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Abstract

In the paper H. Bourlés, B. Marinescu, U. Oberst, "Weak exponesttidility
(w.e.s.) of linear time-varying (LTV) differential behaviors’, Lirrealgebra and
its Applications 486(2015), 1-49, we studied the problem of the title. If a finite
generated torsion module over an appropriate ring of differentiabdperand its
associated autonomous system are regular singular the system is neger im
contrast we computed a square complex matrix for each irregularlaimgodule
and showed that the system is w.e.s. resp. not stable if all eigenvélinesoatrix
have positive real parts resp. if at least one eigenvalue has negsdiveart. In
this supplement of the quoted paper we show that the spectrum of the aadirix
the decay exponent are isomorphy invariants of the module. Thesmake
essential use of results exposed in P. Maisonobe, C. Sabbah, 'Dlerczhérents
et holonomes’, Hermann, Paris, 1993. We also complement the mais wesult
of our quoted paper by the case where at least one eigenvalue of thg ima
purely imaginary.
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Key-words: linear time-varying differential operator, Newton potyg graded
module, behavior, weak exponential stability

1 Introduction

In [3] we studied theveak exponential stabilitjw.e.s.) oflinear time-varying differ-
ential (LTV) systems [3, Def. 2.4], the varying coefficients beingdlly convergent
Puiseux seriesEvery finitely generated left torsion modulé over the appropriate in-
tegral domain of differential operators is interpreted agsiem module and gives rise
to a dual autonomous behaviBr For anirregular singularmodule M we constructed
a behavior isomorphism [3, Thm. 2.8]

B2{zeW(r)"; Vt>r1: a2/ (t) +t* 1 (Ag +t HAi(t"))z(t) = 0}

where0 < \, € Q, p= ' €N, ZNC Zu, 0# Ay € C", A; € C < z >™X"
(2)
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for sufficiently larger > 0; see (69)-(71) for slight differences of (1) to its origiral
[3]. The ringC < z > is the local domain of locally convergent power series. The
signal spacéV (r) := C*(r,00) consists of all smooth, complex-valued functions
on the open intervalr, o) := {t € R; t > 7}. The w.e.s. o3, i.e., the exponential
decay of its trajectories far — oo, is determined by the spectral properties4pf[3,
Thm. 2.8]. The system is w.e.s. with decay factatg(—at*) resp. not stable if all
eigenvalues ofiy have positive real part resp. at least one eigenvalue hagivegeal
part. The proof of (1) made essential use of important regxposed in the excellent
books [8] and [10].

In this supplement to [3] we show in Thm. 6.1 and in Cor. 7.2 theanumben and the
spectrum ofd, areisomorphy invariantef M. Indeed)\ is the largest positive slope of
the Newton polygomf an associated differential operator ampgc(Ag) is determined
by the roots of its\-symbol Thm. 8.2 shows that the system is not w.e.s. with decay
factorsexp(—at?) if all eigenvalues ofd, have nonnegative real part and at least
one is purely imaginary. This is fully analogous to the caeomstant coefficients.
The system may, however, be w.e.s. with a decay faetpf—o/t*'), 0 < N <

A, 0 < o/, as Example 8.3 demonstrates. We prove the invariandebgfextending
the important invariance result [11, Cor. 1.6.11, p. 54] H&p. 1.5.1.4, Def. 1.5.1.5]
from Laurent series to Puiseux series. Up to an addition afis also called the
irregularity [7, p. 15] ornonregularityof M [2, p. 78 ]. Wesimplifythe proof in [8] by
avoiding thegood filtrations[8, Ex. 5.13] of differential modules and their algebraic
properties andatorrecttwo nontrivial errors of [3], see Remarks 4.2 and 6.2 for the
precise statements. Our proof gives all details wheredsoth@] gives indications
only that are hard to complete for systems theorists. We asiph, however, that
the essential ideas for the generalization, in particilantse of the\-degree and the
associated graded modules, come from [8]. As far as we sgedfiH3 not contain
the result from [8, Prop. 5.1.4]. We refer to the bibliograpf [3] for important
references concerning exponential stability of diffel@nsystems, for instance [13]
[6], [5], [1], and to [11], [8], [10], [2] for the long and extesive history of the algebraic
theory of linear differential systems with varying coeffiots. The results of [3] and
of the present paper are constructive, cf., for instande[12], [10, Ch. 4], and can
be applied to the construction of compensators [9]. The ptdhe paper follows from
the titles of the eight sections.

