,bcK[t], b#0. Since K is factorial so is K[t] again by GauB'
Lemma. Therefore I can and do assume that a and b have no common divisor
in K[t] or, equivalently, K[t]anK[t]b=K[t]ab. (see [ MATS], p. 164,
Remark 2). Since the extension K[t]c<K{t} is flat by [MATS ], Th. 8.8,
the latter equality implies K{t}anK{t}b=K{t}ab or, equivalently , that a
and b are relatively prime in K{t} too. But a=hb is a factorization in K{t}
by assumption so that b divides a in K{t}. With gcd(a,b)=1 in K{t} this
implies belI(K{t}), hence
h=b~lacK[tlg : S=Q()AU(K{t})). I
(63) Corollary: A rational function heQ(t)=Q(s) is a unit in the ring K[t]g
of proper rational functions if and only if h admits representations
h=b(t)™" a(t),a,beK[t],a(0),b(0)eU(K), or
h=p(s) " 'q(s),p,qeK[s], p and q cw-unital of the same degree. ||
The preceding theorem implies an analogous result for rational Laurent series
(64) Corollary and Definition (weakly proper rational functions) Assumption
(46), Notations as in theorem 60. Then

Kt]r=Q(t)NK{{t}}=K[t]1g[t™'] with
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T:=K[tJNUW(K{{t}}={t™b;meN", beK[t], b(0)cU(K)}.
The rational functions in K[t]1 are called weakly proper (rational functions).
A rational function h=p(s) 'q(s), p, qeK[s],p*0, is weakly proper if
p(s) is cw- unital. This condition is also necessary if p and q are
relatively prime in K[s].
The proof follows easily from (50) and (60). ||
(65) Example: The following simple example shows why it is interesting to
consider multidimensional systems over rings K instead of fields F. Consider
the polynomial p:=s;-s,¢F[sy,s,] with inverse p"1=1/(sl—sz). This p is
not cw-unital as a polynomial in s; and s, , thus p'1 is not weakly proper
according to (50). But
p=1.sy - sp¢F[s,1[s{]=K[sy], K:=F[s5,] .
As a polynomial in s; with coefficients in K=F[s,] p is cw-unital and indeed
p =1/ (s =sp) =t/ (=5t ) =5 {s t*"!; keN}<F[s,1{t,}
is even proper. In particular the operator calculus from (3S5) is applicable.

This example will be further executed in (118) . ||
The Cauchy problem for systems with proper transfer matrix

(66) Assumption: Let K be a regular, factorial, noetherian integral domain,
B a faithful K-module and A==B{t:}=B‘Nr |

These conditions are satisfied in the standard example (5) with K=F[o] and
B=F[N(D . The theorems of the preceding section are applicable. I consider
IO-systerris- ) A |

(67) S:={(uy)eA™"P . P(L)(y)=‘Q(L‘)\(u)}cAm+p , rank (P)=p,PH=Q,
with polynomial matrices PeK[s]*'P and QeK[s]*'™ and the rational
transfer matrix HeQ(s)P'™ | Q=Q(K). In general, H is not weakly proper,
i.e. not contained in K{{t}}p'm.

However, assume now that it is, i.e. He(Q(s)ﬂK{{t}})p’m. By (44)

the operator H(R)=H(t=R):A™ — AP s defined, and (45) and PH=Q
imply P(L)H(R)=Q(L). For u¢cA™ and y:=H(R) (u) this means
P(L)(y)=Q(L)(u) or (u,y)eS. In other words, the map

A™ — S, u — (u,H(R)(u)), is a section of the projection
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proj:S — A™ (u,y) — u. The image of this section is the graph of H(R).
Lemma 5.9 yields

S=ker(proj)® graph(H(R)) with

ker (proj) =({0}xAP)NS={(0,y);P(L)(y)=0} = ker(P(L))
and graph (H(R))={(u,H(R)(u));uc¢A™}. Thus we have proved
(68) Theorem and Definition: Given a system (67) under the assumption
(66). Assume in addition that the transfer matrix H satisfying PH=Q is
weakly proper, i.e. contained in K{{t}}?”™ . Then the K-linear operator
H(R):=H(t=R):A™ — AP is defined and induces the decomposition
(70) S=S(N(0xAP)@graph(H(R)) where
SN(0xAP)= ker(P(L)),(0,y)e>y , and
A™ = graph (H(R)), u— (u,H(R)(u)).

The decomposition in (70) is given by (u,y)=(0,y-H(R)(u)) +(u,H(R)(u)).
I call H(R) the transfer operator and S(N(0xAP)=ker(P(L)) the state space
of S given as in (67). ||
This theorem should be compared to (5.11). The decomposition (70)
respectively the operator H(R) correspond to (5.13) respectively ﬁ from
(§.11). There is, however, no analogue to the isomorphism ker(P(L)=FS
from (5.12) and the decomposition AP=ker(P(L))®FS from (5.4) or the
initial condition y|G=x. Actually nothing is proven about ker(P(L)). The
corollary 45 implies
(71) Corollary : Data as in (68). The operator H(R) 1s K{t} - linear, i.c. a
convolution with the matrix H or H(R){u) =Hxu, if and only if H is
proper, i.e. contained in K{t}P'™ [
(72) Corollary: In the situation of (68) H is weakly proper and can thus be
written as H=s™H' with some n<N*® and H'«eK{t}P'™. Then
H(R)=L™H'(R) by (45) or H(R)(u)=L"(H'*u) ,ucA™. So H(R) is the
convolution with H' followed by the left shift L™, (L"z)(k)=z(n+k) for
all keN". ||
In order to have an analogue of the decomposition (5.4) too I specialize

the considerations to systems
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(73)  S:={(uy)cA™"P; P(L)(y) = Q(L)(w)} , PeK[s]P'P, det(P)*0,
where I make the additional assumption that P¢K[s]P'P is a square matrix
with non-zero determinant det(P) and weakly proper K(t):= =P(s)" ' in
K{{t}}P'P . Notice that K denotes both this matrix and the ground ring. By
(55) this means that det(P) is cw -unital. The data and results of
corollary 55 are applicable, and I use them here. The following theorem is a

discrete variant of the Cauchy-Kowalewskaja theorem (see [HO1], §9.4) .

(74) Theorem (Cauchy problem): Assumption (42). Consider the system
(73) with P(s)eGlp(K{{t}}), i.e. with cw-unital det(P(s))#0. Pose
K(t):=P(s)™! and H(t)=P(s) 'Q(s)=K(t)Q(s). Data as in (55). Then
(75) AP=ker(P(L))®im(K(R))s y=m (y)+K(R)P(L)(y)
with the projection = ==idAp-K(R)P(L) onto ker(P(L)). The “"Cauchy
problem”
(76) P(L)(y)=Q(L) (u) with the initial condition m( y-x)=0
for arbitrarily given u¢eA™ and x¢AP has the unique solution
y=m(x)+K(R)Q(L)(u). The operators H(R) and K(R)Q(L) do not coincide
in general, but differ by t H(R)=H(R)-K(R) Q(L) which is a K-linear map
into ker( P(L)), hence
H(R)(u)=K(R)Q(L)(u)( ker(P(L)).
Proof : The equation P(L)K(R)=idAp from (58) and lemma 5.9 induce the
decomposition (75). If y is a solution of (76) then
y-m{y) *K(RJP(L) (y) =7 (x)+K{R)Q(L) (u).
On the other side y:= 1t(x)+K(R)Q’(‘L)‘Cu) satisfies
n(y)=n?(x)+m K(R) Q(L) (u) =m(x)
since ©?=n and im(K(R))=ker(m), and
P(L)(y)=P(L)(rx(x))+P(L)K(R)Q(L) (u)=Q(L) (u)
since ker(P(L))=im(n) and P(L)K(R)=id. This calculation also implies
P(L)(H(R)-K(R)Q(L))=0 as asserted. ||
(77) Remark: By (68) and (74) both H(R) and K(R)Q(L) are operators
from A™ to AP and can be considered as transfer operators. Even in the

one-dimensional case r=1, s=s;, however, they do not coincide. Consider
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for instance for r=m=p=1 the equations

szy=(1+s)u , p=s? , Q=1+s. Then
K(t)=t?, H(t)=t%(1+s)=t%+t, K(R)Q(L)=R?*(Id+L) =R?*+RRL=R?+R(Id-¢)
with ¢ from (25) and H(R)=R2+R, hence

H(R)-K(R)Q(L)=Re , (Re)(u)=(0u(0)0----)

Whereas H and thus H(R) depend only on S and its 10- structure according
to (2.69), at least for a field K=F, B=F and A=F{t}, the operators K(R)
and K(R)Q(L) and the decomposition (75) depend on the special choice of
P. Consider, for instance, the system
S={(uy)eA®"?; P(L)(y)=Q(L)(wW}={(uy)cA® %P (L)(y)=Q,(L)(u)} with

P=(§%2). Pi=xP=(§ s;?;) X:=(§ $) ¢ Glo(FlsD

Then

cin=(5 %) kx5 85T (5 78
im(K(R)=K{t}(§) e K{t} (22), im(K (R)) = K{t}(§) @ K(t} (1) and

(P2)¢ im(Ky (R, (Th)¢im (K(R).

The dependence on P is thus demonstrated. So H(R) is the invariant transfer
operator whereas K(R)Q(L) is the unique one with "zero initial condition”. ||
(78) Corollary: Data as in (74). If the matrix Q is constant, i.e. if
Qe<¢KP'™ _ then

H(t)=K(t)Q and H(R)=K(R)Q=K{R)Q(L).
in particular, K{R) can be interpreted as the transfer operator of the system
{(uy)eAP"P; P(L)(y)=u}. || .

Convolutionary transfer operators and column reduced matrices

In the preceding section I have shown for [O-system (73) with weakly
proper matrices K(t)=P(s)~! and H over a ring K that a modified Cauchy
problem can be formulated and solved and that the transfer operators K(R)
and H(R) are given by convolution plus a left shift.

In this section I return to the canonical Cauchy problem of (5.41), in
particular to a ground field F=K and the transfer operators

K :=(P(L)|FS)~! and H=RQ(L).
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Conversely to (68) and (74) I am going to show that if K is given by
convolution then K is proper, IZ = K(R) , and moreover P(s) is column
reduced. The notations are those from (5.41), in particular A=F{t}=FNr.
The map (16) specializes to the identification
F{t}*'P = Homg()(F{t}P,F{t}*), P=P(R) ,
where a matrix P<F{t}*'P is identified with the multiplication (here: the
convolution) with P, P(u)=P(R)(u)=P*u. That a map is given by
convolution signifies that both its domain and its codomains are finitely
generated free F{t} - modules and that it is F{t}-linear. In particular,
the operator
K=(P(L)IES) ™!+ im(P(L)—> FO cF(t}P
is given by convolution if im(P(L)) is a free submodule of F{t}P and
K is F{t} - linear. Since K is defined as an inverse this is equivalent to the
requirement that FG is free and that P(L)!FG' is F{t}-linear.
I first investigate the F{t}-module structure of FG' . Recall that
G =U{{(j}x(D()+N"); j=1,~ ,p} c[pIxN©

and FG'cF[p]er=F{t}p. Define

a(j):=FP U * N (510 (n)t™; 3deD(j) with ned+NT}}=

=S{F{t}t%; deD(j)} for j=1,~ ,p .

Hence a(j) is the ideal of F{t} generated by the monomials td,deD(j).
Furthermore

FS = pU ({i}x(D(D+NT); =1, ,p} _

=IH{EP DN g p} =TH{a())s j=1 ,~ p} .
Hence FG. is the cartesian product of ideals-\of F{t}, therefore an ideal
of F{t}P with the componentwise ring structure and in particular a
F{t}-submodule of F{t}P, generated over F{t} by the elements
(0---0,t4, 0007, deD(j), t9 as j.th component. With the abbreviation
D:={(j,d);j=1,--,p,deD(j)} there results the surjective F{t}-linear map
(80) F{t}P — FG, a=(a(j q); (j,d)eD)H(Z{a(j,d)td;deD(j)},jEEP])
The power series algebra is a local commutative ring. In particular, a F{t} -

module is free if and only if it is projective, i.e. a direct summand of a free
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module (see [ Mats], th. 2.5). Hence the F{t} - module FG'=H{a(j); j=1,-,p}
is free if and only if all ideals a(j) are free. But an ideal in a commutative
integral domain is free if and only if it is principal. Since the ideal a(j) is
F{t} - generated by the monomials t%, deD(j), and since D(j)c N¥ is
discrete with respect to the cw-order, the ideal is principal if and only if
D(j) consist of just one element.

(81) Corollary :Assumption and data of theorem (5.41). The F{t}-module FG'
is free if and only if the sets D(j)=Mincw({neiNr;(j,n)edegF[s]l’kP})
consist each of exactly one element, say D(j)={d(j}, j=1,--,p. In this case
the surjection (80) is the F{t} - isomorphism

(82)  A(R):F{t}P >F% , a=(a;~a,) T A(t)a=(a;td9) ; j=1,—,p)T
where A(t)==diag(td(1),---,td(p))eF[t]p’P.

