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Abstract

In the paper H. Bourlès, B. Marinescu, U. Oberst, ’Weak exponentialstability
(w.e.s.) of linear time-varying (LTV) differential behaviors’, Linear Algebra and
its Applications 486(2015), 1-49, we studied the problem of the title. If a finitely
generated torsion module over an appropriate ring of differential operators and its
associated autonomous system are regular singular the system is never w.e.s.. In
contrast we computed a square complex matrix for each irregular singular module
and showed that the system is w.e.s. resp. not stable if all eigenvalues of the matrix
have positive real parts resp. if at least one eigenvalue has negativereal part. In
this supplement of the quoted paper we show that the spectrum of the matrixand
the decay exponent are isomorphy invariants of the module. The proofs make
essential use of results exposed in P. Maisonobe, C. Sabbah, ’D-module cohérents
et holonomes’, Hermann, Paris, 1993. We also complement the main w.e.s. result
of our quoted paper by the case where at least one eigenvalue of the matrix is
purely imaginary.

AMS-classification: 93D20, 93C15, 93B25, 34D20
Key-words: linear time-varying differential operator, Newton polygon, graded
module, behavior, weak exponential stability

1 Introduction

In [3] we studied theweak exponential stability(w.e.s.) oflinear time-varying differ-
ential (LTV) systems [3, Def. 2.4], the varying coefficients being locally convergent
Puiseux series. Every finitely generated left torsion moduleM over the appropriate in-
tegral domain of differential operators is interpreted as asystem module and gives rise
to a dual autonomous behaviorB. For anirregular singularmoduleM we constructed
a behavior isomorphism [3, Thm. 2.8]

B ∼=
{
x ∈W (τ)n; ∀t > τ : x′(t) + tλ−1(A0 + t−µA1(t

−µ))x(t) = 0
}

where0 < λ, µ ∈ Q, µ−1 ∈ N, Zλ ⊆ Zµ, 0 6= A0 ∈ Cn×n, A1 ∈ C < z >n×n

(1)
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2 DIFFERENTIAL OPERATORS, MODULES AND BEHAVIORS 2

for sufficiently largeτ ≥ 0; see (69)-(71) for slight differences of (1) to its originalin
[3]. The ringC < z > is the local domain of locally convergent power series. The
signal spaceW (τ) := C∞(τ,∞) consists of all smooth, complex-valued functions
on the open interval(τ,∞) := {t ∈ R; t > τ}. The w.e.s. ofB, i.e., the exponential
decay of its trajectories fort → ∞, is determined by the spectral properties ofA0 [3,
Thm. 2.8]. The system is w.e.s. with decay factorsexp(−αtλ) resp. not stable if all
eigenvalues ofA0 have positive real part resp. at least one eigenvalue has negative real
part. The proof of (1) made essential use of important results exposed in the excellent
books [8] and [10].
In this supplement to [3] we show in Thm. 6.1 and in Cor. 7.2 that the numberλ and the
spectrum ofA0 areisomorphy invariantsof M . Indeedλ is the largest positive slope of
theNewton polygonof an associated differential operator andspec(A0) is determined
by the roots of itsλ-symbol. Thm. 8.2 shows that the system is not w.e.s. with decay
factorsexp(−αtλ) if all eigenvalues ofA0 have nonnegative real part and at least
one is purely imaginary. This is fully analogous to the case of constant coefficients.
The system may, however, be w.e.s. with a decay factorexp(−α′tλ

′

), 0 < λ′ <
λ, 0 < α′, as Example 8.3 demonstrates. We prove the invariance ofλ by extending
the important invariance result [11, Cor. 1.6.11, p. 54], [8, Prop. I.5.1.4, Def. I.5.1.5]
from Laurent series to Puiseux series. Up to an addition of1 λ is also called the
irregularity [7, p. 15] ornonregularityof M [2, p. 78 ]. Wesimplifythe proof in [8] by
avoiding thegood filtrations[8, Ex. 5.13] of differential modules and their algebraic
properties andcorrect two nontrivial errors of [3], see Remarks 4.2 and 6.2 for the
precise statements. Our proof gives all details whereas that of [8] gives indications
only that are hard to complete for systems theorists. We emphasize, however, that
the essential ideas for the generalization, in particular the use of theλ-degree and the
associated graded modules, come from [8]. As far as we see [10] does not contain
the result from [8, Prop. 5.1.4]. We refer to the bibliography of [3] for important
references concerning exponential stability of differential systems, for instance [13]
[6], [5], [1], and to [11], [8], [10], [2] for the long and extensive history of the algebraic
theory of linear differential systems with varying coefficients. The results of [3] and
of the present paper are constructive, cf., for instance, [4], [12], [10, Ch. 4], and can
be applied to the construction of compensators [9]. The planof the paper follows from
the titles of the eight sections.
Notations and abbreviations: e.s.= exponentially stable, exponential stability, f.d.=fi-
nite-dimensional, f.g.=finitely generated, LTV=linear time-varying, resp.=respectively,
spec(A0) := the spectrum or set of eigenvalues of a square complex matrixA0, w.e.s.=
weak(ly) e.s., w.l.o.g.= without loss of generality,Xp×q=set ofp × q-matrices with
entries inX, X1×q=rows,Xq := Xq×1=columns