Notations and abbreviations e.s.= exponentially stable, exponential stability,#fd.
nite-dimensional, f.g.=finitely generated, LTV=linean#&-varying, resp.=respectively,
spec(Ap) := the spectrum or set of eigenvalues of a square complex méjriw.e.s.=
weak(ly) e.s., w.l.o.g.= without loss of generality,?*?=set ofp x ¢g-matrices with
entries inX, X '*9=rows, X7 := X9*1=columns

2 Differential operators, modules and behaviors

We refer to our paper [3, 881-3, pp. 1-26 ] for the consideresiesns theoretic and
algebraic notions. The latter are based on notions andtsesxpposed in [8] and [10].
The coefficient fields and associated rings of LTV differahtiperators are

K(m):=C<<2z/™>> C K:=U,ey ns C << 2/ >>
N _ﬂ ,m>1,
A(m) = K(m)[9;d/dz] C A = K[0;d/dz] @

A = K[0;d/dz] = K[20; zd/dz] = K[—2%0; —2%d/dz].
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The fieldK(1) = C << z >> is that of locally convergeritaurent seriesvhereas
K is that of locally convergerRuiseux seriesAll representations oA\ in the last row
of (2) will be used. The ringA and A(m) are (left and right) euclidean and thus
principal ideal domains. Thealuationor orderv : K — Q U {oc} is defined by
v(0) = oo and

v(a) = k/mifa:iaizi/m, ke€Z, a; €C, ap 0= Va,be K:
i=k
Mw)m@+vama+m{>mmwm%“®) ®)

= min(v(a),v(b)) if v(a) #v(b)’
= {a € K; v(a)ZO}zU{C<Zl/m> mzl}.

We consider f.gsystemA -left modules

M = A'™/U, U = AYPR, where
R=Y A;(zY/™)(=220) € A(m)P*? C AP*?, A; € C << z >>P*1,
§=0

(4)

We defines(R) := p~™ wherep is the minimum of the convergence radii of all

entries of all4;, j =0,--- ,n, sothat the4; (t—/™) are smooth matrix functions on

the open real intervdlr(R), 00) := {t € R; t > o(R)} . The operatora(z'/™), a €

C << z >>,and—2z29 act onW (1) = C*°(7,00) by o via
m@wwomayzarﬂww@nt>720@uﬂm)

(—220) ow = w' = dw/dt = (20) ow = —tw', Jow = —t*w'.

®)

The special form of this action is explained in [3, (14), Rekn2.1]. The matrixR
gives rise to the family of solution spacestmhaviors

B(R,7) :={w e W(r)?; Row =0}
=qweW(n) Vt>r1: ZAj(t JwW(t)=0p, 7> 0(R).
j
Sinces(R) depends ol we define the equivalence [3, (18)] of two families

(B(Ri?T))TZU(Ri)7 R, € AP =12, by:

I19 > max(o(Ry),0(R2))VT > 79 : B(Ry1,7) = B(Ra, 7). "

If U = AYPiR,, i = 1,2, the equivalence class

B(U) =cl ((B(R17 T))TZU(Rl)) =cl ((B(R27 T))TEU(RQ)) (8)

depends o/ [3, (19), Lemma 3.7] only and not on the choice of a speBiahnd is
called thebehavior associated t& or to the modulelM with the given presentation
M = A'Y4/U. The assignmend/ = A'*9/U + B(U) can be extended to a
contravariant functor that establishes a categoricalguatween f.g.A-left modules
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with a given presentatioA*¢ /U and behaviors [3, Thm. 2.3]. The f.g. modulgis
a torsion module if and only flimk (M) < oo and is then cyclic of the form

n

M =A"Y/U=A/AP, P = Zai(zﬁ)i € A(m) C A =K][z20;zd/dz], a, # 0,

i=0

©)
where P € A is a nonzero differential operator of degrée,;(P) = deg,5(P) =
dimg (M) [8, Prop. 1.4.3.3], [3, Lemma and Def. 3.15]. The associdtedavior
B(U) is then callecautonomousnd characterized by the property that for sufficiently
larger > o(R) all trajectoriesv € B(R, 7) are uniquely determined by a fixed number
of initial conditions [3, §3.6]. For

m=1, K(1)=C<<z>>C A(1) =K(1)[9;d/dz], Re A(1)P*?, 0# P € A(1)
(10)
the f.g. torsion module

M(1) = A(D)[9)"*1/A(1)"*PR = A(1)/A(1)P with

11
MZK@K(l) M(l)gA/AP, (11)

is also called aneromorphic connectiof8, §1.4.3]. The torsion modul@/ from
(9) and the operataP € A(m) are calledregular singular[8, Def. 5.1.1], [10, Def.
3.9, [3, 8§5.2] if

a,'P = Zam;l(zﬁ)i € C < 2Y™ > |29
i=0

(12)
— Vi<n:v(a/a,) =v(a;) —v(a,) >0
— Vi<n:(via,) —v(a))(n—i)"' <0,
and otherwisérregular singular. The latter property signifies that
A(P) := maX;cn, a;,20(v(an) —v(a;))(n — i)~ >0. (13)
The number) of (1) coincides withA(P). Notice that we used := —A(P) in [3,

(185), Thm. 5.5, Thm. 2.8]. The behavi(U) = B(AP) of a regular singular
module is never weakly exponentially stable [3, Thm. 2)B,&nd regular singularity
is therefore uninteresting for asymptotic stability.