Moreover the reduced Griobner matrix P "8 is a px p-matrix satisfying
deg((P"®),_ )=(i,d(i)),i=1,~-,p (Compare (5.67)) and the F[s]-module
U:=F[s]" P is free with the rows of P8 as basis . ||

The structure of FC being clarified I return to the question under which
conditions I'Z is given by convolution, i.e. when FG' is F{t}-free and
P(L)[EC is F{t}-linear according to the considerations above. Assume
that FS is free and that hence the isomorphism (82) is valid. The re-
striction P(L)IFG. is then F{t} - linear if and only if the composed map
(83) P(L)A(R)=(P(s)A(t)) (R):F{t}P =F® — F(t}*

is F{t}-linear or, by (45) {ii), if and only if the components Pij(s)t““(j)
of P{s)A(t) are proper, i.e. contairied in F{t}. But this means that
cw-deg(P;;(s))s ., d(j). We have proven the

(84) Theorem (Characterization of convolutionary transfer operators)
Assumptions and data from (5.41). The transfer operator 'IV(==(P(L)|FG') -1
is given by convolution if and only if

(i) the discrete subsets D(j):=Mincw ({neN";(j,n)edeg(F[s]l'®XP)})
have just one element , D(j)={d(j)} for j=1,--,p, and

(ii) P(s)A(t) , a(t)=diag(t?? - t3P)) s proper, i.e.

cw-deg(P;(s))< ., d(j) for i=1,~,k,j=1,-,p.
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The condition (ii) is equivalent to P(s) admitting a representation
(85) P=P, _A(s)+P , PpocF PP ¢F[s]¥'P, with

Pij(s)=2{P;;(m)s™; m<_,d(j)}.
The matrices P, . and P are uniquely associated with P. ||
The representation (85) is analogous to [ KAI], p. 384, (22).
Assume now that the equivalent properties of the preceding theorem are
true, in particular, that the system has a reduced Grobner matrix pre
which is px p-square and that the module F[s] Lkp - E[s]V'PPE is free of di-
mension p . It is thus reasonable to assume from the start that P is a pxp-
square matrix itself , and I now make this additional assumption . i.e.
P<F[s]P'P, det(P)+0. In this case PT:F[s]P — F[s]P is injective and thus
P(L): AP — AP surjective by (2.56). Then P(L) induces the isomorphism
P(L)| FS S 3 AP=F{t} P If FC is free the F{t}-isomorphism
A(R) of (82) gives rise to the composed F-linear bijection

P(L)A(R)=(P(s)a(t))(R):F{t}P ARy e PL) prvp

in analogy to (83). As in (84) it is F{t}-linear if and only if U(t):=
=P(s)A(t) is proper. But the bijectivity of U(R) implies Ue¢Gl,(F{t})
or U(0)¢Gl,(F). On the other side

P=Pp, . A(s)+P, U(t)=P(s)A(t)=Pp +P(s)A(t)
with f:“(s)A(t)e(F{t}Jr )P'P where F{t}, ={a¢F{t};a(0)=0}. Thus
U(0)=Pp <Gl (F) and
(86) Theorem and Definition { Coluran reduced matrices ): In additior to the
assumptions and data of (84) assume that Pe F[(s]P'P is a pxp-square
matrix with non-zero determinant. The following assertions are equivalent:
(i) The transfer operator

Ki=(P(L)IFS) 1 : F{t}P S FOcF{t}P

is given by convolution .
(ii) The sets D(j) as in (84) consist each of just one element, say D(j)={d(j)},
j=1,-,p, in particular F[s]'"PP is free , and the matrix P<F[s]P'P admits

the representation
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P

. PcA(s)+P(s) , P, _<Gl_(F), A(s)=diag(s 4!, s4(P?) and
P;(s)=3{P;;(m)s™;m<.,,d(j)} for all i,j=t,,p.

A matrix P(s) of the form (87) is called column reduced in analogy to the

one-dimensional situation. ||

It is an obvious question whether in the situation of the preceding theorem

the Grobner matrix P*® is column reduced too . The answer is contained in

(88) Corollary : Let the equivalent assertions of the preceding theorem be
satisfied . The matrix P and its reduced Grobner matrix P ® are pxp-square
with the same row module , hence there is an invertible matrix UeGlp(F[s])
such that P*8=UP . Then P "8 is column reduced too if and only if UeGlp(F),
i.e. if P can be transformed into P'® by elementary row operations with
coefficients in F .
Proof : If UGl (F) then P™8=UP=UP_ A(s)+UP is a representation as in
(87) . Assume on the other side that P"® is column reduced too which ,
according to (86) , implies that P*8(L)|FS :FS = AP and

PTE(L)A(R) =(P"8(s)A(t))(R): AP =5 AP
is an F{t}-isomorphism . But then P"8(L)A(R)=(P"8(s)A(t))(R)=

=(U(s)P(s)A(t))(R)=U(L)(P(s)A(t))(R)=U(L)(P(L)A(R)) with F{t}-isomor-

phisms P"8(L)A(R) and P(L)A(R) , hence U(L)=U(t=R) is a F{t}-isomor-
phism and finally LI(s)eGlp(F{t})ﬂF[s]p’pc(F{t}ﬂF[s])P’p =FP'P by (40)
as asserted . ||

The Cauchy problem for systems with column reducéd matri)-?es ;ver rings.
In the preceding section it was shown that discrete IO - systems over fields
admit convolutionary transfer operators only if the defining matrix
P¢F[s]P'P is column reduced. In this section I am going to study such
systems over rings.
I assume the data of (66) with A=B{t}=B'Nr and

AP=B{t}P=Bl PTN", oy oy )T = (y,(n)sj=1, ,p, neN™)
with yj=(yj(n);neINr)=Z{yj(n)tn;ne[Nr} , ¥j(n) ¢B .

I consider systems
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(89) S={(uy)cA™"P;P(L)(y)=Q(L)(u)}, PeK[s]P'P , det(P)*0,Q=PH,
with the additional property that the matrix P is column reduced. This
means that P admits a representation
(90) P=P, _A(s)+P with Py <Gl (K) , P<K[s]P'P
A(s)= diag(sd(l),---, sdp)y, d(j)eN" , and
Py (s)=Z{P;(m)s™;m<cyd()))
The d(j) are just arbitrarily given vectors in N" and not derived from
deg(F[s]"'P P) as in (5.33) where a ground field F is considered. The
representation (90) furnishes P=Phc[Ip+Phc_1 P(s)A(t)]A(s).
The essential point is that
(F(s)a(t));=P(s);t¥ P =3{P;;(m)s™im<_,,d(j)}t 4=
oY =3{P;;(d(j)-m)t™; O< ., ms ,d(j}eK{t}, |,
K{t}, ={aeK{t}; a(0)=0} which implies
(92) U (t):=I,+Pu2' P(s)A(t) el +K{t},P'P cGl,(K{t}), U(0)=I, , and
P(s)=P,L U(t)A(s), K(t):=P(s)' =a(t)U(t)"'P, .71, uce) " to)=u(o)™t.
In particular K(t)=P(s) ! is proper and theorem 74 is applicable. The
column reducedness of P makes it possible again to replace the modified
initial condition m(y -x)=0 of (74) by a natural initial condition y|G=x.
Consider first the special case where P(s) is replaced by
A(s)=I,(I;+0)A(s). The relation A(s)A(t)=I, and (45) imply

A(L)A{R)=id and due to (5.9), the decomposition

AP’
(93) AP =ker(A(L)@®im{A(R))>y = {id-A(R)A(L)(y))+A{(R)A{L){y).
But A(L)(y1---yp)T=(Ld(“yi,---,L’d‘(p)“yp)z and (Ld(j)yj)(n)=yj(d(j)+n)
which furnishes

ker(A(L))={y<AP; y;(n)=0 for ned(j)+NT}.
With the definition

G’ ==U{{j}x(d(j)+Nr);j=1,--- ,p}={(j,n)e[p]xlNr ;d(j)s_., n} and

(94)

G:=[pIxN"\G'={(j,n)e[p]xN"; n ¢ d(j)+NT}
we obtain
(95) ker(A(L))=BS=

={y’-‘(yj(n);(j,n)e[p]for)e AP=BEPJXNr; yj(n)=0 for (j,n)eG'}
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where I have used the identification from (5.2). In generalization of (82)
the matrix A(t) induces the K{t}-isomorphism
(96) A(R):B{t}P—5>BS'c B{t}P, A(R) (y)=A(t)*y , where

BS' ={y=(y,(n);(j,n)¢[p]xN"); y;(n)=0 for (j,n)eG} .
Using (95) and (96) we see that the decomposition (93) coincides with
the natural decomposition (S5.3)
(97) AP= BS B S | ngi=id-A(R)A(L)

where TthAp=B[p]’<Nr—-> BC,y—ylG,

denotes the natural (restriction-) projection.
We now return to general systems (89) satisfying (90). The representation
P(s)=P,.U(t)A(s) implies P(s)A(t)=Py U(t) and finally P(L)A(R) =
=P, U(R) according to (45). Since Pp. resp. U(t) are invertibe in
G1,(K) resp. Glp(K{t}) the same is true for the K{t}-linear map
P,.U(R), i.e. P(L)A(R)=P, _U(R)eGlg .} (AP). There results the chain

of K{t}-linear isomorphisms
8(R) oG P(L)|BC’

= -3

(98) AP AP with

(99) (P(L)IBS) ™' = A(R) (P, U(R)) 1= A(RU(R) " P! = K(R)
and im(K(R))=im(A(R))=B® . Also the equation P(s)K(t)=I implies
P(L)K(R)=id and by lemma 5.9 the decomposition

(100) AP=ker(P(L)@im(K(R))=ker(P(L))®BS .

But this is the condition (5.4) of theorem S.5 in the abstract Cauchy
probiem, generalized without difficulty to a ground ring K and A=B{t}
instead of A=F{t} as in (5.5). The theorem-5.5 and the corollary S.11
thus yield the following result which sharpens theorem 74 under the
condition of column reducedness.

(101) Theorem (The Cauchy problem for column reduced matrices)
Assumption (66), A=B{t}=BNr. Consider a 10 - system

(89) S={(uy)eA™ P, P(L)(y)=Q(L)(u)}, PH=Q,

with a column reduced, px p - square matrix P¢K[s]P'P with the represen-
tations

(102) P=P, .A(s)+P =P, U(t)A(s)
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as in (90) and (92). Notations as above. Then:
(i) The map P(L)|BS : BG = AP is a K{t}- isomorphism with inverse
K(R)=(P(L)[BS)™!, K(t)=P(s)!.
(ii) Ap=ker(P(L))€BBG'with the projection m:=id-K(R)P(L) onto ker(P(L)).
(iii) The Cauchy problem
P(L)(y)=Q(L)(u) , ylG=x,
for arbitrary u¢A™ and xe BE has the unique solution
y=1 (x)+K(R)Q(L)(u)c¢AP.
(iv) The maps
ker(P(L))=B€ , y =n(x)¢— x=y|G ,

S=A™xB , (u,y)e— (u,x), x=y|G , y=n (x) +K(R)Q(L) (u),
are inverse isomorphisms.
Recall that the operators H(R)=H(t=R), H=P(s)_1Q(s), and K(R)Q(L)
do not coincide in general, but H(R)-K(R)Q(L):AP — ker(P(L)). ||
(103) Remark: In the preceding theorem one may assume without loss of
generality that Py is the unit matrix I, . For S can also be represented as

S={(uy)eA™ P ; P, (L)(y)=Q(L)(u)}

with P;:=A(s)+Pp . 'P =P, P=U(t)A(s) and Q;:=P,,2' Q. Then
K;(t):=P; ' =K(t)P,., P{(L) =Py . 'P(L) and K,(R)=K(R)P, .. The
remaining data derived from (P{,Q;) coincide with those derived from (P,Q).||
(104) Remark: If K=F is a field the vectors d(j)¢«N" appearing in the
representation (90) of P are in general not those derived from
deg(F[s]"'PP) as in (5.33). Consider, for instance, the special case

r=1, s=s;, and the example

P(s) = (:2 9 =(§)2 )+ (2 L)=a()+F (), d(n)=2,d(2)=1 .

By elementary row operations P can be transformed into the unique reduced

Grobner matrix or Hermite form (see (5.72))

pre- (s} 0)-=(2 "1 )ps) with

deg(s3-s,0)=(1,3)e[2]><lN and deg(sz,1)=(2,0)e[2]><|N, hence
deg(F[s]"'?P)=deg(F[s]"?P &) ={1}x(3+N) U {2} x (0+N )=
+{1}x(2+N)U {2} x(1+N)
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But P7E=(557% 0)=(570) (3 9)

is also column reduced and theorem 101 is applicable to P'® jpstead of P.

The initial conditions and other data differ, however, in these two cases. ||

The Cauchy problem for simultaneously column and row reduced matrices

The statements of (101) can be sharpened if the matrix P, Py, =1, without
loss of generality, is also row reduced. For the beginning consider a system
S as in (73) where the matrix P is row reduced, but not necessarily column
reduced, i.e. where P¢K[s]P'P admits a representation
(105) P=A(s)+P(s)=A(s) (I, +X(t))=A(s) V(t)
where A(s)=diag(sd(1),--~,sd(p)) and ﬁij(s)=2{ Pij(m)sm;m<cwd(i)}
for all i,j or, equivalently, where X(t.)==A(t)l;(s)e(l({t};,)p’p or
V(t)=I,+X(t)eGl,(K{t}) with V(0)=I,.
Again K(t):=P(s) '=V(t) 1A(t) is proper and (74) is applicable. Under
these conditions the projection ® of (75) can be given in more detail.
Obviously K(R)=V(R) " 'A(R). Moreover P(s)=A(s)V(t) and (45) imply
P(L)=A(L) V(R). We conclude
n=id-K(R)P(L)= id-V(R) “'A(R)A(L)V(R).
From (97) we derive A(R)A(L)=id-n g where
TG =AP=BEPJXNr—> BC, y—> y|G, is the canonical projection. Substituting
this into the last expression for ® yields = =V(R)? g V(R). Moreover
V(t}=1,+X(t), hence V(R)=1d+X(K) and n =V(R) '[ng +mgX(RV].
I collect these results in the folloWiﬁg .~
(106) Theorem (The Cauchy problem for row reduced matrices) Assume in
the situation of theorem 74 that P is row reduced with the representation
P=A(s)+P(s)=A(s)(I,+X(t))=A(s) V(t)
with X (t):=A(t)P(s)e(K{t},)P'P and V(t)¢Gl,(K{t}.
Let K(t):=P(s) "=V (t) 'A(t), hence K(R)=V(R)“'A(R). Then the
projection m®=id-K(R)P(L) onto ker(P(L)) has the form
(107) n=V(R) g V(R)=V(R) ![r g + ng X(R)]

where mg:AP — BG,y > y|G, is the canonical projection. The Cauchy
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problem
(108)  P(L)(y)=v with the initial condition (V(t)*y)|G=(V(t)*x)|G
for arbitrarily given ve AP and x<¢AP has the unique solution
y=V(R) " 1m g (x)+m g X(R) (x)+A(R)(MI=V () T+ [x|G+(X(t)*x)[G+A(t) *v]
Remark that the case Q=I, is sufficient for this theorem.
Proof : The equation (107) was derived above. the initial condition
Tt()"X)=V(R)_171'GV(R)()"X)=O from (76) is equivalent to
[V(t)*x(y-x)]IG=0 since V(R) is bijective. The solution
y=m(x)+K(R)(v) of (108) from (76) has the asserted form by the
preceding calculations. ||
The best result is obtained when P is both column and row reduced. The
main point is that the initial condition for the Cauchy problem is the

natural one.