2 Differential operators, modules and behaviors

We refer to our paper [3, §§1-3, pp. 1-26 ] for the considered systems theoretic and
algebraic notions. The latter are based on notions and results exposed in [8] and [10].
The coefficient fields and associated rings of LTV differential operators are

K(m) := C << z1/m >> ⊂ K :=
⋃

n∈N, n≥1 C << z1/n >>⋂ ⋂

A(m) := K(m)[∂; d/dz] ⊂ A := K[∂; d/dz]

, m ≥ 1,

A = K[∂; d/dz] = K[z∂; zd/dz] = K[−z2∂;−z2d/dz].

(2)
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The fieldK(1) = C << z >> is that of locally convergentLaurent serieswhereas
K is that of locally convergentPuiseux series. All representations ofA in the last row
of (2) will be used. The ringsA andA(m) are (left and right) euclidean and thus
principal ideal domains. Thevaluationor order v : K → Q ∪ {∞} is defined by
v(0) =∞ and

v(a) := k/m if a =
∞∑

i=k

αiz
i/m, k ∈ Z, αi ∈ C, αk 6= 0 =⇒ ∀a, b ∈ K :

v(ab) = v(a) + v(b), v(a+ b)

{
≥ min(v(a), v(b))

= min(v(a), v(b)) if v(a) 6= v(b)
,

=⇒ {a ∈ K; v(a) ≥ 0} =
⋃{

C < z1/m > m ≥ 1
}
.

(3)

We consider f.g.systemA-left modules

M = A
1×q/U, U = A

1×pR, where

R =

n∑

j=0

Aj(z
1/m)(−z2∂)j ∈ A(m)p×q ⊂ A

p×q, Aj ∈ C << z >>p×q .
(4)

We defineσ(R) := ρ−m whereρ is the minimum of the convergence radii of all
entries of allAj , j = 0, · · · , n, so that theAj(t

−1/m) are smooth matrix functions on
the open real interval(σ(R),∞) := {t ∈ R; t > σ(R)} . The operatorsa(z1/m), a ∈
C << z >>, and−z2∂ act onW (τ) = C∞(τ,∞) by ◦ via

(a(z1/m) ◦ w)(t) := a(t−1/m)w(t) if t > τ ≥ σ
(
a(z1/m)

)

(−z2∂) ◦ w = w′ = dw/dt =⇒ (z∂) ◦ w = −tw′, ∂ ◦ w = −t2w′.
(5)

The special form of this action is explained in [3, (14), Remark 2.1]. The matrixR
gives rise to the family of solution spaces orbehaviors

B(R, τ) := {w ∈W (τ)q; R ◦ w = 0}

=



w ∈W (τ)q; ∀t > τ :

∑

j

Aj(t
−1/m)w(j)(t) = 0



 , τ ≥ σ(R).

(6)

Sinceσ(R) depends onR we define the equivalence [3, (18)] of two families

(B(Ri, τ))τ≥σ(Ri), Ri ∈ A
pi×q, i = 1, 2, by:

∃τ0 ≥ max(σ(R1), σ(R2))∀τ ≥ τ0 : B(R1, τ) = B(R2, τ).
(7)

If U = A
1×piRi, i = 1, 2, the equivalence class

B(U) := cl
(
(B(R1, τ))τ≥σ(R1)

)
= cl

(
(B(R2, τ))τ≥σ(R2)

)
(8)

depends onU [3, (19), Lemma 3.7] only and not on the choice of a specialRi and is
called thebehavior associated toU or to the moduleM with the given presentation
M = A

1×q/U . The assignmentM = A
1×q/U 7→ B(U) can be extended to a

contravariant functor that establishes a categorical duality between f.g.A-left modules
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with a given presentationA1×q/U and behaviors [3, Thm. 2.3]. The f.g. moduleM is
a torsion module if and only ifdimK(M) <∞ and is then cyclic of the form