3 The Newton polygon
We consider the torsion moduld = A /A P from (9) with

P= Zai(za)i e A(m) C A, a; e K(m), a, #0. (14)
i=0

The Newton polygori8, §5.1, pp. 24-28], [10, §3.3] aP is theconvex hullN (P) of
the set

{(m,y) €Q% 3 <nwitha; #0, < j, y > v(aj)} C N(P). (15)
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The vertices ofV (P) are among the poin{g, v(a;)), a; # 0. The point(n, v(a,)) is
one vertex ofV (P) and the half-lingn, v(a,)) + Q4 (0, 1) is the unique vertical edge
of N(P) whereQ := {a € Q; a > 0}. The half-line

(tmin, V(@ip,)) + Q1(—1,0), 4min = max {i; v(a;) = min{v(a;); 0 <j <n}}
(16)
with vertex (imin, v(ai, ., )) i the unique horizontal edge @f(P). The remaining
edges are line segments of the form
[(2,v(a0)), (4, v(a;))] := {(z,y) = (1 = 1)(i,v(ai)) + (5, v(a;)); 0 <t <1}
= {(z.9) € Q% y = (v(aj) —v(a:))(j — 1) (& =) +v(a), i <z < j},
i < j, v(a;) <wla;) < oo.
17)
Theslopeof this edge igv(a;) — v(a;))(j —i)~* > 0.

Corollary 3.1. The Newton polygon has the unique veftexv(a,,)) or no edges with
positive slope if and only iP is regular singular.

Lemma 3.2. For anirregular singular differential operatoP € A asin(14)a positive
number)\ € Q is a slope of (an edge ofy (P) if and only if

Fi < jwith0 <i<j<n, v(a;) <v(a;) <ooVkwithd <k <n, v(ag) < oo

Mo—v(a;) = Aj —v(aj) > Ak — v(ag).
(18)
The largest positive slope (of an edge df) P) is

A(P) (1—2) MaX;<n,a;£0(0(an) — v(a;))(n — i)~ (19)

Proof. = If an edge has this slope it has, by (17), the form

3 2 ) ~v(a)

e , 1< 4, v(a;) <wv(a;) = Aj —v(aj) =i —v(a;). (20)

Consider the ling = A(z — %) + v(a;) through(i, v(a;)) and(j, v(a;)). By definition

of N(P) and its edges the Newton polygdf( P) lies above this line and hence
VEwith ax, #0: v(ag) > Mk — 1) +v(a;) = Xi —v(a;) > Ak —v(ag). (21)

<=: analogous. O

Equations (1), (12) and (19) explain the significance of tlesvién polygon ofP
for weak exponential stability of(U). In the sequel we are going to show th&iP)
and other objects are invariantsf. We introduce the set

Si(P):={Ae@Q; A>0, Aisaslope ofN(P)}. (22)

By Cor. 3.1 the sef (P) is empty if and only ifP is regular singular.

4 The M-degree and its associated graded ring
Assume

0<A\pueQ 0<meN, ZN\+Zm ' =Zp= p ' eN. (23)
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Lemma 3.2 suggests to define the followikglegree of a differential operator

n
P = a;i(z0) € A, a; €K, a, #0:
>tz o
degy (P) = max; (X — v(a;)) = max;, q,20(M — v(a;)) € Q.
In the sequel we assume
Pe A(m)=Vi<nwitha; #0: v(a;) € Zm ' = deg,(P) € Zu. (25)
Assume
a=zfueC<<z>> keZ ucC<z>, u0)#0, via(z"™)) = k/m,

= (20)(a(z"/™)) = km LR (2 ™) 4 2D M =Ly (1M

o (20 (a( /™ =v (a(z/™)) =k/m ifv(a(zV/™)) £0
— (( a)( ( ))) {>v(a(zl/m)) if’U(a(Zl/m)) =0
Q. i cmy) )= v (azm) it v (a(zm) £0
= Vi>0: v((za) (a(zY ))) {>0 i v (a(z1/m) — 0
(26)
For P = a(20)" # 0 andQ = b(z0)? # 0 the Leibniz formula implies
PQ =7 (i)a(z0) " (b)(z0)"*
k=0 ‘ 27
= deg, (PQ) = maxj<; (A(k +j)—wv (a(za)%k(b)))
5 (Ai —v(a)) + (Aj — v(b)) = degy (P) + deg, (Q).
For arbitraryP, @ € A(m) this obviously implies
deg (P + Q) < max(deg, (P),deg, (Q) 8)

deg, (PQ) < deg,(P) + deg,(Q).