(109) Theorem (The Cauchy problem for both column and row reduced
matrices) Assume in the situation of theorems (101) and (106) that
P(s)¢K[s]P'P is both column and row reduced, i.e. admits representations
P(s)=A(s)+P(s)=[ I,+P(s)A(t) JA(s)=U(t)A(s)
P(s)=A(s)[ I,+A(t)P(s)]=Aa(s)V(t)

with P(s)A(t), X(t):=A(t)P(s)e(K{t},) PP,

hence U(t),V(t)eGl,(K{t}), U(0)=V(0)=1,.
Then the statements both of theorem 101 and of theorem 106 are true.
in particular the Cauchy-problem
(110) P(L)(¥)=w, y|G =x,
for arbitrarily given veAP and x¢BS has the unique solution
(111) y=V(t) he[x+mg(X(t)xx) +A(t) xv]. ||
The very explicit form for y comes from the row reducedness of P as in
(106). The column reducedness implies K(t)=A(t)U(t)~ !, hence
K(R)=A(R)U(R)_1, im(K(R))=im(A(R)=BG. and the decomposition
Ap=ker(P(L))®BG' from which the natural initial condition is derived as
in (5.5) or (101).

The operator Tt X(R) can be further transformed. I use the equation
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nt g=id-A(R)A(L), hence m gX(R)=X(R)-A(R)A(L)X(R). Since P is row
reduced the matrix P in P=A(s)+P(s) can be expressed by
Py, =2{P;;(k)s®;k<,,d(i)}, hence X(t)=A(t)P(s) satisfies
X ()=t TP ()=Z{P ()t TV ke d (D)},
X(R);;=X;;(R) = =Z{P;; (ORI V7K k< L d(i))}
Furthermore
(A(R)A(L)X(R));; = RED LD x(R) ;=
R4 3 (p. j(k)Ld(i)Rd(i)—k; k< d(i)}=
RYDV TP (KLY k<gynd(D} = Z{P;; (R P (id-n 1) k< yd(D}=
=S{P; (R R ke Ld(D} - T{P; IRV TR k< L d(D} =
=X;;(R) - Z{P;; (IR "M ke d(i)}
where I have used the equations Ld“)—de(”—kﬂdA from (28) and the
projection
mi=id-R¥L¥ :A=BN — BC®) 4.5 a|G(k),
with G(k):={neN"; ne k+N" } =N"\(k+NF") as in (97).
The above calculations lead to the
(112) Corollary Assumption as in theorem 109 . Then the operator
© ¢ X(R):AP — AP has the components
(g X(R)); =3{P; (R "M s k< d(i))
where P;;=3{P;;(k)s®;k<_,d(i)} and
mii=id-RELY: A=BN" — B 4 a1G(K) , G(K):=NT \(k+NT ).
I'he unique solution y of the Cauchy problem
P(L)(y)=v, y[G=v,veAP,x<BC,
has the form
y=I+X(e) ™ % z,2=(z;+2,) Tex+ng X(R) (x) +A(t) *v
2;=x;+ Z{P ()t D TR a (% 1G(K)); j=1, ~,p , k<gwd(D} +t31) wy,
for i=1,--,p. ||
Generalized Roesser systems
The original version of this type of systems is due to Roesser [ ROE ] (also

compare [TZ]) . The notations are those from (109) and (112) . The

generalized Roesser system is given by
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(113) P(s)=A(s)-A,AeKP'P  A(s)=diag(s (1), :Su(p) ) Isuli)sr.
The vectors d(j)eN" from (90) are d(j)=e,(;)=(0--010--0),1 at the u(j).th
place. The matrix P is row and column reduced with P(s)=-A. The initial
set G is

G :={(j,n); ned(j) +N" }={(j,n)e[p]xN" ;n(p(j))=0} .
The Cauchy problem P(L)(y)=v,y|G=x, specialises to
(114) y,(n(D),—n(gi)+1,-,0(r) ) =Z{Ajy;(n);j=1,~,p}+v;(n), neN"
with the initial condition

r i = .
{neN" ;n(u(i)) 0};1=1,---,p}-

y;(n)=x;(n) for n(u(i))=0,xeBE=[]{B
The matrices X(t) and V(t) in (109) are given by

P(s)=A(s)(Ip—A(t)A)=A(s)(Ip+X(t))=A(S)V(t)

X(t)=—A(t)A=-(g;(';')‘;s‘" ) Vit)=I,-A(t)A.

Moreover im(X(R))cim(A(R))=BS and hence m X (R)(x)=X(R)(x)|G=0
in (111). The unique solution y of the Cauchy problem is
(115) y=(I5-A() A) ™1 w (x+A(t)#v) , AL *#v= (t, (1)* Ve, ty(p)*Vp) T
For r=1 the Roesser system reduces to the one-dimensional standard system
y(n+1)=Ay(n)+v(n),n=0,1,--, y(0)=xe¢B
with the solution y=(Ip—tA)_1*(x+t*v).
The above theory was developed over rings and can be applied to many new
situations. Consider, for instance, the polynomial algebra F[sq,sy,,s.]
over a field F with one distinguished indeterminate sg and write it as
Flsg, ,sr]=K[sb]_: K:= F[sy,~,s0] .
In this situation the standard example (S5) i;\applicable with
B=FN"=F{t{,,t.} and
A=BN = (ENO)N_pNANT pNTT o e b=l by b}
whose elements are written as
a=(a(n); neN")=3{a(n(0), ,n(r))t, "t 2 neNT}=
=3{a(n(0),-)ts™°; n(0)eN} with
a(n(0),-)=(a(n(0),n(1),-,n(r);(n(1),--,n(r))eN"). The operations are

those by left shifts. Then
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(116) Pi=sgl, - A, Ac¢KP'P = F[s,~,s.]P'P
gives rise to generalized Roesser system as above, and the Cauchy problem
(117)  y(n(0)+1,n(1),~ ,n(r)=Ay(n)+v , veAP , y(0,-)=x<B™,
has the unique solution y=(Ip-toA)—1* (x+ty*v). The main point is that
the arbitrary matrix A with coefficients in the polynomial algebra
F[s,~,s.] is considered as a constant matrix with coefficients in the new
ground ring K . Matrices of the type (116) lead to hyperbolic systems in the
continuous case (see [TR], 8§15 ).
(118) Example: Consider the easiest case
r=1, Flsg,s;]=F[s{1[so,], p=1 , and P=s,-sy, A=sy,

with yeFN =F(to,t}=F{t}{to)= (FN){to},veF{to, t;}. The Cauchy
problem is
(119) y(n(0)+1,n(1))-y(n(0),n(1)+1)=v(n(0),n(1))

with the initial condition y(0,-)=x or y(0,n(1))=x(n(1)),
where x=(x(n(1));n(1)eN)=Zx(n(1))t;*Ve¢ B=FY and
v=2{v(n(0),n(1)t *¢," . neN?}. The solution y is
y=(1-tgsy) " Hx+tgv). But (1-tysy)  =3{s;"®t,"°”;n(0)¢N}, hence

(1-tgs) 'x=3{s;"Px t,2?; n(0)eN} =

=3 {x(n(0)+n(1)t "¢, * P neN?) or
((1-tgsq) "'x)(n(0),n(1))=x(n(0)+n(1)). Also
(1-tosy)  Ttova(Tes Xt (T v, It ™ =3 s v, e < 1t =
=3 n(or» o (T8 v(n(0)-k=-1,-);k=0 ,~ ,ai0)-1}}i " =

n(O)tln(l) )

=3 orse.ni) (S{v(n(0)-k-1;n(1)+k); k=0,~,n(0)-1})t,
Comparing coefficients we obtain

(120) y(n(0),n(1))=x(n(0)+n(1)) + X{v(n(0)-k-1,n(1)+k);k=0,--,n(0)-1} .
For n(0)=0 the second sum is empty with value O and yields the initial
condition y(0,n(1))=x(n(1)). ||

(121) Example : The generalized Roesser systems over rings also include
certain singular systems as in [CPK ] . Consider the matrix

So"l -S4

(122) P(S)::<Sos1"s1 So_l)eF[so,si],Fafield
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The equation P(L)(y)=v is equivalent to the system

y(n(0)+1,n(1)) -y (n)-y,(n(0),n(1)+1)=v,(n) )

(123) { eNZ,

,n
yi(n(0)+1,n(1)+1)-yl(n(O),n(1)+1)+y2(n(0)+1,n(1))-yz(n)=v2(n)
Writing P(s) as

00 0 -1
P(S)=(1 0)5051+Izso+(-1 0)51“12

00
shows that the system (123) is singular since E==(1 0 ) is not invertible . On

the other side the representation
10 1 Sy

P(s)= (511 )[5012'(0 1—512)]
L. 2,2 -
proves P(s) to be column reduced as a matrix in K[s,]**,K:=F[s,],

1 O
Phe =(s, 1 )¢Glp(FlsD), d(1)=d(2)=1 . The initial condition for (123)

according to (95) is
y(0,-)=x=Z{x(n(1)t, ™" ;n(1) N }¢ F{t}?
The Cauchy problem P(L)(y)=v , y(0,-)=x , has the same solution as
[solo-(0 1-52) Jy=(Ls, 1 v\ 5(0,-)=x,

and this is of the type (113) with the unique solution

1 1 O
y=[12-t0( 0 1_85112)]—1*[x+t0*( -s, 1 )v]:

(124) sy . {1 0 .
_512) to *[x+to*( -5, 1)v];ke[N} with

1
=Z{(o1

1 sy k ( 1 Z{(ilfl)sizi+1(—1)i;i=0,--',k~1} )
0 1-s,2 0 Z{(';)sizi(-ni ; i=0, , k }

The final solution is derived as in (118) . 1

Systems according to Fornasini/Marchesini [ FM ] and Baratchart [ BA ]
These were introduced by Fornasini and Marchesini in [FM1] and [FM2] for
the two-dimensional situation and then developped in a series of papers . A
survey article is [FM3] . Higher dimensional systems of this type were
considered by Baratchart [BA] . The main observation is that , over a field F,
any proper rational matrix H ¢ F(sl,---,sl_)p’m admits a representation (125 )
below . Compare [FM3] , proposition 2 on page 50 , for the two-dimensional
case and [BA] , theorem 2 , in general . I am going to study such systems

over rings under the assumption (66) . Pose d:=(1,---,1)¢N" . For ns . d
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this implies s™ =[] {s;; n(i)=1} and sd_"=H{si;n(i)=O} . Consider cw -unital
matrices P ¢K[s]P'P of cw-degree d = (1,---,1) which are of the form
(125) P=s? I+ S{ P(k)s" jk< ,d}, P(k)eKPP
It is customary here ( see [FM3] , [ BA] ) to define A(k) :=-P(d-k) for
O0<_, ks _, d such that (125 ) gets the form
- <d k. p:P
(126) P=sd1_-3{Ad-K)s" ke, d}, Ak K
This matrix is obviously row - and column reduced as in theorem (109) with
A(s)=s91 =diag(sP,~sP) , P(s)=-Z{A(d-k)s"; k< _, d}, and

X(£)=A(t)P(s) = -S{A(k)£"; 0<__ k <__d)

The initial set G is
G={(i,m);i=1,-,p, m(p)=0 for at least one p}=[plx{ NT\((1,--,1)+N")}.

By (112) the operator m  X(R) has the form

(r gX(R)), ;=-F{A(d-k); ,RY™® =, 50 k< d} or

w cw

e X(R)=-Z{A(K)R" 0<_ ks _ d}

d-k
where m ;_, is the canonical projection of BNr onto BE(4-%) and
G(d-k)=N"\((d-k)+NT") . Further
m ¢ G(d-k) ®m ¢ (d-k)+N" & m+k ¢ d+N* &
& There is a p ¢ {1,---,r} with m(p)=k(p)= 0 . Hence
G(d-k) = { meN" ; 3 o ¢ [r] with m(p)= k(p)= 0} .