M = A
1×q/U ∼= A/AP, P =

n∑

i=0

ai(z∂)
i ∈ A(m) ⊂ A = K[z∂; zd/dz], an 6= 0,

(9)
whereP ∈ A is a nonzero differential operator of degreedeg∂(P ) = degz∂(P ) =
dimK(M) [8, Prop. I.4.3.3], [3, Lemma and Def. 3.15]. The associatedbehavior
B(U) is then calledautonomousand characterized by the property that for sufficiently
largeτ ≥ σ(R) all trajectoriesw ∈ B(R, τ) are uniquely determined by a fixed number
of initial conditions [3, §3.6]. For

m = 1, K(1) = C << z >>⊂ A(1) = K(1)[∂; d/dz], R ∈ A(1)p×q, 0 6= P ∈ A(1)
(10)

the f.g. torsion module

M(1) = A(1)[∂]1×q/A(1)1×pR ∼= A(1)/A(1)P with

M = K⊗K(1) M(1) ∼= A/AP,
(11)

is also called ameromorphic connection[8, §I.4.3]. The torsion moduleM from
(9) and the operatorP ∈ A(m) are calledregular singular[8, Def. 5.1.1], [10, Def.
3.9], [3, §5.2] if

a−1
n P =

n∑

i=0

aia
−1
n (z∂)i ∈ C < z1/m > [z∂]

⇐⇒ ∀i < n : v(ai/an) = v(ai)− v(an) ≥ 0

⇐⇒ ∀i < n : (v(an)− v(ai))(n− i)−1 ≤ 0,

(12)

and otherwiseirregular singular. The latter property signifies that

λ(P ) := maxi<n, ai 6=0(v(an)− v(ai))(n− i)−1 > 0. (13)

The numberλ of (1) coincides withλ(P ). Notice that we usedλ := −λ(P ) in [3,
(185), Thm. 5.5, Thm. 2.8]. The behaviorB(U) ∼= B(AP ) of a regular singular
module is never weakly exponentially stable [3, Thm. 2.8,(i)], and regular singularity
is therefore uninteresting for asymptotic stability.

3 The Newton polygon

We consider the torsion moduleM ∼= A/AP from (9) with

P =

n∑

i=0

ai(z∂)
i ∈ A(m) ⊂ A, ai ∈ K(m), an 6= 0. (14)

TheNewton polygon[8, §5.1, pp. 24-28], [10, §3.3] ofP is theconvex hullN(P ) of
the set

{
(x, y) ∈ Q2; ∃j ≤ n with aj 6= 0, x ≤ j, y ≥ v(aj)

}
⊂ N(P ). (15)
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The vertices ofN(P ) are among the points(j, v(aj)), aj 6= 0. The point(n, v(an)) is
one vertex ofN(P ) and the half-line(n, v(an))+Q+(0, 1) is the unique vertical edge
of N(P ) whereQ+ := {α ∈ Q; α ≥ 0} . The half-line

(imin, v(aimin
)) +Q+(−1, 0), imin = max {i; v(ai) = min {v(aj); 0 ≤ j ≤ n}}

(16)
with vertex (imin, v(aimin

)) is the unique horizontal edge ofN(P ). The remaining
edges are line segments of the form

[(i, v(ai)), (j, v(aj))] := {(x, y) = (1− t)(i, v(ai)) + t(j, v(aj)); 0 ≤ t ≤ 1}
=
{
(x, y) ∈ Q2; y = (v(aj)− v(ai))(j − i)−1(x− i) + v(ai), i ≤ x ≤ j

}
,

i < j, v(ai) < v(aj) <∞.
(17)

Theslopeof this edge is(v(aj)− v(ai))(j − i)−1 > 0.

Corollary 3.1. The Newton polygon has the unique vertex(n, v(an)) or no edges with
positive slope if and only ifP is regular singular.

Lemma 3.2. For an irregular singular differential operatorP ∈ A as in(14)a positive
numberλ ∈ Q is a slope of (an edge of)N(P ) if and only if

∃i < j with 0 ≤ i < j ≤ n, v(ai) < v(aj) <∞ ∀k with 0 ≤ k ≤ n, v(ak) <∞ :

λi− v(ai) = λj − v(aj) ≥ λk − v(ak).
(18)

The largest positive slope (of an edge of)N(P ) is

λ(P ) =
(12)

maxi<n,ai 6=0(v(an)− v(ai))(n− i)−1. (19)

Proof. =⇒: If an edge has this slope it has, by (17), the form

λ =
v(aj)− v(ai)

j − i
, i < j, v(ai) < v(aj) =⇒ λj − v(aj) = λi− v(ai). (20)

Consider the liney = λ(x− i) + v(ai) through(i, v(ai)) and(j, v(aj)). By definition
of N(P ) and its edges the Newton polygonN(P ) lies above this line and hence

∀k with ak 6= 0 : v(ak) ≥ λ(k − i) + v(ai) =⇒ λi− v(ai) ≥ λk − v(ak). (21)

⇐=: analogous.

Equations (1), (12) and (19) explain the significance of the Newton polygon ofP
for weak exponential stability ofB(U). In the sequel we are going to show thatλ(P )
and other objects are invariants ofM . We introduce the set

S+(P ) := {λ ∈ Q; λ > 0, λ is a slope ofN(P )} . (22)

By Cor. 3.1 the setS+(P ) is empty if and only ifP is regular singular.