The degree functiomleg, and (28) induce the increasir&y-filtration of A(m) by
C-subspaced\ (m)y:

A(m) = {P € A(m) : degy(P) <k} D

A(m)<r = A(m)g—p ={P € A(m) : deg\(P) <k}, k€ Zp

(29)
A(m)= [ A(m)r, A(m)xA(m)e C A(m)pre.
kEZp
For anonzerd®® € A(m) andd := deg, (P) € Zu its A-symbolis defined as
oA(P): =P+ A(m)cqg € Gg:= A(m)a/A(m) 4. (30)

Moreover we define, (0) = 0. With (28) we construct th&u-graded algebra

G = grA(A(m)) = @kEZule Gy = A(m)k/A(m)<k (31)
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with the sum resp. product, fd?;, + A(m)<q, € Ga,, i = 1,2,

(Pr+A(m)<a,) + /[ * (Po+ A(m)<a,) = (Pr + / * Po+ A(m)<d, yd,)

ON(P) + /% 0\(Py) := P+ /% Po+ A(m)cyq € Gq, d:= deg, (P1) + deg, (P).

(32)
We compute somga-symbols: Any nonzera € C << z >> can be uniquely written
as

a=az"+b 0#£aecCuva) =k k<uv() = a(zl/m) = k™ 4 b(zl/m),
v (a(zl/m)) = (azk/m) = k/m < v (b(zl/m)>

— a(z}/™) € A(m), degy, (a(zl/m)) = —k/m > deg, (b(zl/m))

= 02 (a(zl/m)) = azk/m 4 A(m)c_p/m = aoy (2 ™)k e G_k/m

O\ (Zl/m) S G—l/m~
(33)
Obviouslydeg, (20) = A andoy (20) € G and hence foa(z'/™) from (33)

d := deg, (a(zl/m)(zé))i) = Xi —v(a(z/™)) = Ni — km™1,
oA <a(zl/m)(z8)i) =0 (a(zl/m)) ox (20)" (34)
1/m\* '
= Qo) (Z /m) O‘,\(Za)z €eGy= G,U(a(21/m))+>\i.
For a nonzero

pP= Z ai(20)", a; € K(m), d := deg, (P) = max; 4, 20(\i — v(a;)),
i,ai;éO (35)
v(a;) = k(i)/m, a; = a;z"D/™ +b;, 0 # a; € C, v(a;) < v(b;)

equation (34) implies

oA(P)=3 {am (zl/m)k(i) oA(20)"; Xi —v(a;) = Xi — k(iym ™ = d} ,

Z (36)
The preceding equations suggest to introduce the (commejtdiaurent polynomial
algebra and degree function

L:=C[&, ¢ n) = Sk jyezxnCE Y,

. , B (37)
deg) (Z oz;w»fknj) = max(k,j)’ak‘j#o()\j —km 1) € Zp.

k,j

The degree function o8[¢, ¢4, 7] satisfiesleg, (fg) = deg, (f)+deg, (g) and gives
rise to theZu-algebra grading

L = ®aczuLa, La= @ jyezxn {CEn7; degy (€5 n) = Aj —km™' = d}

(38)
Lg, Lg, € Lg,4d,-
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Lemma 4.1. The algebra := gr, (A(m)) is commutative and the map
p:L=Cl N = G=gry(A(m), €= ar(z/"), n = 0(z0),  (39)
is an isomorphism of graded algebras(C,) = G4). For P, @ € A(m) this implies

deg) (PQ) = deg,(P) + deg)(Q), degy(PQ — QP) < deg,(P) + degA(Q)(- |
40

Proof. (i) Commutativity Due to equation (36) it suffices to show that(z'/™) and
ox(z0) commute. But

(za)zl/m — Zl/m(za) _1_7,”‘—1121/m7
1/my _ _ _ 1/m
deg,(z/™)=—1/m ,\io A —1/m = deg, (z (23)) (41)

= 02 (20)0\ (/™) = 0, ((za)zl/m) = o (2Y/™)o(20).

(i) Since G is commutativeg (/™) =1 = o (2~/™) is invertible and
degy(§) = —=m~ ! = —v(2"/™) = degy (2'/™), deg,(n) = deg, (20) = A
the homomorphism
p:L =G, & ar(z™), n ox(20),

is well and uniquely defined and preserves the grading. D(@&pit is surjective.
(iii) o is injective Sincep(Ly) = Gy, d € Zpu, it suffices to show thap|., is
injective. If f € Ly andp(f) = 0 thenf has the form

= Z{a§ Wi Nj — ()m_lzd}ELd7 a; € C, and

o(f) = Z {aj(u (zl/m)k(J) ox(20)7: Nj — k(j)m ™ = d}

J
=0,(Q) =0, Q:= Z {ajzk(j)/m(za)j; N — k(j)mfl _ d}.
J

The equatiorry (@) = 0 impliesdeg, (Q) < d. If there was an index with a; # 0
this would imply

deg) (Q) = max;a,20(Aj — k(j)m™') = max;q, 0 d = d.