In particular G(0)= G(d-d)=Q and =0 . Altogether we obtain the following

(127) Theorem : Assumption (66 ) . Consider the column reduced pxp- matrix

Pi=sd 1 -Z{A(d-K)s*; 05 _ k< _ d}, A(d-k) KPP, di=(1,~, 1) ,

cwW

as in (126) . Define the initial set G:=[p]x(IN"\(d+N¥)) as above . For

0<_wk<_,d let be G(d-k):={meN;3pelr] with m(p)=k(p)=0} and w4,

r
the canonical projection from B™ onto BE¢d7K)

. Then the Cauchy problem
P(L)(y)=v, y|G=x , veB[PJXNr, xe BG =g [PIx(NT\(d+N")
y(n+d)=>{ A(d-k)y(n+k); Os__k<__d}+v(n),y(n)=x(n) for neN"\(d+N")
has the unique solution
y=[I -Z{A(KIt;0<_ ks _ d}]"xz with
z = x-Z { Alk)t**(x|G(d-k)); 0< _ k< _, d} +t, =t *v

where (x|G(d-k)):=(x,1G(d-k),~,x 1G(d-k)T . |
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Appendix : The abstract operator calculus
(128) Assumption : Let D:=F[s]=F[s,,-, s, ] be the polynomial algebra over
a field F and A a F[s]-module . ||
For the special case A=FNr=F{t} I introduced the right shifts R, in (10) .
They were essentially used in the considerations of this paragraph . Here I
explain without proofs what can be done in general , in particular for the
continuous case of partial differential equations . The book [PR] is devoted
to this type of operator calculus for r=1. The symbolic calculus with distri-
butions according to Schwartz [SCH], Tome II, page 32, is different . I use
the notations of this paragraph with K=B=F and A instead of B{t}.
(129) Definition ( operator calculus) : An operator or operational calculus on
the F[s]-module A is given by r F-linear operators R;: A— A , i=1,-,r, with
the following properties : (i) The operators satisfy the commutator rules
(23)  R;R;=R,R,; and R,L;=L; R, for all i*j and L ,R;=id , for all i .
(iia) Any equation (id-R™L™)a(R)=0, meN" ,m*0,acF[t], implies a=0 .
In particular , A is a faithful F{t]- module with respect to g from (20) .
(iib) For every beF[t]NU(F{t})={be¢F[t]; b(0)+0} the operator
b(R)=b(R1,---,Rr) in EndF(A) is bijective . ||
Then the map
(130) F[t]lg =F(t)NF{t}=F(s)NF{t}— End o (A),a(t)/b(t)— a(R)b(R)™,b(0)*0,
is an injective algebra homomorphism . Furthermore the map
(131) ~ Fltlp=F(ONF{t}}=F{tl [s1— End (A}

x=s™a(t)b(t)™ — A(R):=L™a(R)b(R)!

is well -defined and satisfies the product ruI; from (37) . The results (40),
(45),(68) and (74) are valid with F{t]g resp. F[t] . instead of F{t} resp.
F{{t}} . The relation
(132) Cltlg=c(t)Nc{t}=C(s)NCc{t}=C(t)NCt>
shows that the preceding results and hence many results of §6 hold for the
large injective C[s]-cogenerator C{t)> of all convergent power series from
(1.13) . For A=C®(R") one obtains an operator calculus via
(133) (R F)(t):= [t £t ¢

Tty ot )dt, fe C®(R) (see[BE], Ch.V)

i-1’ i1



- 138 -

It is easy to see that for a=Xa_t" ¢ C{t> the sequence
a(R)(f):=2{a_(R"f)(t);n ¢IN"} converges compactly and defines a C* - func-
tion a(R)(f) and finally a C-algebra homomorphism
(134) €<{t>— End o(C®(R")), a— a(R).
This implies the condition (iib) of (129) . The two conditions (i) and (iia)
are easy to verify and give thus rise to an operator calculus on C®(R") as
asserted . The same operational calculus works for 6(C") . It is interesting
to observe that no operator calculus of the type (129) exists for distributions .
More precisely I can prove
(135) Theorem : Assume that R:'(R)— P'(R) is an arbitrary C-linear
right inverse of the differentiation operator L on distributions in one variable .
Then there is a X ¢C such that the linear equation

(1+Xt)(R)(F)=f+AR(F) =1, F D" (R) ,
has either no or infinitely many solutions f . This means that (1+Xt)(R) is
not bijective and hence that (129),(iib), is not satisfied for any right inverse
of L.
I proved this theorem with the help of [SCH],Tome I, Ch.II, §4, the Paley-

Wiener theorem and L. Baratchart . ||

7. APPLICATIONS OF THE DUALITY THEOREM TO STANDARD QUESTIONS
OF SYSTEM THEORY
(1) Assumption : In this whole paragraph D is a commutative, noetherian inte-
gral domain with quotient field K and. A a large injective cogenerator ovér D.
Under these conditions the duality i:l;eo‘fem 2.56 and the theorems 2.69 and
2.94 concerning 10 -structures and transfer matrices are valid. This assump-
tion is satisfied for
D=F[s]=F[sy,~,s,.]C K = F(sy,,s,)
and the cogenerators A from examples (1.7) to (1.24)
Transfer equivalence and ( minimal) realizations
(2) Reminder : The duality theorem 2.56 induces several lattice isomorphisms.

I sum up the corresponding results of § 2. I considered two non-degenerate

bilinear forms
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(3) {-,->:Dlx Al — A, {q,w>=21{q; wi,i=1,~~,l},qul,WeAl and
(4) S K'x K'— K, xoy =Zxy=x Ty, x,yeKL L
The latter is the standard non-degenerate symmetric bilinear form (" scalar
product”) on K'. These forms induce orthogonal or polar complements
Ut={weAl; {q,w>=0 for all qeU}, Uc D!
(S) st={qeD!; (q,w>=0 for all weS}, ScA', and
VT ={xcK'; x-y=0 for all yeV}, VcK!.
I write © (for polar) instead of L in the last case in order to make a
notational distinction to the first two cases. The lattice P (D') is that of
all D-submodules of D! or the projective geometry of D! (Compare (2.22) ).
In the same fashion P(K') is the projective geometry of all K-subspaces of
K!. By Fact (D!) I denote the lattice of all epimorphisms D!—5 M where
two epimorphisms f;:D'—> M, ,i=1,2, are identified if ker(f;)=ker(f5,)
or, in other terms, if there is an isomorphism ¢:M{—> M, such that
efy=f,. Finally Pf(A!) is the lattice of all subsystems of Al. For a lattice
L I denote by L°P the opposite lattice, ie. L with the inverse order. The
duality theorem 2.56, corollary 2.48 and standard algebra induce lattice
isomorphisms
(6) P(D")°P=Fact(D")=Pf(A"), Ue— M S
with M=D'/ U, U=ker(D'— M), S=S(M)=S(Dl/W=U", U=s*, M=M(S).
The one-one correspondence M<—— S is nothing else than the duality
M——S(M)=Hemp (M,S) applied to factor mcdules of D' and thus

k,1

subsystems S(M) of A'. In particular,~for a matrix ReD there results

the correspondence

(7) u=RTD*, M=D'/RTD*, S={weA'; Rw=0}, RcD*'!.

The non-degenerate form - induces the standard involutive lattice isomorphism
(correlation)

(8) P(KHeP = p(klH), vi— VT (V)T =V, in particular
(9)  (RTK®)™ ={gc¢K'; RE =0} and RTK ={FcK!; RE=0}T , ReKN'! .

In 2.91 I have also considered the exact functor "signal flow space”

(10) Syst(A) — Modf(K), S —> S ,
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where for M=D!'/U, U=RTD* | S and g are given by
(11) S={weAl;Rw=0}=Ut=(RTD*)*=Homp(M,A) and
(12) S={£¢K;RE=0}=(RTKN) "o (KW ™ = Homg(K®pM,K)
These data imply in particular
(13) m:=rank (M) =dimg (K ® p M)=1-rank(R) =input dimension of S.

On the lattice level the preceding data give rise to lattice homomorphisms
,4 (-)* K(?) ()T .
(14) Pf(Ah°P ~ p(pY) — P(k) = p(xhHer

S — uUu — KU &— V
where S=U%,U=S*, V=(KU)"=S, KU=V". In particular, for ReD*'1
S={weA'; Rw=0} , U=RTD* , K U = RTK", v={ £K'; RE=0}.

The exactness of the functor S+—>§ or, equivalently, of K® p(-), implies
that U— K U is really a lattice homomorphism, i.e.
(15) K(Uy+Uy) =K U+KU, and K(U;NU,)=KU, NKU,,
or, in other terms, the maps in (14) preserve finite infima and suprema. The
module M appears in (14) as
(16) K®p M=K®p (D'/U)=K!/K U (with the obvious identifications).
The preceding considerations contain all the necessary ingredients for transfer
equivalence and minimal realizations.
(17) Theorem and Definition ( transfer equivalence and transfer classes)
Assumption (1) is in force. (a) For subsystems

S;=S(D'/ U ={weAl; Ryw=0}cA', u;=R,TD*" R, D*D:1 =12,
the following statements are equivalent:
() S;=S, (i) KU;=KUy"
(iii) Kep(D1'/ u,)-= K®D(D1/U2) in Fact (K'), i.e. as factor modules
of KL
(iv) There are matrices XleKk(Z)’k“) and X,e KK k(2 guch that
R>=X;R; and R{=X,R,.
The relation

S;~S,: 6 S, transfer S, © g1=§2

is an equivalence relation on Pf(A'), called transfer equivalence. The

equivalence class of S is denoted by [S] and called the transfer class of S .
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(b) The map S —S induces the bijection
(18) PF(AL)/ 7T = p(kh,[s]1—S
Given a subspace vek! any system S with §=V is called a realization of V.
Proof: (a) Modulo the reminder (2) the proof is trivial. The equivalence of
(i) and (ii) follows from S=(KW)™ , KU=(8)™ , that of (ii) and (iii)
from K®D(Dl/ U) = K!/KU. The condition (ii) also signifies
RlTKk(1)=R2TKk(2), i.e. that R1T and RZ—r have the same column space
in K!. But this means the existence of representations
R, T=RyTX, T, R, T=R, TX, T or R{=X,R,,R,=X R;.
(b) A K-subspace V of K' is generated by VD' . Hence, in (14),
P(DH)—P(KD),u— KU, and S»—-)g are surjective. The homomorphism
theorem applied to the surjective map Sr——>§ and the definition of transfer
equivalence induces the bijection (18) . ||
The preceding theorem yields the bijection (18) between transfer classes of
subsystems of Al and K -subspaces of K!. The next result clarifies the
structure of a single transfer class.
(19) Theorem: Let VcK! be a subspace and let the system
S={weA'; Rw=0}=U", U=R'D¥, ReD*'! |
be a realization of V , i.e. V=§={Ee Kl; RE=0}=(K U)™ . The lattice
isomorphism (6) induces a lattice isomorphism
(20) {U;eD’; KU,=V™}°P = [S]={S,cA'; s, "2 s}, u, e>s,
where S1=[I1NJ‘ ‘and Uy =Sil. In particular, both sides of (20) are lattices,
i.e. closed under sum(+) and intersecty‘iar\l (.
Proof: It has only to be remarked that KLIT=I(L[=VTr if and only if
~ transfer

Sl=§=V, i.e. S ~ S. The last statement follows from

K(U; QUp)=K U; A KUp=VEAVT=vT ||

(21) Theorem ( Minimal realizations ) Assumptions of the preceding theorem.
(a) The submodule D'M V™ is the unique largest submodule of D! satisfying
V™ =K(D'MVT™). Hence Smin==(D1ﬂV")J‘ is the unique minimal realization
of V, i.e. the least element in the transfer class [S] of S.

(b) The following statements are equivalent:
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(i) S is itself minimal, hence least in its transfer class or S ;,=S.
(ii) The module M=M(S)=D!/Uu=D!/RTD* of S is torsionfree.
(iii) The matrix R is left factor prime in the following sense: If R admits a
product representation
R=X Ry with RyeDX 1 x p* kM " 5nq rank (R)=rank(R;)
then there is also a matrix XeD*'*!) such that R;=XR.
(c) The torsionfree factor module M/ T(M) of M is the system module of
S min » i-e. the injection S ; c S corresponds to the canonical map
can: M—> M /T(M) under duality. Here
T(M):={xeM; 3deD,d#0, with dx=0}
is the torsion submodule of M. The algorithmic construction of S_;. will
be treated in theorem 24.
Proof: (a) The lattice {U,;<D!;KU,=V™} is a sublattice of the noetherian
lattice P(D!) and hence itself noetherian and admits a maximal element. But
in a lattice (with finite infima and suprema) a minimal resp. maximal element
is automatically least resp. largest. It is obvious that D!NVT is the largest
D- submodule of D' satisfying K(D'MV™)=V™ . Hence S_;,=(D'NV™)*
is the unique minimal realization of V= § .
(b) For any module M the torsion submodule is obtained as
T(M)=ker(can:M—=>K®pM={x/d ; xeM,deD,d* 0}, x— 1® x)
In particular, M=D!/U is torsionfree if and only if
can:M=D'/U-—Kep (D!/U)= K!/KU, x —> X,
is injective or, equivalently, if LI=D,1r"7\K\H=DI(7VTt or if and only if
S=u'=(D'MV™)*=S ;.. But this is the eci-l:ivalence of (i) and (ii).
(i), (ii)= (iii) Assume that S=(RTD*)* is minimal and R=X R, with
rank (R)=rank (R). Obviously
S;:= ( RyTDRM))* ={weA'; Ryw=0} ¢S and