4 Theλ-degree and its associated graded ring

Assume

0 < λ, µ ∈ Q, 0 < m ∈ N, Zλ+ Zm−1 = Zµ =⇒ µ−1 ∈ N. (23)
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Lemma 3.2 suggests to define the followingλ-degree of a differential operator

P =

n∑

i=0

ai(z∂)
i ∈ A, ai ∈ K, an 6= 0 :

degλ(P ) = maxi(λi− v(ai)) = maxi, ai 6=0(λi− v(ai)) ∈ Q.

(24)

In the sequel we assume

P ∈ A(m) =⇒ ∀i ≤ n with ai 6= 0 : v(ai) ∈ Zm−1 =⇒ degλ(P ) ∈ Zµ. (25)

Assume

a = zku ∈ C << z >>, k ∈ Z, u ∈ C < z >, u(0) 6= 0, v(a(z1/m)) = k/m,

=⇒ (z∂)(a(z1/m)) = km−1zk/mu(z1/m) + z(k+1)/mm−1u′(z1/m)

=⇒ v
(
(z∂)(a(z1/m))

){= v
(
a(z1/m)

)
= k/m if v

(
a(z1/m)

)
6= 0

> v
(
a(z1/m)

)
if v
(
a(z1/m)

)
= 0

=⇒ ∀i > 0 : v
(
(z∂)i(a(z1/m))

){= v
(
a(z1/m)

)
if v
(
a(z1/m)

)
6= 0

> 0 if v
(
a(z1/m)

)
= 0

.

(26)
ForP = a(z∂)i 6= 0 andQ = b(z∂)j 6= 0 the Leibniz formula implies

PQ =

i∑

k=0

( i
k ) a(z∂)

i−k(b)(z∂)k+j

=⇒ degλ(PQ) = maxk≤i

(
λ(k + j)− v

(
a(z∂)i−k(b)

))

≤
(26)

(λi− v(a)) + (λj − v(b)) = degλ(P ) + degλ(Q).

(27)

For arbitraryP,Q ∈ A(m) this obviously implies

degλ(P +Q) ≤ max(degλ(P ), degλ(Q))

degλ(PQ) ≤ degλ(P ) + degλ(Q).
(28)

The degree functiondegλ and (28) induce the increasingZµ-filtration of A(m) by
C-subspacesA(m)k:

A(m)k := {P ∈ A(m) : degλ(P ) ≤ k} ⊇
A(m)<k = A(m)k−µ = {P ∈ A(m) : degλ(P ) < k} , k ∈ Zµ

A(m) =
⋃

k∈Zµ

A(m)k, A(m)kA(m)ℓ ⊆ A(m)k+ℓ.
(29)

For a nonzeroP ∈ A(m) andd := degλ(P ) ∈ Zµ its λ-symbolis defined as

σλ(P ) := P +A(m)<d ∈ Gd := A(m)d/A(m)<d. (30)

Moreover we defineσλ(0) = 0. With (28) we construct theZµ-graded algebra

G := grλ(A(m)) := ⊕k∈ZµGk, Gk := A(m)k/A(m)<k (31)
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with the sum resp. product, forPi +A(m)<di
∈ Gdi

, i = 1, 2,

(P1 +A(m)<d1
) + / ∗ (P2 +A(m)<d2

) := (P1 + / ∗ P2 +A(m)<d1+d2
)

σλ(P1) + / ∗ σλ(P2) := P1 + / ∗ P2 +A(m)<d ∈ Gd, d := degλ(P1) + degλ(P2).
(32)

We compute someλ-symbols: Any nonzeroa ∈ C << z >> can be uniquely written
as

a = αzk + b, 0 6= α ∈ C, v(a) = k, k < v(b) =⇒ a(z1/m) = αzk/m + b(z1/m),

v
(
a(z1/m)

)
= v

(
αzk/m

)
= k/m < v

(
b(z1/m)

)

=⇒ a(z1/m) ∈ A(m), degλ

(
a(z1/m)

)
= −k/m > degλ

(
b(z1/m)

)

=⇒ σλ

(
a(z1/m)

)
= αzk/m +A(m)<−k/m = ασλ(z

1/m)k ∈ G−k/m

σλ

(
z1/m

)
∈ G−1/m.

(33)
Obviouslydegλ(z∂) = λ andσλ(z∂) ∈ Gλ and hence fora(z1/m) from (33)

d := degλ

(
a(z1/m)(z∂)i

)
= λi− v(a(z1/m)) = λi− km−1,

σλ

(
a(z1/m)(z∂)i

)
= σλ

(
a(z1/m)

)
σλ (z∂)

i

= ασλ

(
z1/m

)k
σλ(z∂)

i ∈ Gd = G−v(a(z1/m))+λi.