Hence allo; and f are zero.
(iv) In particular,G is an integral domain. I, P, € A(m) are nonzero of degree
d; := deg,(P;) then alsd) # o (P;) € G4, and hence

0# ox(Pr)ox(P) = PiPy + A(m)<d,+d, € Gay+dy = A(M)dy+d, /A(M) <dy +dy
— degA(Png) =d; + ds.

O
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Remark 4.2. (i) In the sequel we identify

(C[{,f_lﬂﬂ =G= gr)\(A(m))a §= O—A(Zl/m) € G—l/mv n= U)\(Za) € GA(42)
Notice that
0 =271 (20) = (/™)™ (20), degy(9) = A+ 1,
= Uk(a) = §7m77 € C[§7€7177]} = C[§7€717£7m77] (43)
-1
— gra(A(m) = Clox (51 ) ,on (24) ", or(0)].

(i) In [8, p. 25, 3. below] it is asserted that fat = 1 andA = X\o/A1, Ag, A1 > 0
the graded ringr, (A (1)) is isomorphic to the polynomial algebfa << z >> [n].
According to the preceding computations this is an error.

5 Graded modules and the Newton polygon

The assumptions are those of Section 4. Moreover we assurnazanoirregular
singular differential operator

n

0#£P= Z ai(20)" € A(m), a, # 0, d = deg,(P), v(a;) = k(i)/m
1=0,a;#0 (44)

max;<n(v(an) —v(a;)) > 0.
For simplicity we write (for fixedn)

K :=K(m) =C << zY/™ >>c A’ := A(m) = K'[8;d/dz] = K'[20; zd/dz].
(45)
The filtration (29) of A’ induces increasin@ u-filtrations of A’P and of A’/A’'P
defined by

(A'P)g:=Ay[A'P= A} 40u P d € Lp,
(A’/A'P)a = (A + A'P)/A'P = A}/(A'P)C A'/A'P, (46)

Aiil (A/P)dz - (A/P)d1+d27 A?h (A//A/P)d2 c (A,/A/P)d1+d2'

In analogy toG' := gry (A’) = Buez, A /A, these filtrations give rise to the graded

G-modules

gry(A'P) = @aezy gr) (A’ P)a where

gry\(A'P)g = (A'P)q/(A'P)cq = Aldfdch(P)P/A;dfdch(P)P

g1y (A'/A'P) = ©aczu(A'/A'P)a/(A'/A'P)ca = Ga(Ay + A'P)/ (AL, + A'P).
(47)

The symbolsr), are defined as in (30). We infer the grad@dsomorphism

gry(A") = gry (A'P), gry(A')i—qeg, (P) = grA(A'P)a, 0x(Q) — UA(Q)UA(P()-g)
4
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The isomorphism theorem induces the exact sequences

0= Al _gep, (p) — Al <3 (A JA'P)g — 0
0 — gry(A) A gry(A") £ gr (A'/A'P) = 0

_ k(i) i N o N — (s T
ox(P) 5o Z {azf s i —ov(a;) = degA(P)} , v(ag) = k(@) /mif a; #0

— g1\ (A)/ g1y (A)on(P) = Cl,6 1,0 /CIE. €7 loa(P) = grA(A’/A’JE’)-)

49

The Laurent polynomial ringr, (A’) = C[¢,£71, 0] is factorial. Its units are the
elementsyé®, 0 £ a € C, k € Z. We identify primes that are associated or differ by a
unit only. The only monomial prime @fry (A’) isn = o, (29). For a module\l over
a commutative ringR its annihilator is the idealanng (M) := {r € R; rM = 0}.
If ais any ideal ofR we havea = anng(R/a). Theroot of a is the ideal\/a :=
{r € R; 3k > 0with r* € a}. The set of prime factors af, (P) is denoted by

Pr(\, P) := {p; pprime, pdivideso,(P)}

= gry(A)oa(P) =gr,(A) ] ¥
pePr(),P) (50)

C Ve (A)on(P) = gry(A)  [[ » 0<k(p) €.

pEPr(A,P)

Sinceo (P) is homogeneous of degrde= deg, (P), i.e.,ox(P) € Gq, also its prime
factors inPr(\, P) are homogeneous. The following lemma establishes the ctione
of thegeometric propertiesf the Newton polygorV ( P) with thealgebraicproperties
of gry(A’/A’P).

Lemma 5.1. (cf. [8, Def. 1.5.1.5]) With the data and assumptions of testion the
positive rational numben is a slope of the Newton polyga¥(P) of the irregular
singular differential operato if and only ifPr(A, P) contains a nonmonomial prime

p, 1.e.,p #n = ox(20).