S, =(<K!; RyE =0}c § ={£K !, RE = 0}
But dim(§1)=l—rank(R1)=l—rank(R)=dim(§) and hence §=§1=V, i.e. S and
S, are transfer equivalent. The inclusion S; ¢ S and the minimality of S by (i)

imply S;=S. The factorization Ry = XR follows from (2.63) and this means
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that R is left factor prime or (iii).
The proof of " (iii) = (i) " is almost the same as that of "(i) = (iii)".
(c) The canonical map M—2, M/T(U) induces the K - isomorphism
(22) Kep M=Kep(M/T(M))
and the injection S(M/T(M))cS(M)c Al. The isomorphism (22) implies by
(12) that S(M/T(M)) and S(M) are transfer equivalent. By (b) the system
S(M/T(M)) is minimal, hence least in its transfer class. Hence
S(M/T(M))=S ninc[ST1. I
(23) Remark: In the literature the left factor primeness of matrices is con-
sidered only for matrices of the special 10-type
R=(-Q,P)¢DP'™"P det(P)+0, with H=P !Q according to (2.77), and for
factorizations R=X R, X; ¢ DP'P Then det(X;)*0 and rank(Ry) =p follow.
The left factor primeness in the sense of (21),(b) (iii) implies R{=XR,
hence R=X,;XR and R;=XX R. Since R and R, are px(m+p)-matrices of
rank p the latter equations imply X;X=XX;=I, or Xe GIP(D). Thus in
this particular case left factor primeness of R coincides with left factor co-
primeness of P and Q in the sense of the literature (Compare [Bos2], Ch. 3,
or [MLK] or [BFM 1 ). ||
The minimal realization of a given subspace VcK! of dimension dim(V)=m
can be constructively found what I am going to show now. Write V as a
column space V=XTD" | X¢K™!. Without loss of generality I may assume
n=m-dim(V) by choosing the columns of XT as a basis of V. Also by
multiplication of the entries of X wi'ch -a common denominator I may assume
that X has coefficients in D. Hence 1 assum: XeD ™ ! with
m=dim(V)=rank(X). Applying the polarity ® from (8) gives
VT={gcK';XE=0} and D'NV™={g<D'; XE=0}.
Now solve the linear system XE=0, XeD™! , EeDl , i.e. find a matrix
Roini=Rye DX11 such that the columns of RlT generate v™ND! over D,
ie. VEND'={gD'; XE=0}=R, TD*1), Then
S mini=Sy:={weAl; Ryw=0}=(VTODYH*

is the minimal realization of V according to (21). We have thus proven the



- 144 -
(24) Theorem: ( Construction of the minimal realization ) (i) Let
v=xTp"ckx', Xxe D™',
be an arbitrary subspace where n=m:=dim (V) without loss of generality.
Solve the linear system X£=0 in D', i.e. find a matrix R,,;, such that
D!NV™={EeD!;XE=0} =Ry, T DXV, R_._e D1 . Then

mi
Smin:z{w‘Al? Rminw=0}=(Vﬂ:ﬂ Dl)l
is the unique minimal realization of V. This means that S, ;,=V and that

S is least among all S with §=V.

min
(ii) If V is already given as
V=S={feK!; RE=0} , S={weA!;Rw=0}, ReD*'!,
then S is minimal itself, i.e. S=S_;, if and only if RTDX =R1TDk(“. This
signifies that there is a product representation Rmin=YR,YeDk(1)’k. Il
(25) Algorithm: To apply the preceding theorem one has to solve a linear
system XE=0 in the form
{EGDI; XE=O} :RminT Dk(l)’ RmineDk(l)’l’
and to compare submodules
RTpkcr,_, Tpk®
and to check their equality. For the principal case D= F[si,---,sr] (and the
F[s]-modules A from (1.7) to (1.24)) these problems can be algorithmically
solved by using the Grobner basis algorithms for submodules according to
[PAU], Kap. 4, and other references. Actually there are several program
packages doing exactly these jobs +{" Reduce” et al. }. Heiice the preceding -
theorem furnishes an efficient metho'd‘ for t}_lf construction of minimal
realizations. ||
The realization of transfer matrices H by IO-systems can be subsumed under
the preceding considerations. Indeed, according to theorem 2.94 the 1O-struc-
tures of a system Sc A! can be completely read off the subspace v:=ScK!
of dimension m=dim(§)=input dimension of S. After possibly permuting the
coordinates of K! one can write V in the form
V=graph(H)={( 1-;:5 ); EeKm} = (ém)Km , HEKP'™ p:=]-m=output

dimension of S.
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The corresponding decomposition w=( ;,l)e Al =A™'P s then a IO-structure
of S and H is the transfer matrix of S with respect to this IO-structure.
(26) Definition ( Realization of transfer matrices ) For a given matrix
HeKP'™ any IO-system
S={(;>6Am+p; Py=Qu}={we¢A'; Rw=0}, R=(-P,Q),PeD*"P rank (P)=p

with PH=Q or, equivalently, S=graph(H)=( II-rIn)Km
is called a realization of H (with respect to the given IO-structure (l)l:)e A™P O]
For a given decomposition

K'=K™"P-K™xKP or A'=A™"P=A™xAP

consider the projection proj: K™ P— K™, This induces the K-linear map
proj| V: V— K™ which is an isomorphism if and only if V has the form
V =graph(H) for some unique H. In other words, the map
(27) KP'™— {VcK!; proj| V:VXK™}, H— graph(H),
is bijective. Remark that the right side of (27) is a standard affine open
subset of the Grassmann variety of all m-dimensional subspaces of K! and
that (27) represents its standard parametrization. From theorems 17 and 21

we conclude the following

(28) Corollary and Definition ( transfer equivalence for IO-systems ) Two
IO-systems
(A piy SONE -
S y € H iy-Qiu}, PiHi—Qi,l—l,Z, rank(Pi)-p
with the same IO-structure (u,y) and transfer matrices H;, Hp e K?'™

are transfer equivalent, i.e. X

Si=graph(H1)=S2=graph(H\2) if~and only if Hy{=H,.

The minimal realization Sg:=S < A' of H or graph (H) has the I0-struc-

min
ture (u,y) ¢ A™"P and can thus be represented as
u . u .

Su={w=(, )« AP Rgw=0}={(, )¢ A™"P; Pyy=Quu}
where Rpy=(-Qu,Pgy) =R, ;n¢e DX, Py eD* P rank(Pyy)=p. |l
The construction of Sy can also easily be derived from (24). Indeed,

I
graph (H)=( g )JK™=(1,,HT)TK™.

This means that one may choose X==(dIm,dHT)eDm'l in (24) where
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deD,d+0, is a common denominator of the entries of H. Theorem 24 and
the preceding corollary furnish the following
(29) Corollary ( Constructive minimal realization of transfer matrices )
Given a matrix HeKP'™ and a (I0-)decomposition K!'=K™*"P=K™xKP
solve the linear system

T E _ E m+p
(dl,,dHD(;)=0 , (;)<D ,
where d+0 in D is an arbitrary common denominator of the entries of H in

K =Quot (D), i.e. find a matrix Ryg=(-Qp,Pg)e Dk’m+§ such that
{(E)GD”HP; (dIm,dHT>(f’] )=0}=RpTD*=( S:T ) DX
Then the I0-system

su={(y): A™"®: Puy = Quu}
is the minimal realization of H or Graph(H). Moreover

D"%Py={n<D"P;n He D" ™}
In words: Py is a "universal” matrix with coefficients in D such that Py H
has its coefficients in D too .
The algorithm (25) can be applied to calculate Py and then Qy=PyH for
D=F[sq,~,s.]. ll

Matrix fraction descriptions (MFD) and projectivity

The assumption (1) remains in force. I refer to [BOU 2] and [MATS] for
the notions and results concerning projective modules and dimension. Remem-
ber that 4 maodule is projective if and only if it is a direct summand of a free
module. The free modules D™ or, dtia)lly by (2.56) , the systems A™ are of
system theoretic importance in several ways, kin particular for the definition
(1.35) and because they admit a matrix calculus. For instance, the isomorphism
(30) D''*-Homp(D*,D))2Homg(A' A¥),RT— S(RT)=(w—> Rw)
from (2.57) combined with the transposition Dk’léDl'k,R% RT, makes it
possible to identify, and I do this,

(31) D' !-Homg(A!,A¥) ,R = (w—> Rw) (Identification).
I do not know in the moment whether projectivity for modules or, dually,

injectivity for systems (Compare (2.60) ) has a similar system theoretic
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significance. Therefore I make the following additional

(32) Assumption and main examples: Every finitely generated projective
D -module is free. By the theorem of Quillen and Suslin this is the case for
the polynomial rings F[sy,-,s.],r21, over a field F and also for their
quotient rings

Fls]lt :={p/q; p¢F[s],qe¢T} where TcF[s]\{0}
is a multiplicatively closed subset. ||
This assumption signifies that each injective system S is of the form
A™ m20, up to isomorphism. For a finitely generated D-module M and
every k20 there is always and trivially an exact sequence
(33) 0> Fr—>Fy_y— ~—Fg—F_;:=M—0
with free modules Fq,---,F _; of finite dimension. Then M has projective
dimension <Kk,
(34) proj.dim(M) <k if and only if F, is projective
too or, equivalently by (32), free for at least one or all sequences (33).
One says that the global dimension of D is sk,
(35) gl.dim(D) <k if and only if proj.dim(M)sk for all M¢Modf (D).
Hilbert's syzygy theorem says that for the polynomial algebra F[sq,-,s,]
and its quotient rings F[s]y as in (32). the inequality
(36) gldim(F[(sy, ,s.]p)sr
holds. The condition "gl.dim(D)<1" signifies that D is a principal ideal
domain and helds for Fl<;]1 in particular, i.e. for 1-d system theory.
I am going to show now that modul'eé of small projective dimension and
their systems according to the main duality theorem 2.56 have a system
theoretic significance. So assume first that M=D'!/U<Modf(D) is a module
with the system S(M)=LIL=HomD(D1/LI,A)cAl and that proj.dim(M)=<1
holds. The exact sequence 0 —> U C D' 2% M— 0 and the definition (34)

imply that U is free. We thus obtain an exact sequence
RT | can
(37) 0—DP—D — M-—0
with ReDP'!, rank (R)=p =o-dim(S), m:=1-p=i-dim(S).

The duality functor S applied to (37) yields the exact sequence of systems
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(38) 00— S C Al —R—-> AP — O or S={WEA1; Rw =0} with surjective R.
Possibly after a column permutation R can be written as R=(-Q,P),
P<DP'P det(P)*0, and gives rise to a 10-structure of S (Compare (2.69))
with the IO-form

S={(uy)eAm+p; Py=Qu} , P<DP'P  det(P)+0 ,
and the transfer matrix H=P 1Q¢KP ™. Conversely, such a 1O-representation
or exact sequence (38) imply the exactness of (37) by duality and then
proj.dim(M)<1. Summing this up we obtain the following
(39) Theorem and Definition ( Systems of projective dimension <1):
Assumptions (1) and (32). Let ScA! be a subsystem with the module
M=M(S), S=Homp(M,A), input dimension m and output dimension p,
hence 1=m+p. The following statements are equivalent: (i) proj.dim (M)<1.
(ii) At least one or each 10-structure of S admits a representation
(40) S={(uy)cA™"P,; Py=Qu}, PeDP'P det(P)+0,QeDP' ™,
The transfer matrix of S with respect to this 1O-structure is then H=P—1Q.
The latter equation is usually called a left matrix fraction description (MFD)
of H. ||
(41) Corollary : Since every matrix HeKP’'™ admits a left MFD H=P-1Q,
for instance H=(de)_1(dH) where d is a common denominator of the
entries of H we conclude that every "rational” matrix He KP'™ admits a
realization whose module is of projective dimension s1. On the other side,
for a D which is not principal, for instance for D=F[s;,-,s.],r>7, most
realizations S of H respectively the'rr‘madulei M are not of projective
dimension <1 and do not give rise to a left MFD of H. So the MFDs of
transfer matrices play their exceptional role only in the standard 1-d theory
and partly in the 2-d case as is shown in the next result. ||
(42) Theorem (Minimal realizations for gl.dim(D)s2). Assumptions (1) and
(32). The situation is that of theorem 24. If the global dimension of D is <2,
for instance for D=F[s;] and D=F[sy,s,], then the module
Dl/RmmT pk) Rinc DX‘V:1" of the minimal realization S min of Vc K!

is of projective dimension s1 , i.e. one may choose k(1)=p=1-m,m=dim(V).
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Minimal 2-d systems are treated in [ BFM ].
Proof : By construction (see theorem 24 and its proof) we have
U:={g¢D!; XE=0}=R_,;,  D*V’, xep™"!,

Thus U appears in the exact sequence

0— Uc Dl-——)-(—a p™ =5 pm/XD!— 0
The condition gl.dim(D)=<2 and (32) imply that U is free of dimension

dim(U)=1l-rank(X)=1-m=:p .

T

Choosing R in¢ DP'! such that the columns of R,,;, are a basis of U

furnishes the desired result. ||
In the remainder of this section I assume that the equivalent conditions of
theorem 39 are satisfied and that S is given as in (40) . The module M of S

appears in the exact sequence

p™*P > M— 0 .

(43) DP
Obviously, the matrix H admits a right MFD

(44) H=P ' Q=Yu ', Ue D™ ™, det(W)+0

too. This equation is equivalent to

(45) R(y)=(-Q,P)(¥)=0 or (UTYDHRT=0 or RTDP=im(RT)cker(uTYT).
By the universal property of the factor module M=D™*P/RTDP this is

again equivalent to a factorization

o __ can (UTYT) jna
(46) (uTyT): pm*P—5M — D™

of the map (UTYT), In general (U:F‘YT)md is not injective or, in other

terms, the inclusion RTDPcker(UTYT) is proper and the sequence

(47) 0— DP >D™P —— D™

is not exact, but just a complex. However, tensoration of (47) with K induces

the exact sequence

(48) 0—> KP

or, by the duality Homg (-,K), the exact sequence
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u
Y . R=(-Q, P)
(49) O——éKm—(———la K™P > KP—0
which means that
u
Y N
(v)
(50) K™=(A™" 7= Ss={CcK™"P, R{=0}

is an isomorphism. Indeed, det(U)+0 implies UeGI(K™)=G1,,(K) and

that (\l{l) : K™ — K™"P s injective. Moreover R( % ) =0, ( %)e K™'P

implies QE=Pn or n=P !QE=HE=YU ' and (E)=(¥)(u“z). But this
is the exactness of (49) at K™"P | The exactness of (4 7) respectively of its

dual sequence ( L[)

Y

R=(-Q,P)
(51) A™ —— A™P QP

AP 0

can also be fully clarified.

(52) Theorem: The equivalent conditions of theorem 39 be satisfied and
H=P !Q=YU™! be a right MFD of H,UeD™ ™ det(U)+0. The following
assertions are equivalent.