(34)

For a nonzero

P =
∑

i,ai 6=0

ai(z∂)
i, ai ∈ K(m), d := degλ(P ) = maxi,ai 6=0(λi− v(ai)),

v(ai) = k(i)/m, ai = αiz
k(i)/m + bi, 0 6= αi ∈ C, v(ai) < v(bi)

(35)

equation (34) implies

σλ(P ) =
∑

i

{
αiσλ

(
z1/m

)k(i)
σλ(z∂)

i; λi− v(ai) = λi− k(i)m−1 = d

}
.

(36)
The preceding equations suggest to introduce the (commutative) Laurent polynomial
algebra and degree function

L := C[ξ, ξ−1, η] = ⊕(k,j)∈Z×NCξ
kηj ,

degλ



∑

k,j

αk,jξ
kηj


 := max(k,j),αk,j 6=0(λj − km−1) ∈ Zµ.

(37)

The degree function onC[ξ, ξ−1, η] satisfiesdegλ(fg) = degλ(f)+degλ(g) and gives
rise to theZµ-algebra grading

L = ⊕d∈ZµLd, Ld = ⊕(k,j)∈Z×N

{
Cξkηj ; degλ(ξ

kηj) = λj − km−1 = d
}

Ld1
Ld2
⊆ Ld1+d2

.
(38)
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Lemma 4.1. The algebraG := grλ(A(m)) is commutative and the map

ϕ : L = C[ξ, ξ−1, η]→ G = grλ(A(m)), ξ 7→ σλ(z
1/m), η 7→ σλ(z∂), (39)

is an isomorphism of graded algebras (ϕ(Ld) = Gd). For P,Q ∈ A(m) this implies

degλ(PQ) = degλ(P ) + degλ(Q), degλ(PQ−QP ) < degλ(P ) + degλ(Q).
(40)

Proof. (i) Commutativity: Due to equation (36) it suffices to show thatσλ(z
1/m) and

σλ(z∂) commute. But

(z∂)z1/m = z1/m(z∂) +m−1z1/m,

degλ(z
1/m) = −1/m <

λ>0
λ− 1/m = degλ

(
z1/m(z∂)

)

=⇒ σλ(z∂)σλ(z
1/m) = σλ

(
(z∂)z1/m

)
= σλ(z

1/m)σλ(z∂).

(41)

(ii) SinceG is commutative,σλ(z
1/m)−1 = σλ(z

−1/m) is invertible and

degλ(ξ) = −m−1 = −v(z1/m) = degλ(z
1/m), degλ(η) = degλ(z∂) = λ

the homomorphism

ϕ : L→ G, ξ 7→ σλ(z
1/m), η 7→ σλ(z∂),

is well and uniquely defined and preserves the grading. Due to(36) it is surjective.
(iii) ϕ is injective: Sinceϕ(Ld) = Gd, d ∈ Zµ, it suffices to show thatϕ|Ld

is
injective. If f ∈ Ld andϕ(f) = 0 thenf has the form

f =
∑

j

{
αjξ

k(j)ηj ; λj − k(j)m−1 = d
}
∈ Ld, αj ∈ C, and

ϕ(f) =
∑

j

{
αjσλ

(
z1/m

)k(j)
σλ(z∂)

j ; λj − k(j)m−1 = d

}

= σλ(Q) = 0, Q :=
∑

j

{
αjz

k(j)/m(z∂)j ; λj − k(j)m−1 = d
}
.

The equationσλ(Q) = 0 impliesdegλ(Q) < d. If there was an indexj with αj 6= 0
this would imply

degλ(Q) = maxj,αj 6=0(λj − k(j)m−1) = maxj,αj 6=0 d = d.

Hence allαj andf are zero.
(iv) In particular,G is an integral domain. IfP1, P2 ∈ A(m) are nonzero of degree
di := degλ(Pi) then also0 6= σλ(Pi) ∈ Gdi

and hence

0 6= σλ(P1)σλ(P2) = P1P2 +A(m)<d1+d2
∈ Gd1+d2

= A(m)d1+d2
/A(m)<d1+d2

=⇒ degλ(P1P2) = d1 + d2.
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Remark 4.2. (i) In the sequel we identify

C[ξ, ξ−1, η] = G = grλ(A(m)), ξ = σλ(z
1/m) ∈ G−1/m, η = σλ(z∂) ∈ Gλ.

(42)
Notice that

∂ = z−1(z∂) = (z1/m)−m(z∂), degλ(∂) = λ+ 1,

=⇒ σλ(∂) = ξ−mη ∈ C[ξ, ξ−1, η] = C[ξ, ξ−1, ξ−mη]

=⇒ grλ(A(m)) = C[σλ

(
z1/m

)
, σλ

(
z1/m

)−1

, σλ(∂)].