Proof. From equation (49) we have

o(P) = > {at™ Oy~ v(a) = d} , di=degy(P), v(ar) = k() /m.
£,ap7#0
(51)
= Since) is a slope we know from Lemma 3.2 that

i <jwith0<i<j<n, a; #0,a; #0,Vwith0</{<n, a#0:
X —v(a;) = Aj —v(a;) > M —v(ap)
= d := deg,(P) = maxy q,20(M — v(ar)) = Xi —v(a;) = Aj —v(a;)  (52)
= oA(P) = ;"' 4 ;07 4 {aef’““)nf; M —v(ag) = d} :
04,5
It is obvious thato (P) is not of the formag*n® and therefore has a nonmonomial

prime.
<=: analogous. O
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6 The principal invariance theorem

We are going to show that the séts(\, P), A > 0, and S (P) of positive slopes of
the Newton polygodV(P) are invariants of the modul@/ =~ A /AP, cf. [11, Cor.
1.6.11] [8, Prop. 1.5.1.4].

We assume an arbitrailg-f.d. irregular singula’A-moduleM and two isomorphisms

M>=A/AP, 2 A/AP,, P, € A, n(i) :=deg,(P;) € Q. (53)
Let

Q1:A/AP, — A/AP;, f+ AP — Q1+ AP,, d(1) := deg,(Q1),

54
“Q2:A/AP; - A/AP;, g+ AP, — gQ2 + APy, d(2) := deg,(Q2), (54)

be mutually inverse isomorphisms. We assumsulfficiently large such that all entries
of the operatord;, P>, Q1, Q- belong toA’ := A(m). The isomorphisms (54) thus
imply inverse isomorphisms

. Ql : A//AIPI — A//A/PQ,f +A/P1 — le + _A/PQ7

55
.Q2:AI/A/P2_>A//A/P17 g+A/P2'—>gQ2+A/P1. ( )
For u from (23) andk, ¢ € Zu these inverse isomorphisms induce

-Q
Q1 (A/JA'P)y, = (AL + A'P) /AP, = X; = (ALQ, + A'Py)/A'P,

& (ALQ1Q2+ A'P)/A'P = (A'/A'P)),.

Xy, = (ALQ1 + A'R) /APy C (A}, ) T A'P) /AP,

= (A'/A'Py)jtaq) =: Yita()-
(56)
Likewise, the isomorphisn®)- induces, for alk € Z,

Yitaq) = (A;c+d(1) +A'R)/A'P,

Q2
= (Alyay@2 +A'P)/A'P C(A/A'P)kran) 1)

Xiv2a)+d2) = (Alya(1)+a2) @1 + A'P) /APy

Q2
= (Altd(1)+de)@1Q2 + A'P1) /APy ) (A'/A'P1)ita1)+ac2)

= Vk € Zp: Yiraa) C Xig2d)+d@)s Ye © Xerd)+d2)
= withe := d(l) + d(2)Vk‘ €Zp: X C Yite, Yo C Xite-
(56)
(57)
Obviously the family(X) is an increasing filtration aA’ /A’ P, with
A;GX@ - X/H_g and UX@ = 1&’/_A/f)27 (58)
0
It induces the gradegr, (A’)-modulegr, (X) := ®;X,/ X<, and the isomorphism
-Q1 induces thegr, (A’)-isomorphism
ox(Q1) + C[6,€7,n]/Cle, €71, o (Pr) o SN (AATP) = gy (X) =

allgr, (A') (grA(X)) = C[§7£717W}O’)\(P1)'

(59)
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Theorem 6.1. (cf. [8, Prop. 5.1.4, Def. 5.1.5]) Under the preceding asptions the
following sets are invariants ¥/ =~ A /AP, = A/AP;, cf. (22), (50):

amnge, (ao (g (A7 A/P) = faning, () (812 (AY/AP2), 0< A €Q
PI‘()\,Pl) = PI‘()\,F)Q)7 S+(P1) = S+(P2)
In particular, the largest slopes df (P;) and N (P,) coincide.

Proof. According to (50) and Lemma 5.1 is suffices to show that

anng;, (a7) (gra(A'/A'Py)) = anng;, (a) (grA (X)) © \/ anng,, (a) (gry(A'/A'By)).

These annihilator ideals are homogeneous and therefauffitess to show this inclu-
sion for homogeneous elements. ket= o) (f) € gry(A')4, f € A\ AL, and
pgry(X) = 0and hence
Vi e Z,LL : QO(X[/X<£) =0C XZ+d/X<(é+d) — fXg - X£+d7,u
= YWeZu¥i e N: f'XyC Xpria—in (61)

induction

ﬁ Vk € Zuvi € N: fYy C f'Xire € Xireridoin C YVitoerid—ip-

Choose
ieNwithi > 2ep ™' +1 <= k+2e+id—ip < k+id—pu
= 'Y C Yigoetid—in C Ye(iria) C Yitid
= ¢ (Vi/Yer) = 0 C Yigia/Ye (ktia)
= VkeZu: ¢ gry(A'/A'Py), =0= ¢'gr\(A'/A'P) =0

= ¢’ € anng, (o) (g1, (A/A'P)) = p € \/ anng, (ar) (gr)(A//A’P)).
(62)
O

Remark 6.2. In [8, §1.3.2.6] and with the notations of the proof of Thml éhe author
uses the false implicatiop(X,/X¢) = 0 = fX, € X, = X,_, instead of the
correct inclusionf X, C Xy, 4, wheredeg, (f) = d.