(i) The sequences

u
(Y) | mep RE-QP)

or (47) are exact, i.e. (?) induces a surjection

(¥ Jinar A —— 5, v— (7).

or a vector (;,1 )e A™"P  belongs to S if and only if it has the form

(;‘ )= (I;[} v, ie. u=Uv.y=Yv for some ve A™ .
(ii) S is a minimal realization of H ‘6r, in other terms by (21 b), the module
M=D™*P/RTDP is torsionfree.

Proof : Consider the commutative diagram

can (uTYT)ind,i

(UTYT)= p™*P — M > D™
(52a) N Le N
K®can (UTYT)ind,Z
(uTyT): K™*"P—— KepM K™=KepD™,

¢(x)=1®x. The map (UTYT)ind’i is injective if and only if
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TDP =ker ( ulyT ) , i.e. if and only if (47) and (51) are exact or,
equivalently, (i) is satisfied. The map (UTYT)ind,z is an isomorphism
due to the exactness of (48) and (49). The commutativity of the right square
of (52 a) implies the equivalence of : (i) is satisfied ®(UTYT)ind,1 is
injective © ¢ is injective € M is torsionfree, i.e. (ii) is satisfied. |l
Making use of the preceding theorem I can also characterize those systems
whose module is projective or, by (32), free. Freeness implies torsionsfreeness
of M and minimality of S, hence one may assume that the equivalent
conditions of (52) are satisfied. In particular, the matrices
PcDP'P det(P)*0, and Qe¢DP’'™ are left factor coprime by (21 b).
Similarly, I can and do assume that U and Y in (S2) are right factor coprime,
i.e. that U=U;X, Y=Y;X,XeD™' ™, imply Xe¢Gl_ (D).

(53) Theorem and Definition (Projectivity and zero-primeness) The equivalent
statements of (52) be satisfied. Moreover assume that U and Y are right

factor coprime. The following assertion are equivalent: (i) The sequence
u
(v) (-Q,P)

(54) 0— A ——> A™*P A >0

u
is exact. In other words, the map (Y ) induces an isomorphism

(¥ g

(55) Y )ina: AP=S, v (0

or any (u,y)eS can be uniquely represented as u=Uv,y=Yv with ve A™ .
(ii) The module M of S is free.
{iii a) The map R=(-Q,P): D™"P — DP is surjective and hence a split

. X4
epimorphism, i.e. there is a section matkix X\=( X2> such that

R ( ))2; ) =-QX +PX,=1,. In the language of the literature [ YG]: R is
zero-prime or Q and P are zero-coprime.

(iii b) The map RT = (-ST)= DP — D™"P s a split monomorphism, i.e.
there is a retraction matrix (Y;Y,) of RT such that (Yle)R—r =

=-Y;QT+Y,PT =1,

C:

(iva) The map Y) D™ — D™"P js a split monomorphism.

(iv b) The map (I_I—r T): D™*P—> D™ js an epimorphism or zero-prime
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and then automatically split.
Proof : The equivalence (iii a) and (iii b) respectively of (iv a) and (iv b)
is obtained by transposition. Remark that an epimorphism onto a free or
projective module is always split by definition of projectivity, that this,
however, is not true in general for a monomorphism defined on a free
module.
(i) ® (iv b) The exactness of (51) by theorem 52 implies that the sequence
(54) is exact if and only if ($)=Am —> A™ P s injective which, by the dua-
lity theorem 2.56, is the same as the surjectivity of (LITYT)=Dm+p — D™,
(i), (iv) = (iii) By the duality theorem A" is injective since D™ is projec-
tive. The isomorphism S=A™ from (i) implies that S=ker(R: A™ P — AP)
is injective and thus a system direct summand of A™*P . This and the
surjectivity of R: A™ P —> AP imply that R admits a system section or,

p

by (31), that R: pD™"P_, pr has a matrix section.

+p

p . . m
—> DP admits a section or RY: DP — D a

(iii) = (ii) If R: D
retraction X' then by (5.9)

D" P=RTD™ P oker(XT) and M=D™ P/ RTDP =ker (XT).
As a direct summand of D © the submodule ker (XT) and thus M are
projective and finally free by (32).
(ii) = (ivb) Conversely, if M is free then M is of dimension m or M’=‘*Dm
since K® pM=K™. Thus (46) can be completed to a commutative diagram

with vertical isomerphisms

T T
(UTYT): Dm+P can M ’(ue\Y ):ld Dm
[l %4 I
Dm+p m Dm XT Dm

which implies U=U;X,Y=Y;X, XeD™ ™. The assumed right factor
coprimeness of U and Y implies Xe¢Gl,,(D) and hence that

(UTYT)= p”P D™ is an epimorphism. |

(56) The well-known standard example (see [ WOL], Th. 5.3.1): In one-dimen-

sional system theory over the principal ideal domain D= F(s{]=F[s] a module
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McModf(E[s]) is free if and only if it is torsionfree. This implies that the
equivalent statements of theorem 53 are valid if and only if those of (21 b)
are true. Consider, in particular, a standard system
(57) sx=Ax+Bu or (sl -A)x=Bu , Ae¢F™ ™ BcF™"'™ xcA”, ucA™
where x is both the output and the state vector. Theorem S3 is applicable
with p=n, P=sI_ -A and Q=B. The surjectivity of

(-Q,P)=(-B, sl -A): F[s]™"™ — F[s]"
of (iii a) is equivalent to
(58) F[s]™ =(sI,-A)F[s]"+BF[s]™ or
F[s]"/(sIn—A)F[s]n =can (BF[s]™) where can:F[s]"—F[s]"/im(sI_-A)
is the canonical map. But
(59) F[s1™/(sI,-A) F[s1™= (F™,A), e;= e,
where e; denotes the standard basis of F"c F[s]” and where (F" A) is
the F[s]-module with the standard F-structure and s£=Af for E<¢ F® . But
then (58) is equivalent to
(60) F* = S{A'BF™;i=0,1,.. } = (B,AB,~, A" !B)F™",
i.e. to the controllability of (57). ||
In [ROC], Ch.IV, theorems 6 resp. 18, the systems S characterized in theo-
rems 52 resp. S3 are called weakly resp. strongly controllable in the special
case of A=[Rzzover [R[sl,sl_I,sz,sz—1 ] . In particular, these controllable
systems are minimal as in the 1-d case .
Observability of Rosenbrock systems of the type {(see {2.40) and (2.41))
(61) Px=Qu,y=Rx+Wu,xeA",,u‘e4m,yeAp, PeDX'™ rank(P)=n

—_

with the associated 10-systems

S'={(L)1<)eAm+n; Px=Qu} and

S==(I‘Y;g) S ={(;) e A™TP . 3x such that (61) is satisfied}

can be more simply defined than controllability and also characterized.
(62) Definition (Observability of Rosenbrock systems) I call (61) observable

it (Im?0

WR): S'= S is an isomorphism. This means that the state vector

function x can be reconstructed from the input u and the output y . (Com-

pare [ROC],IV.3, Th.20) . ||



- 154 -
Remark that observability is a property of the equations (61) and not just of

S, and signifies that (Iv"‘}g) is injective on S’ since by definition (I‘“A}g) S'=8.

(63) Theorem: Assumption (1). Data as in (61). The following assertions are

equivalent: (i) (61) is observable. (ii) R induces an injective map
ker(P: AP —> AK) —— AP

(iii) The matrix (11;) D™ — DK*P s a split monomorphism or,

(PTRT): DX*P— D™ is an epimorphism or zero-prime.

This generalizes [ WOL], Th. 5.3.1(b), to the multidimensional case.

Proof : (Iv’;g) : 8" —> Sc A™P s injective if and only if

ker(lvrsg)ﬁ S'={<§)6Am+n; u=0, Px=0,Rx=O} is zero. But this means
that Riker(P:A" — AK) — AP or (;):A™ — AK'P

are injective. The latter property is, by the duality theorem, the same as the
surjectiviy of (PTRT): DX*P — D™ or the split monomorphy of
(2): o7 — px
Remark that I did not use condition (32) in the preceding proof .
(64) Historical remark: The type of module theory which I have used in the
preceding considerations has played a role in other parts of system theory
too. For one-dimensional state systems a la Kalman over rings modules over
noetherian integral domains were used in [RWK] and [RS] . Matrix theory
over multivariate polynomial rings in context with multidimensional system
theory was essential in [MLK], [YG]"and [BOS 2], Ch.3, and is still
important in [BFM]. That most of the;e papers concern the 2-d theory only
is due to theorem 42 .

Rank singularities
Assumption (1) is valid. All theorems of this section are applicable to
D=F[sy,,s,]. The rank singularities are considered in [BOS 2], Ch. 3,
and [BFM] in context with stability and stabilization of systems.I look at
these from a higher point of view in the appendix on integral representations.

Let Spec(D) be the affine spectrum of all prime ideals of p of D with its
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Zariski topology. See [MATS], §4, [BOoU1]l, II, §4, or [MUM] for this
basic algebraic geometry. For peSpec (D) the local ring at p is
D,:={d/s;deD,s¢ p}c K:=Quot (D) ,

its maximal ideal is pp=Dpp and its residue field D(p):=D,/ pp with the
canonical map
(65) DcD, — D(p)==Dp/pp,d»——-a d(p):= d+ pp .
In the same fashion a finitely generated D-module
M:= D!/ RTDX ¢ Modf (D) gives rise to the Dy -module Mp=D,®p M
and the finite-d imensional vector space
(66) M(p):= My /ppMp=D(p)ep Mp=D(p)epM=D(p)/R(p) " D(P*
with the canonical map
(67) can:M —> M(p), x —> x(p):=(x/1)+ py Mp =18 x .
The dimension of M(p) is dim (M(p)) =1l-rank(R(p)) where one obtains
R(p) from R by application of (65) to the coefficients of R. For the prime
ideal O of D one has in particular
(68) D(0)=K, M(0) =K®p M, dim(M(0))=m=1-p, p:=rank (R) .
(69) Theorem: Situation as described above, in particular p:=rank(R) and
m:=|-p. Then

U(M):={peSpec(D) ; My is free} = {pcSpec(D);dimM(p)=m} =

= {peSpec(D) ; rank(R(p)) = rank(R)=p} ,

and this is an open subset of Spec(D) in the Zariski topology.
Prcof: By [MATS], th. £ 10 on page 28, the set
U(M):={peSpec(D) ; Mg is free 3 ‘i.s‘\open in Spec(D).
If My is free the identity K ®Dp MP=K®1;\M, (66) and (68) imply

dim(Mp) =dim (K® pM)=m and dim(M(p))=dim(D(p)®DpMp)=m.

Assume conversely that 1®x4,,1®x x;¢M, is a basis of

my
M(p)=D(p)® pM. Then, by Nakayama's lemma, 1®x4,,1®x,, in
MP=DP®DM generate Mp and finally the m vectors 1®x¢,,1®x,, in
K®DM=K®DPMP generate the m-dimensional K -space K ® pM, hence are
a K-basis and especially K-linearly independent. But then the 1®x;<Mp are

D - linearly independent too and finally a basis since they generate Mp. [l
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As in the preceding theorem one shows by Nakayama's lemma that
(70) dimM(p)2dim(K®pM)=m=1-rank(R) and rank( R(p)) < rank(R)=p
for all peSpec(D).
(71) Corollary and Definition (rank singularities , see [BFM]): Situation of
the preceding theorem. (i) The complement of U(M) is
RS(M):=Spec(D)\U(M)={ peSpec(D); My is not free}=
={p eSpec(D);rank(R(p)) < rank(R)},
and is called the set of rank singularities of M. It is Zariski-closed in Spec (D).
(ii) The set RS(M) is empty if and only if M is projective. If condition (32)
is satisfied this signifies by (53) that R is left zero- prime.
(iii) If M is torsion or, in other terms, if K pM=0 and m=dim(K®pM)=0,
then RS(M) coincides with the support of M, RS(M) =supp(M) .
Proof: (ii) A finitely generated module is projective if and only if it is locally
free, i.e. if and only if all M are free ( See [Boui], II, § 5, Th. 1).
(iii) If M is torsion then
U(M)={p; M(p)=0 or M, = 0} and RS(M)={p; M #0}=supp(M)
by [BOU1], II. 4.4. ||
(72) Remark: For a polynomial algebra D=F[sy,,s.] (or, more generally,
any affine integral domain) one may replace Spec(D) by F® as usual where
Fc F is an algebraic closure, for instance Rc C. (Refer to [MUMJ]). Any
E=(Ey,—.Ep)e EF gives rise to the maximal ideal
m(E):=ker(Fls]—> F, s; —E;) aud FcF{s]/mig)=Fls1(m(@))c F .
So D(p) from (6S) can be replaced iby‘f f}g\r p =m(E) and R(p) from (66)
by R(E) which is obtained from R by substituting &; for s; , i=1,--,r.
Similarly one defines
M(E):= Fogs M= F1/ R(E)T FX .

The subsets U(M) resp. RS(M) are replaced by the Zariski-open resp.
Zariski-closed subsets

Ug(M)={Ee F* ; Mm(g) is free }= {Ee F' ; rank (R(E)) =p} , p:=rank (R) ,
resp. RSE(M)={Ee f*’r; Mm(g) is not free} = {Ee I-"'r; rank(R(E)) <rank (R)}.