(43)

(ii) In [8, p. 25, 3. below] it is asserted that form = 1 andλ = λ0/λ1, λ0, λ1 > 0
the graded ringgrλ(A(1)) is isomorphic to the polynomial algebraC << z >> [η].
According to the preceding computations this is an error.

5 Graded modules and the Newton polygon

The assumptions are those of Section 4. Moreover we assume a nonzeroirregular
singulardifferential operator

0 6= P =

n∑

i=0,ai 6=0

ai(z∂)
i ∈ A(m), an 6= 0, d = degλ(P ), v(ai) = k(i)/m

maxi<n(v(an)− v(ai)) > 0.

(44)

For simplicity we write (for fixedm)

K
′ := K(m) = C << z1/m >>⊂ A

′ := A(m) = K
′[∂; d/dz] = K

′[z∂; zd/dz].
(45)

The filtration (29) ofA′ induces increasingZµ-filtrations of A′P and ofA′/A′P
defined by

(A′P )d := A
′
d

⋂
A

′P = A
′
d−degλ(P )P, d ∈ Zµ,

(A′/A′P )d = (A′
d +A

′P )/A′P =
ident.

A
′
d/(A

′P )d ⊂ A
′/A′P,

A
′
d1
(A′P )d2

⊆ (A′P )d1+d2
, A′

d1
(A′/A′P )d2

⊆ (A′/A′P )d1+d2
.

(46)

In analogy toG := grλ(A
′) = ⊕d∈ZµA

′
d/A

′
<d these filtrations give rise to the graded

G-modules

grλ(A
′P ) = ⊕d∈Zµ grλ(A

′P )d where

grλ(A
′P )d := (A′P )d/(A

′P )<d = A
′
d−degλ(P )P/A

′
<d−degλ(P )P

grλ(A
′/A′P ) = ⊕d∈Zµ(A

′/A′P )d/(A
′/A′P )<d

∼= ⊕d(A
′
d +A

′P )/(A′
<d +A

′P ).
(47)

The symbolsσλ are defined as in (30). We infer the gradedG-isomorphism

grλ(A
′) ∼= grλ(A

′P ), grλ(A
′)d−degλ(P )

∼= grλ(A
′P )d, σλ(Q) 7→ σλ(Q)σλ(P ).

(48)
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The isomorphism theorem induces the exact sequences

0→ A′
d−degλ(P )

·P−→ A′
d

can−→ (A′/A′P )d → 0

0→ grλ(A
′)

·σλ(P )−→ grλ(A
′)

can−→ grλ(A
′/A′P )→ 0

σλ(P ) =
(36)

∑

i

{
αiξ

k(i)ηi;λi− v(ai) = degλ(P )
}
, v(ai) = k(i)/m if αi 6= 0

=⇒ grλ(A
′)/ grλ(A

′)σλ(P ) = C[ξ, ξ−1, η]/C[ξ, ξ−1, η]σλ(P ) ∼= grλ(A
′/A′P ).

(49)
The Laurent polynomial ringgrλ(A

′) = C[ξ, ξ−1, η] is factorial. Its units are the
elementsαξk, 0 6= α ∈ C, k ∈ Z. We identify primes that are associated or differ by a
unit only. The only monomial prime ofgrλ(A

′) is η = σλ(z∂). For a moduleM over
a commutative ringR its annihilator is the idealannR(M) := {r ∈ R; rM = 0}.
If a is any ideal ofR we havea = annR(R/a). The root of a is the ideal

√
a :={

r ∈ R; ∃k > 0 with rk ∈ a

}
. The set of prime factors ofσλ(P ) is denoted by

Pr(λ, P ) := {p; p prime, p dividesσλ(P )}
=⇒ grλ(A

′)σλ(P ) = grλ(A
′)

∏

p∈Pr(λ,P )

pk(p)

⊆
√
grλ(A

′)σλ(P ) = grλ(A
′)

∏

p∈Pr(λ,P )

p, 0 < k(p) ∈ N.

(50)

Sinceσλ(P ) is homogeneous of degreed = degλ(P ), i.e.,σλ(P ) ∈ Gd, also its prime
factors inPr(λ, P ) are homogeneous. The following lemma establishes the connection
of thegeometric propertiesof the Newton polygonN(P ) with thealgebraicproperties
of grλ(A

′/A′P ).

Lemma 5.1. (cf. [8, Def. I.5.1.5]) With the data and assumptions of thissection the
positive rational numberλ is a slope of the Newton polygonN(P ) of the irregular
singular differential operatorP if and only ifPr(λ, P ) contains a nonmonomial prime
p, i.e.,p 6= η = σλ(z∂).

Proof. From equation (49) we have

σλ(P ) =
∑

ℓ,aℓ 6=0

{
αℓξ

k(ℓ)ηℓ;λℓ− v(aℓ) = d
}
, d := degλ(P ), v(aℓ) = k(ℓ)/m.