7 The invariance ofspec(Ay)

The assumptions of the preceding sections remain in forg@n@tiplying P with !
we assumme w.l.0.g. that the irregular singular diffesdmperatorP has the form
P = Zai(za)i, a; €C << 2™ >> a, :=1(= v(a,) =0), M = A/AP.
=0

(63)
The largest slope of the Newton polygon is

A t=max; q,20(v(a,) — v(a;))(n — i)yl =— min; 4,20 v(a;)(n — i)~ (64)
From (23) we recall

0<peQ, pteN, Zm '+ 7\ =7Zpu. (65)
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We recall some equations from [3] that have to be changetthlipecause as in [10,
p. 68] we used the notatioR = (20)" + a;(20)" ! + - -+ + a, in [3, (181)]. Also
note again that tha from [3, (185)] differed from (64) by the sign and was negativ
With E := 2*(20) = 2729 we proved in [3, proof of Thm. 5.4] that

E' =2 Za(i,k)(za)k, 0<i<m, a(i,k) e C, a(i,i)=1

AP = Z z"’\ak 28 Zb E', (66)
b; e<C<kz£>: {be(C<< z“ >>; v(b) >0}, b, = 1.
More precisely we get
2P = izm‘ak 20)k Zb E' = Z bia(i, k)2 (20)"
k=0 0<k<i<n
= Z (Z j Mb) (20)F = Vk: ay = . i, k)20,
=0 \i=k i=k

n

— Vk: ("R, = Z a(t, k)z(ifk)kbi = by, + 27 ¢y,
i=k
withc, € C < 2 >, v(ex) >0, b, =1, ¢, =0

= Vk: v (z("fk))‘ak) =(n—k)A+v(ar) >0, (z(”fk))‘ak> (0) = bi(0)

= Vkwithay #0: (n—k)A+v(ar) =0 < b(0) # 0.
(67)
The inequality(n — k)X + v(ay) > 0 also follows from (64):
A > (v(an) —v(ag))(n — k)t = —v(ap)(n — k)" (a, =1, v(ay) =0). (68)

The representatioAP = A Y"" b, E’ gives rise to the following standard mattik
[3, (199)]

0 1 0 - 0
A= ( PR > = Ap + 2" A1 (2") with A1 (2) € C < z ™"

—bg —bl —b.y,_l
0 1 0 - 0
Ay = < (ORI B > € C™" det(nid, —Ay) = Zb
—bo(0) 7b1(0) - —bp_1(0)
(69)
and ensuingA-isomorphism [3, (197)]
AJAP = A" AV (Bid,, —A), f+ AP +— ¢+ AP (Eid, —A)
(70)

n—1
fEA £= (b, &n1) €AV f= LB, £=(f,0,---,0).

=0

Remark 7.1. In [3, Thm. 2.8, (37), (201)] we used ! instead ofu from (65) in (69).
This was a slight error, but has no effect on the validity &f derivations in [3].
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Recall the actior{a(z*) o w) (t) = a(t~*)w(t) and—220 o w = w’. By duality
the A-isomorphism (70) induces the behavior isomorphisms [33)]L
B(P,7):={yeW(r);Poy=0}=2B(Fid, —A,7)={x e W(r)"; Eox = Aoux}

={zeW(r)" /() + M (Ao +t A1 (")) z(t) =0}, y < =
Y =To, T = ($0;"' axn—l)—r = (y7Eoya"' aEn_l Oy>T
(71)
for all sufficiently larger. In (71) we applied
(Boz)(t) = (:M10oz) (t) = (-2 H(—2%001)) (t) = —t' 2/ (1).  (72)

Equation (71) is the precise version of (1). The spectepir(A4y) determines the
w.e.s. of the behavioB and consists of the roots of the characteristic polynomial
det(nid, —Ag) = Y1 bi(0)77".

We finally relate the latter to th&-symboloy (P) from (36). Recall from Section 5
and 6 that

A’ = A(m), gry(A") = C[6, 67" ], €= oa(z1/™), n = 0x(20)

. O (73)
gra(A/AP) =C[¢, ¢, n]/CIE, & nloa(P).
According to (50) equation (73) furnishes
Very (Ao (P) = gry(A') H D (74)

pEPr(A,P)

wherePr(A, P) is the set of prime factors of, (P). Thm. 6.1 shows that the ideal of
(74), andPr (A, P) are isomorphy invariants af/.
The polynomialr, (P) is homogeneous of-degree

d := degy (P) = max; 4,20 (M — v(a;)) € Zp. (75)
The prime factors iPr(\, P) are also homogeneous. Due to (64) we have

A 1= max; q, 20 —v(a;)(n — i)t = Viwitha; #0: An > Xi —v(a;), d = An,
= Viwitha; #0: d=Xi —v(a;) <= (n —i)A +v(a;) =0.