These considerations show that definition 71 really specializes to that of the



- 157 -
literature [BEM]. ||
In the next theorem I make the additional
(73) Assumption: The ring D is a normal domain of finite Krull dimension,
for instance D=F[s,,, s.]=F[s] or its quotient rings F[s]t . |l
A ring is called normal if it is a noetherian, integrally closed integral
domain. Refer to [MATS], § 5, for the Krull dimension of D or Spec(D)
and of its closed subsets. The codimension of a closed subset X of Spec(D)
is cod(X):=dim(D)-dim(X). Since D is normal the local rings D, of
dim (D)= height (p) =1 at the minimal non-zero prime ideals p are discrete
valuation rings (DVR) and hence principal ((MATS], Cor. of th. 11.5 on
page 82). A module NeModf (D) is called almost zero according to
[BOU1], VII, §4, if M,=0 for all p of height (p)=dim(Dj)=1.
(74) Theorem: Assumption (73). For a finitely generated D-module
M=D!/RTDX the codimension cod (RS(M)) is at least two if and only if
the torsion module T(M) of M is almost zero. This is the case if M is
torsionfree or, equivalently by (21b), if the associated system S(M) is
minimal (in its transfer class).
If the Krull dimension of D is at most two, for instance for F[s{,s], then
the condition cod(RS(M))22 signifies that RS(M) is finite.
Proof : Assume first that cod(RS(M)=22, i.e. height (p)22 for all p¢RS(M).
This implies that for a height one prime ideal p with principal D, p is not
in RS(M), but in U(M) and hence M, is free from whicii
T(Mp)=T(Mg)=0 follows. By defirﬁtjon this means that T(M) is almost
zero.
Conversely if T(M) is almost zero then T(Mp) = T(M)=0 for all p
of height one. Over the DVR D, the torsionfree module M is then free
and thus peU(M). Hence RS(M)=Spec(D)\U(M) contains no prime

ideals of height one which is equivalent to cod (RS(M))=22. ||

Appendix : Exponential solutions and integral representations
This subject is the second main theme of the books [EH] and [PAL]

besides the fundamental principle used in § 2, and is rather difficult to
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understand in detail. It generalizes to partial differential equations the
well-known easy result that the solutions of ordinary differential equations
with constant coefficients are linear combinations of functions a(t)e™® with
polynomials a(t) and characteristic values t¢ C. I use Bjork's presentation
[BJ], Ch. 8, of this theory and indicate without any proofs and analytic
details how this theory can be useful for system theory.
I consider the large injective cogenerator A=C® (R") over C[s]=C[s,,s,]
from (1.18) with (L;a)(t)=da/dt;, L=L,=(d/0ty,---,0/9t.). For a
I0 -system
(75) S={(uy)e A™ P, P(L)(y)=Q(L) (W}, PeC[s]*'P, rank(P)=p, PH=Q,

the sequence

(76) 0 — ker(P)={y<AP ; P(L)(y)=0} S > A™ 0,
y—(0,y) , (u,y)—y

is exact according to (2.69) and dual to the exact sequence
(77) 0 — C[s]™ — M(S) — M:=M(ker(P))=C[s]P/PTc[s]* —o0
The system module

M=C[s]?/PTcl[s]® =c[s]1"P/c[sI""P
of ker(P) is torsion and has played an important role for discrete systems
in § 5 starting with (5.31) and (5.32). In (5.33) ker(P)=F% was interpreted
as the state space of the IO-system S. The elements ycker(P) represent
those outputs of S which correspond to zero inputs. The theory from
[EH}, Ch 7, [PAL], Ch 6 and [BJ],Ch. 8, allows to say something

.

about these y.

~
-

Since M is torsion the support of M coincides with the variety of rank

singularities by (71), (iii) . As subvarities of C* we obtain as in (72)

(78) Corollary and Definition: Data of (75), M:=C[s]® /PT€[s]*. Then
Suppgr (M)={1eC"; Mp ()*¥0}={1c¢C"; rank(P(1))<p}=RScr(M).

This variety of rank singularities is called the characteristic variety of M

or Pin[BJ],8.1.7. ||

Let L. =(d/01ty,--,9/91,) be the differential operator with respect to
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teC” and t't =tyty+--+1,.t,.. An easy induction on m furnishes

L. ™(tPe™" )=Ltn(tmet't), m,neN ",
and implies the formula
(79) [AG LT Te™ )] T=P(LO(A(r,t)e™ ")
for matrices P(s). resp. A(t,t) with coefficients in C[s] resp. C[t,t].
(80) Definition and Corollary ( Exponential solution) : Given PeC[s]<'P,
rank(P)=p, an exponential solution of P(L,)y(t)=0 or in
ker(P)={yc<AP; P(L,)(y)=0} is a solution of the form
y(t)=a(t)e® *, a(t)eC[t]P, which, by (79), satisfies

P(L)(a(t)e®™ *)=[a(L) T(P(t)Te® ¢)]1T=0.

If, in particular, 0*#a<CP is a non-zero constant the vector ae® % is a
solution of P(Lt)(aet. t )=0 if and only if a is a solution of P(t)a=0,
and then rank(P(t))< p or teRSgr(M). ||
The proposition 8.1.8 of [BJ] asserts that
(81) {teC%; Ja(t)+0 such that a(t)e' ®is a exponential solution } ¢

c RS(M)=Supp(M).

The main result of [BJ], Ch. 8, after [EH] and [PAL] is the following

(82) Integral representation theorem ([BJ], Th. 8.1.3): Situation as

explained above. Every solution y(t)cC®(R")P of P(o/dty,,0/0t)y(t)=0

is a finite sum of integral solutions of the form fa(t,t)et't du(t) with

the following specifications: a(t,t) ¢ C[t,t), u is a measure on €" and

(83) P(L)(a(t,t)e" " %)=0 for ali TeSuppiyp}(:=the suppb;"t of ).

There are several important convergér;ce“conditions which I omit here. ||

Condition (83) implies that

(84) a(t,t)e" * is an exponential solution of P(Ly)y=0 if a(t,-)#0 and
teSupp(p)

and, in particular by (81) ,

(85) {te€” ; a(t,-)*0, teSupp(w)}cSupp(M)=RS(M).

Since the growth behaviour of a(t,t)e" ® depends essentially on these

teRS(M) it is clear that the integral representation theorem will have a

significance for the "stability” of solutions of P(L,)y=0. In suggestive
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terms (82) can be stated asfollows : Every solution y of P(L,)y=0 is an
infinite linear combination of exponential solutions, and this obviously gene-
ralizes the corresponding easy result for ordinary differential equations.
(86) Special case (The simply characteristic case after [BJ], Th. 8.8.1):
Assume that there is an ideal I<C[s] which coincides with its radical
(q™ eI implies q¢I) such that
PTC[s]® = I x-xIc C[s]® or M=C[s]? /PTC[s]1*=(c[s]1/1)P
Then the characteristic variety of M is the vanishing set of I, i.e.
Supper(M)=Ver(I)={1eC” ; q(1)=0 for all qeI'} .
In this case the integral representation of (82) simplifies to
Y=2finite fa(r) e" *du(t) with a(t) e C[t]P satisfying P(t)a(t) =0 for
teSupp(y) and measures g with Supp(p) c Supp(M). The a(t)e® %,
teSupp(p ), are exponential solutions of P(L,)y=0 by (80). ||
According to [EH], Ch.7,and [PAL], Ch. 6, the integral representation
theorem is valid for other cogenerators A from theorem 2.54 but the exact
meaning of these results in the context of this paper is not yet completely
clear to me. For the discrete cases of C<t>CC{t}=CNr with the left shifts
as C[s]-operations the exponentials have to be replaced by
(1-tqt) P (1=1.6.) " =3{t™t™; ncN"} since the isomorphism (4.24)
sends this power series into e® °©
To realize the potential of the integral representation theorem for system
theory, in particular for stability and stabilization problems, much further

s

work has to be carried out. .
—

8. BLOCK DIAGRAMS AND THEIR ASSOCIATED SYSTEMS

The assumption (2.64)=(7.1) and the theorems in §2 and §7 based on this
assumption are valid . I use the standard terminology concerning block dia-
grams and flow graphs coming mainly from the theory of electrical networks
since Kirchhoff (around 1850) , but in the form of precise mathematical defi-
nitions and generalized to the multidimensional situation . My main references

for the language were [KUO], CH.3, and [CH] . The one-dimensional ana-
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logues of the following results are also treated in [BY] under the title
" interconnection of systems” and probably in [WIL2] , but this latter book
is not available to me .
A block diagram is simply a 10-system valued graph . A finite graph or dia-
gram scheme is a pair (V,E) of a finite set V of vertices or nodes and a
finite set E of edges or arrows together with two maps
dom(ain), cod(omain): E— V. As usual I write

e:v—w if ecE , dom(e)=v and cod(e)=w ,
and call v the domain or source and w the codomain or sink of e . Remark
that loops e with dom(e)=cod(e) and multiple edges e +e,with
dom(e,)=dom(e,) and cod(e,)=cod(e,) are permitted .
(1) Definition ( block diagram of IO-systems ): A block diagram of 10-sys-
tems is given by the following data :
(i) a finite graph (V,E) (ii) a natural number n(v) for every vertex veV
(iii) a IO-system
S.={(uy)eA®V)" 2" p _y=Q_u}, P DY) p_H_=Q_, rank(P,)=n(w)
with the transfer matrix H_e¢ KW atv) g, every edge e<E .

The customary notation for these data is
(v) n(w)
ueA” c A
A S or H, A

The numbers n(v) resp. n(w) are the input resp. output dimension of the
system S_ along e:v— w . The interpretation of S_ is obvious : A signal u
with n(v) components at the node v is transmitted through the system S_
and furnishes a n(w) -dimensional éiéna]‘ y at the node w . The transfer matrix
H, is usually called the gain or transmittance along e . If D is a F-algebra
over a field F and if the system S_ along e is of the simple I0-form
Se={(uy)eAm+p ;y=Au } , AeFP™ ¢ DP'™ with H=A<FP™ ¢ KP'™
then one uses the special representation »——-(A)—-——* to emphasize this
simplicity . An unadorned arrows—— stands for {(uy)c¢A™ ™ ;y=u}.
A block diagram gives rise to a natural new system which is formed according

to the following verbal principle : The signal at a node v is used as an input

for all systems S starting at v . All output vectors at a node w add up to
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form the signal vector at w . In more mathematical terms define

(2) n(V):=X{n(v);veV} and identify
APV 2 AT RO S AR vV x= (x5 ve V), x, e AN

Call a node v initial if no edge ends in v, i.e. if cod(e)#*v for all ecE . Then

In(V):={veV ;v initial } and Nin(V):= V\ In(V)

are the sets of initial resp. non-initial nodes . Now define the system S

associated to the block diagram by

(3) S=={x=(xv;VeV)eAn(V);(4)is satisfied } where

the condition (4) expresses the verbal principle from above and is given by

(4) For all non-initial nodes w and all edges e:dom(e)— w with sink w

there are signal vectors y cARW)

such that (x4, .y, ¥.)eS, and
Xw=21{yei;e<E,cod(e)=w} . ||
That S is really a subsystem of A™Y) follows easily from (2.39) . The sig-
nals x_ at the initial nodes v can only come from outside . Hence
(5) xm(:;) c ARCY) 2 AIV) NCV)
(V):=3{n(v); veIn(V)} , A"V =TT {A™V) yeIn(V)}
N(V):=Z{n(v);veNin(V)} , ANV =T[{A> Vv eNin(V)}
is a natural IO-structure for S from (3) . However , the decomposition (S)
is not always a IO-structure in the sense of (2.69) , i.e. , in general , the
signals x_, , veIn(V), cannot be chosen arbitrarily as trivial counterexamples
show and as is well-known from the theory of electrical networks ( see [CH]).
As outjuts one often chooses only certain of the vectors x, , weNin(V), and
obtains variants of (3) by the Rosenbrosk method (see (2.38) pp. and the la-
ter examples ) .
The 10 -structures of S and , in particular , whether (5) is really a 10-struc-
ture , are completely determined by
Sc K™V) =I{K™Y;veV) ={E=(E, iveV)i £, K™V}
according to (2.94) . The condition (xdom(e),y&)ese from (4) is replaced by
(€ dom(e)sNe ) ¢ §e = graph(H_) or 1, =H_ E45m(e)
and the condition xw=Z{)’e;eeE,cod(e)=w} , weNin(V), by

Ew=2{ng; codle)=w}=3{ H_ €cod(e) i €<E,cod(e)=w}
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Altogether we obtain
(6)§={(Ev;veV)eK"(V);For allWENin(V)=Ew=Z{HeEd°m(e);eeE,cod(e)=W}}
I introduce the abbreviations

H,, =% {H_ ;ecE,etv— w}cK?W)n(Y)

WeNin(V),veIn(V))EKN(V)’I(V) (block matrix)

wv !

(7 Hng=H

HN,N =(H,,, ;w,veNin(V))eKN(V)'N(V)

£=(g ) ) K1V g (g v en(V)) £ = (g, sweNin(V)

The defining equations EW=Z{ H_E _odce)s ec<E,cod(e)=w} from (6) become
N(V),N(V)

E N =HN,I EI+HN,N EN or (I—HN,N )EN = HN,I EI y I= ide K
We conclude

(8) /S\:{Ez(ggh: )EKI(V)+N(V) =H{Kn(V):V€V}; (I_HN,N)EN =HN,IEI} .