(51)
=⇒: Sinceλ is a slope we know from Lemma 3.2 that

∃i < j with 0 ≤ i < j ≤ n, ai 6= 0, aj 6= 0, ∀ℓ with 0 ≤ ℓ ≤ n, aℓ 6= 0 :

λi− v(ai) = λj − v(aj) ≥ λℓ− v(aℓ)

=⇒ d := degλ(P ) = maxℓ,aℓ 6=0(λℓ− v(aℓ)) = λi− v(ai) = λj − v(aj)

=⇒ σλ(P ) = αiξ
k(i)ηi + αjξ

k(j)ηj +
∑

ℓ 6=i,j

{
αℓξ

k(ℓ)ηℓ; λℓ− v(aℓ) = d
}
.

(52)

It is obvious thatσλ(P ) is not of the formαξkηℓ and therefore has a nonmonomial
prime.
⇐=: analogous.
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6 The principal invariance theorem

We are going to show that the setsPr(λ, P ), λ > 0, andS+(P ) of positive slopes of
the Newton polygonN(P ) are invariants of the moduleM ∼= A/AP , cf. [11, Cor.
1.6.11] [8, Prop. I.5.1.4].
We assume an arbitraryK-f.d. irregular singularA-moduleM and two isomorphisms

M ∼= A/AP1
∼= A/AP2, Pi ∈ A, n(i) := degλ(Pi) ∈ Q. (53)

Let

·Q1 : A/AP1 → A/AP2, f +AP1 7→ fQ1 +AP2, d(1) := degλ(Q1),

·Q2 : A/AP2 → A/AP1, g +AP2 7→ gQ2 +AP1, d(2) := degλ(Q2),
(54)

be mutually inverse isomorphisms. We assumem sufficiently large such that all entries
of the operatorsP1, P2, Q1, Q2 belong toA′ := A(m). The isomorphisms (54) thus
imply inverse isomorphisms

·Q1 : A′/A′P1 → A
′/A′P2, f +A

′P1 7→ fQ1 +A
′P2,

·Q2 : A′/A′P2 → A
′/A′P1, g +A

′P2 7→ gQ2 +A
′P1.

(55)

Forµ from (23) andk, ℓ ∈ Zµ these inverse isomorphisms induce

·Q1 : (A′/A′P1)k = (A′
k +A

′P1)/A
′P1

·Q1∼= Xk := (A′
kQ1 +A

′P2)/A
′P2

·Q2∼= (A′
kQ1Q2 +A

′P1)/A
′P1 = (A′/A′P1)k.

Xk = (A′
kQ1 +A

′P2)/A
′P2 ⊆ (A′

k+d(1) +A
′P2)/A

′P2

= (A′/A′P2)k+d(1) =: Yk+d(1).
(56)

Likewise, the isomorphism·Q2 induces, for allk ∈ Zµ,

Yk+d(1) = (A′
k+d(1) +A

′P2)/A
′P2

·Q2∼= (A′
k+d(1)Q2 +A

′P1)/A
′P1 ⊆ (A′/A′P1)k+d(1)+d(2)

Xk+2d(1)+d(2) = (A′
k+d(1)+d(2)Q1 +A

′P2)/A
′P2

·Q2∼= (A′
k+d(1)+d(2)Q1Q2 +A

′P1)/A
′P1 =

(54)
(A′/A′P1)k+d(1)+d(2)

=⇒ ∀k ∈ Zµ : Yk+d(1) ⊆ Xk+2d(1)+d(2), Yk ⊆ Xk+d(1)+d(2)

=⇒ with e := d(1) + d(2)∀k ∈ Zµ : Xk ⊆
(56)

Yk+e, Yk ⊆ Xk+e.

(57)
Obviously the family(Xk)k is an increasing filtration ofA′/A′P2 with

A
′
kXℓ ⊆ Xk+ℓ and

⋃

ℓ

Xℓ = A
′/A′P2, (58)

It induces the gradedgrλ(A
′)-modulegrλ(X) := ⊕ℓXℓ/X<ℓ, and the isomorphism

·Q1 induces thegrλ(A
′)-isomorphism

·σλ(Q1) : C[ξ, ξ−1, η]/C[ξ, ξ−1, η]σλ(P1) =
(49)

grλ(A
′/A′P1) ∼= grλ(X) =⇒

anngrλ(A′) (grλ(X)) = C[ξ, ξ−1, η]σλ(P1).
(59)
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Theorem 6.1. (cf. [8, Prop. 5.1.4, Def. 5.1.5]) Under the preceding assumptions the
following sets are invariants ofM ∼= A/AP1

∼= A/AP2, cf. (22), (50):
√

anngrλ(A′) (grλ(A
′/A′P1)) =

√
anngrλ(A′) (grλ(A

′/A′P2)), 0 < λ ∈ Q

Pr(λ, P1) = Pr(λ, P2), S+(P1) = S+(P2).
(60)

In particular, the largest slopes ofN(P1) andN(P2) coincide.