(76)
For all: as in the last row of (76) write
v(a;) = k(i) /m, a; = ;2"O/™ 4 &G, v(a;) = k(i) /m < v (a@)
k(@) i N N —
ﬁ ox(P) = Z{alf n'; M —wv(a;) =d; and
2 =y + di = bi + 2%¢;, v(d;) >0
(77)

= Vi with A\i —v(a )—d al—b(O)
= det(nid, —Ao) (eg)z (67)2{ ' (n—i)A +v(a;) =0}

=Z{a¢n;>\z—vai :d}:a)\ )(1,7).

For a complex polynomiaf () let Ve (f) denote the set of its zeros or roots.
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Corollary 7.2. For the irregular singularM =~ A /A P and the data introduced above
we have

spec(Ao) = Ve(oa(P)(1,m) = | J{Ve(p(1,n); p € Pr(\, P)}.  (78)
SincePr (), P) is an isomorphy invariant ai/ according to Thm. 6.1 so ipec(Ap).
Since
d :=deg, (P) = An — v(ay)
Ii={i; 0<i<m; M—v(a)=d}={i; A= (v(an) —v(a;))(n—i)~'} (79)
ax(P)(Lm) = D aim' = any" + -+, spec(Ao) = Ve (oa(P)(1, 1))

el

this corollary contains a simple algorithm to check weakamential stability of an
arbitrary autonomous differential system.

8 A supplement to weak exponential stability

The assumptions and notations of Section 7 are in force. i@enthe state space
system of (71).Weak exponential stabilitfiv.e.s.) was introduced and studied in [3,
Def. 2.4, Thm. 2.7,84]. For > to > 7 > 0in (71) let® 4 (¢, ) € Gl,(C™ (7, 00))
denote the transition matrix of the state space systenthieaunique solution of

'y (tto) +12 7 (Ao +t HAL(tH)) @alt,to) =0, Palto,to) =id,.  (80)
An important result is

Result 8.1. (cf. [3, Thms. 5.7, 5.8, Ex. 5.9]) There are positive contstanc, o > 0
such that for allt > tq > 7

< cexp(—a(th — ) if Vo € spec(4p) : R(p) >0
> cexp(a(tt — t3)) if 3p € spec(Ap) : R(p) <0
The system need not be w.e.s. if
Vp € spec(Ag) : R(p) >0, Ip € spec(Ap) : R(p) =0. (82)

The next result improves the case of (82).
Theorem 8.2. If the matrix Ay has a purely imaginary eigenvalue there is no inequality
[@a(t,to)|| < cexp(—a(t* —t))), t >tg >7 >0, a>0, (83)

for sufficiently larger.
As Example 8.3 shows the system may, however, be w.e.s.dmth)afactoeXp(—a’tX)
with M < A\, 0 < o.

Proof. Assume that

DAt to)| < cexp(—a(td —t))), t >tg > 71 >0,
0
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holds and define the bounded traject@rt) := exp(at*)®a(t, to) for t > to > 7.
Differentiation of®(¢) and the differential equation (80) furnish

&' (t) + 271 (Ao — aXidy,) +tTHA(ETH) B/ (1) = 0, t > tg > T

This equation has the same form as (71), but with— a\id,, instead of4,. The
matrix Ap — aAid,, has the eigenvalug — a\ with R(p — a)\) = —aX < 0. The

second inequality from (81) then implies thimtt) is unbounded for sufficiently large
7, and this is a contradiction.
O

Example 8.3. Consider the differential operator and ensuing diffeadr@guation

P =220+ 2"Y%(i 4 2'/?) = a1(20) + ag, a1 = —z, ag = 2~ /2(i + 21/?)
— 2 (t) + Y26+ V) a(t) = 2’ + (it P+ 1)z =0, Ag =i

The maximal slope\ of the Newton polygon is\ := (v(a;) — v(ag))(2 — 1)t =
1—(—(1/2)) = 3/2 and henceP is irregular singular. The solution of the differential
equation is

2(t) = exp <_ /t(ml/2 + 1)d:u> 2(to)

to

— exp (=(2/3)i(*% = /%)) exp(~(t — to))a(to).

This solution is obviously w.e.s. with decay factsmp(—t), but not with decay factor
exp(—at?) = exp(—at3/?) as Thm. 8.2 states.

Acknowledgement | thank the reviewer for her/his valuable work and sugges-
tions.
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