By theorem 2.94 x= (::I ) resp. ( gl ) are a [O-structure of S if and only if the
N N

projection s— kIV) , E— &, is an isomorphism . But this is the same as
the invertibility of [-Hy N - We conclude

(9) Theorem ( IO-structure for block diagrams) For a block diagram (1) and

~

the derived data as above the signal flow space S of the associated system S is

Sz{i:(EL)E K (VN (I-Hyg N8N :HN,IEI}
The natural decompositions £ = (EI ) or x = ( I ) define a IO - structure of
N XN

S if and only if the matrix (I-Hy ) is invertible in GIN(V)(K) , and then

€KN(V),I(V)

H:=( I—HN,N)—II-IN,I is the transfer matrix of S with respect

to this 10-structure . {]
(10) Remark and Deflnition ( signal flow br Mason graph , see [KUO] or [CH]):

The signal flow or Mason graph of a block diagram is the matrix - valued

EKn(W)'n(V)

H
e:v— w. These data are usually written as =—— . The matrix-valued graph

graph (V,E) where the matrix H_ is assigned to every edge

gives rise to the system of linear equations (I-H ) En=Hy 1 & Wwith
coefficients in K which defines S according to (9) . The " topological or
graph theoretic [CH] " calculation of det(I-Hy ) and H=(I-—HNN)_1 Hy 1
is one of the main objectives of the book [CH] . Hence the algorithms of this

and other books on graph theory can be usefully applied to decide whether
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X
the natural decomposition x :(x;) is really a IO-structure and , if so , to

calculate its transfer matrix H=(I-Hy )7t Hyyp- |l

(12) Example ( parallel composition ) :

Consider the block diagramm

————L Sy or Hi }-i%

ue g
Z2
Sz or H2

with [IO-systems
Si= {(uizi)e Am+p;Pizi=Qiu }, i:1,2,PieAk(i)’P,rank(Pi):pyPiHi=Qi'
The associated system according to (3) is

S={(uy)eA™"P ; 3 z,,2, such that y=z,+z,, Pyjz; =Qqu, Poz,= Qoul}=

() AT 3 a2 )such ehar (518 )(20)=($E Ju and y=1,1, (20

We canapply (2.38) or (2.41). So let X=(X;,X5) and Y be universal with

P, O
(prz)(oi P, )= Y(I,15), ie X{P=Y= X,P,. This means in other words
that Xy, X, are universal with X, P; = X, P,.

. Q
From (2.41) we conclude S={(uy)cA™P ;X(Q;)u=Yy } or

(13) S={(u,y) e A™P; X; Py = (X{ Qq +X5Q53) u} where
Xy ,X5 are universal withX; P; = X5 P, .
The system is the parallel composition of S; and S, . The transfer matrix is
most easily obtained from
§={ (En)eK™™P ; 3, .U, such that =70, +g, , 5, "H,E,i=12}=
= ((E,n) ¢K™P, 5 = (Hy +H, )E }= graph( Hy+H, )

Hence the transfer matrix of the parallel composition S of S; and S, is

H;+H, as was to be expected . ||

(14) Example ( Series composition ): Consider the block diagram

—] s, | » L__S2

with two IO-Systems
S1={(uz)e A™Pp 7= Qu}, P DXVPD rapk(p)=p (1), P, H =Q,

S2={(zy) cA™27*P, P,y=Q,z}, Pye DX2)'P | rank(P,)=p, P,Hy= Qy, m(2)=p(l).
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The series or cascade composition S:= S;*S; of Sy and S, is not the
system according to (3), but the "Rosenbrock projection- " image
(15 S:= S,*S;:={(uy) e A™"P; 3 z such that Pyz= Qu, P,y=Qyz}.
We get rid of z by choosing
(16) X ,Y universal with X P; = YQ, and obtain from (2.38)
(17) So*S; ={(uy) e A™P; YP,y=XQqu}.
with the IO-structure (uy). The transfer matrix is most easily obtained from
S = {(En)eK™P, 3 s.t. C=HE,n=H,C}= {(En);n=H ,H, E}=graph( HyH, ).
Hence the series composition S,*S; has the transfer matrix H, Hy as
expected and desired. ||

(18) Example( feedback system): A feedback block diagram is given as

with two IO-systems

S;={(xy) eA™P ;P y=Qyx}, P;e DX''"”"P rank(P,)=p,P, H = Q; , Hy <KP'™
S»={(yz)cAP™ ; P,z=Q,y}, P« D*®™ rank(P,)=m,P,H,=Q,,Hpye K™P,
The arrow s— represents the system {(u,y)eA™ ™ ; y=u}. The feedback
system is then

19) S:={ (uy)eA™P; 3z with x=u+z,P y= Q;x, P,z =Qqy }=

= {(u.y»)eAm+P; 3z with Pl}"'Qiu; Qi z, P21=Qiy}.

To get rid of z again we choose - - _

(20) X and Y universal with XQ; = YP,

and obtain from (2.38)

(21) S={(uy)e A™P; (XP;-YQ,)y=XQ u}. Then
(22) §={(§n)exm**’;3cwithn=H1(z+c),c=H2n}=

={(En)eK™"P; (Ip-H{Hz)n=H{E}
As in (9) (Emn) resp. (uy) form a IO-structure of S if and only if the matrix
I, - HyH 5 is invertible .This means that 1 is not an eigenvalue of H;H, or of

Hy Hy ( From n= H;Hyn # 0 one concludes Hyn =(Hy Hy)H,n # 0 and the
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same with 1 and 2 interchanged ) and is thus equivalent to I -HoH; ¢ GI,,(K).
If I,- H{Hy¢ Gl (K) the transfer matrix of the feedback system S is
H:= (1,- H{ H, )L H; ¢« KP'™ as expected. There are other variants of feed-
back systems ( see, for instance, [WOL] and [BOS], Ch.3 ) which can be

treated in the same fashion. ||

Invertible systems
Under this heading I consider systems with (left , right) invertible transfer
matrices . In the one-dimensional situation these systems were introduced
and discussed in [WOL] , §5.5 . Assumption (2.64)=(7.1) is still in force .
I consider 10 -systems
(23) S={(uy)<A™'P;Py=Qu}, PeD*P, rank(P)=p , PH=Q .
In particular , I need 10-systems whose transfer matrix is the identity and
which are thus transfer equivalent to the system
{(uy) e A™™™ ;. y=u}=im(A) , A:A™ — A™™ | u > (u,u) ,
and are given as
(24) S={(uy)eA™™ , py=pyu}, P<D*™ rank(P)=m .
(25) Definition : I call a system of the form (24) a quasi-identity system . (|
The projection proj:S — A™, (u,y) — u , has the diagonal A as a section
or right inverse . This gives rise to the direct sum decomposition
(26) S =im(A) @ ker(proj) = A™ @ ker(P) , (u,y)e—(u,z), y=u+z ,zcker(P) .
(27) Interpretation : The idea of a quasi-identity system is that it changes
an iuput u only "slightly” ic give an output y=u+z with Pz=0 , rank(P)=m .
In the discrete case of (5.11) or (5.41) ‘sne can force z=0 and y=u by selec-
ting the initial condition z/|G=0 or y|G=u|G . In general one would like to
have that any solution z of Pz=0 is "small” , "stable” , "negligeable” etc .
The use of the integral representation theorem 7.82 for the investigation of
these questions requires more work as said at the end of §7 . ||
The data of (23) give rise to maps Kmﬂ) Kpf-? KX | PH=Q , where P is
injective since rank(P)=p . We conclude
(28) Corollary : (i) An IO-system (23) induces an isomorphism
P:im(H) = HK™ =im(Q)=QK™ , n+— Py .
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In particular , rank(Q) = rank(H) .
(ii) Hence H ¢KP™ is left invertible , i.e. there is a retraction H' ¢ K™P with
H'H=1_ , if and only if rank(H)=rank(Q)=m . The latter condition signifies

that the m columns of Q or H are linearly independent and implies m<p . ||

(29) Theorem and Definition ( left invertible systems )
(i) A IO-system S as in (23) has a left invertible transfer matrix H if and
only if there is a IO-system S'c AP"™™ such that the series composition
S'* S is a quasi-identity system . Such a system is called left invertible or
input observable in [WOL] , p.164 , in the 1-d case .
(ii) If H' ¢ K ™P js a left inverse of H , i.e. H'H=1_ , if

S'={ (y,v)cAP™ . P'v=Q'y} , P'«DX"™  rank(P') =m , P'H' =Q',
is a realization of H', for instance the minimal one from (7.29) , and if U
and V are universal ( matrices ) with UP=V Q' then

S'*S = {(u,v)eA™™ ; VP'v=VP'u}, VP' = UQ,

is a quasi-identity system .
Proof : If S’ has the transfer matrix H' and if S'*S is a quasi-identity system
with transfer matrix I then H'H=I_ by (14) . Conversely assume the data
as (ii) . The IO-representation of S'*S follows from (17) . Its transfer matrix
is H'H=I__ and thus S'*S is a quasi-identity system . ||
Remark that neither H' nor S' are unique in (29), (ii) .
(30) Interpretation : If the output y of S is used as an input for S’ the latter
system gives ai: output v which does nct differ too much froin the input u of
S since VP'(v-u)=0 , rank(VP')=m . Qr one can almost derive the input u
from the output y of S, hence the designation input observable . As said
before in (27) I cannot currently answer the question how to choose P' such
that v-u is small in a technically interesting sense . ||
(31) Corollary : Given the situation of (29),(ii) , a compensator to observe
u from y can also be constructed in the following fashion . Since rank(H)=m
[ can assume , possibly after permuting the rows of H , that H has the form

H =( g; ) cK (PrmiTm.mo H, «Gl  (K) . With the corresponding block

decomposition P=(P,P,) (DR(P-mI+m e p we obtain PH=P,H,+P,H,=Q
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and conclude .
H; Hy
Py Q)( H;U )=P,. (-P,Q)eD¥P

From this and rank(-Q, P)=rank(-P,,Q,P,)=p we derive rank(-P,,Q)=p

and define the IO -system

(32) S ={(y,,(z,v)) c A™T(PTm)* ™M . _p ;.Qv=P,y,)}
HyH2™' .
with the transfer matrix (H -1 ) . The system S" of the series composition
2
(Y1 Z
uo y‘()’z)_____ Yoo <V) I
‘—I S ———»——((OIm))—*——[ S’ }——*—((Olm)
SC
H,H,™" H )

has the transfer matrix (OIm)(H;—iz )(OIm)( H; ) =H21H2= [ and is

hence a quasi-identity system as desired . The trivial systems (0O I ) simply
take certain components of the inputs as the output.The system S" is given as

S" ={(uv)eA™™ . P"y=P"u}, rank(P")=m, and as

S" ={(uv)cA™™ ; 3y,z: Py =Qu, -P;z+Qv=(0 P,)y }=
a3 (1) (1815238038

Now choose a matrix (XY) universal with (XY)(EPOi I;z; % ) =0, i.e.
2 1

XP;=YP, =(X+Y)P, =0, and conclude from (2.38) that

"= {(uv)eA™™ (XY (F Q)(4)=0}= {(uv)eA™™ -y Qv=XQu]} -

={(uv)cA™™, (-pv p)(y)=0} .

The quasi-tniqueneass theorem 2.63 implies ()&Y)(% g) =U(-P",P"), hence
YQ=UP"=-XQ and finally B
(33) S"={(uv) e A™"™, XQv=XQu}, rank(XQ)=m, X universal with XP,=0.
The Y from above is not used anymore . The advantage of this construction
compared to that of (29),(ii), is its simplicity where indeed S' can be trivially
and S" simply derived from S . ||
Right invertible or output controllable systems can be introduced and investi-
gated in a similar manner . Right invertibility of HeKP'™ signifies that

rank(H)=p or that H:K™— KP is surjective and admits a right inverse H"

with HH" = Ip and implies psm .
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(34) Theorem ( right invertible systems )
(i) A IO-system (23) has a right invertible transfer matrix H if and only if there
is a [O-system S"c AP™™ suct that S*S" is a quasi-identity system . Such a
system is called right invertible or output controllable in [WOL], p.164 .
(ii) If H" « KP'™ is a right inverse of H with the realization

S" = {(yu)cAP"™; P"u=Q"y}, P"¢D*"™ | rank(P")=m , P"H"=Q",
for instance the minimal one, and if Y and Z are universal with YP"=Z Q then
S*S"={(yz)cAP™P . ZPz=ZPy}, ZP=YQ" with the transfer matrix HH"=1. Il

The designation " output controllable " is justified by the following inter-
pretation : If a desired output y of S is taken as an input for S" then the
output z of S*S" or S is not exactly the desired y , but does not differ too
much from it . The concluding remark of (30) applies again , however . The
corollary (31) has a right inverse counterpart which I omit .
(35) Corollary and Definition ( Invertible systems ) : If in the situation of (29)
or (34), (ii), the matrix H is invertible , i.e. m=p and rank(Q)=rank(H)=m=p,
then the system S':={(yu)e A™"™ ;Qu=Py}, QH ! =P, realizes H! and

S'xS={(uv) e A™™ ; Qv=Qu} and S*S'={(yz) e A™"™ ; Pz=Py}

are quasi-identity systems . Such a S is called an invertible IO -system . ||
The question of exact model matching according to [WOL], p.316 , generalizes
that of the right invertibility of systems . Given the IO-system S from (23)

and a model system

(36) Smod :S2 ={(vy) eAm(2)+p; PZY:QZ v}, PZEDk(Z)'D ,
rank(Pz )=p , P,H,= Q,, with -the tzansfer matrix H_ . = H,
one looks for a " compensating " system S_, .= S, such that SxS__ is

transfer equivalent to S . . This implies a factorization HH_ o = Hiod

or HH  =H, . Such a factiorization exists if and only if

(37) H,K™? ¢ HK™ or {HTE=0->H,"£=0} .

(38) Theorem ( exact model matching )
(i) Given the system S from (23) and a model system (36) there is a com-

pensating system S such that S*Scomp is transfer equivalent to S ___ 4

comp

if and only if (37) is satisfied .
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ii = m,m(2) .

(ii) If H o4 = HHcomp , HCOmp K , if

Scompz{(vu)EAm(2)+m; P, u=Qv}, P, eDH(Dm, rank(P, )=m , P,H,=Q,

is a realization of Hcomp and if Y and V are universal with YQ=VP, then
S*S comp = LVY)eA™PP L YRy =VQ, v}, YQ=VP,,

is transfer equivalent to S . . The proof is analogous to that of (29) and
(34) . |l
Again the preceding theorem treats only the algebraic side of the exact model

matching problem and does not necessarily give a technically useful compen-

sator .
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