Proof. According to (50) and Lemma 5.1 is suffices to show that

anngrλ(A′) (grλ(A
′/A′P1)) = anngrλ(A′) (grλ(X)) ⊆

√
anngrλ(A′) (grλ(A

′/A′P2)).

These annihilator ideals are homogeneous and therefore it suffices to show this inclu-
sion for homogeneous elements. Letϕ = σλ(f) ∈ grλ(A

′)d, f ∈ A
′
d \ A′

<d, and
ϕ grλ(X) = 0 and hence

∀ℓ ∈ Zµ : ϕ(Xℓ/X<ℓ) = 0 ⊆ Xℓ+d/X<(ℓ+d) =⇒ fXℓ ⊆ Xℓ+d−µ

=⇒
induction

∀ℓ ∈ Zµ∀i ∈ N : f iXℓ ⊆ Xℓ+id−iµ

=⇒
(57)
∀k ∈ Zµ∀i ∈ N : f iYk ⊆ f iXk+e ⊆ Xk+e+id−iµ ⊆ Yk+2e+id−iµ.

(61)

Choose

i ∈ N with i ≥ 2eµ−1 + 1 ⇐⇒ k + 2e+ id− iµ ≤ k + id− µ

=⇒ f iYk ⊆ Yk+2e+id−iµ ⊆ Y<(k+id) ⊆ Yk+id

=⇒ ϕi (Yk/Y<k) = 0 ⊆ Yk+id/Y<(k+id)

=⇒ ∀k ∈ Zµ : ϕi grλ(A
′/A′P2)k = 0 =⇒ ϕi grλ(A

′/A′P2) = 0

=⇒ ϕi ∈ anngrλ(A′) (grλ(A
′/A′P2)) =⇒ ϕ ∈

√
anngrλ(A′) (grλ(A

′/A′P2)).

(62)

Remark 6.2. In [8, §I.3.2.6] and with the notations of the proof of Thm. 6.1 the author
uses the false implicationϕ(Xℓ/X<ℓ) = 0 =⇒ fXℓ ⊆ X<ℓ = Xℓ−µ instead of the
correct inclusionfXℓ ⊆ Xℓ+d−µ wheredegλ(f) = d.

7 The invariance ofspec(A0)

The assumptions of the preceding sections remain in force. By multiplyingP with a−1
n

we assumme w.l.o.g. that the irregular singular differential operatorP has the form

P =

n∑

i=0

ai(z∂)
i, ai ∈ C << z1/m >>, an := 1 (=⇒ v(an) = 0) , M ∼= A/AP.

(63)
The largest slope of the Newton polygon is

λ := maxi,ai 6=0(v(an)− v(ai))(n− i)−1 = −mini,ai 6=0 v(ai)(n− i)−1. (64)

From (23) we recall

0 < µ ∈ Q, µ−1 ∈ N, Zm−1 + Zλ = Zµ. (65)
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We recall some equations from [3] that have to be changed slightly because as in [10,
p. 68] we used the notationP = (z∂)n + a1(z∂)

n−1 + · · · + an in [3, (181)]. Also
note again that theλ from [3, (185)] differed from (64) by the sign and was negative.
With E := zλ(z∂) = z1+λ∂ we proved in [3, proof of Thm. 5.4] that

Ei = ziλ
i∑

k=0

α(i, k)(z∂)k, 0 ≤ i ≤ n, α(i, k) ∈ C, α(i, i) = 1

znλP =

n∑

k=0

znλak(z∂)
k =

n∑

i=0

biE
i,

bi ∈ C < zµ >= {b ∈ C << zµ >>; v(b) ≥ 0} , bn = 1.

(66)

More precisely we get

znλP =

n∑

k=0

znλak(z∂)
k =

n∑

i=0

biE
i =

∑

0≤k≤i≤n

biα(i, k)z
iλ(z∂)k

=

n∑

k=0

(
n∑

i=k

α(i, k)ziλbi

)
(z∂)k =⇒ ∀k : ak :=

n∑

i=k

α(i, k)z(i−n)λbi

=⇒ ∀k : z(n−k)λak =

n∑

i=k

α(i, k)z(i−k)λbi = bk + zλck,

with ck ∈ C < zµ >, v(ck) ≥ 0, bn = 1, cn = 0

=⇒ ∀k : v
(
z(n−k)λak

)
= (n− k)λ+ v(ak) ≥ 0,

(
z(n−k)λak

)
(0) = bk(0)

=⇒ ∀k with ak 6= 0 : (n− k)λ+ v(ak) = 0 ⇐⇒ bk(0) 6= 0.
(67)

The inequality(n− k)λ+ v(ak) ≥ 0 also follows from (64):

λ ≥ (v(an)− v(ak))(n− k)−1 = −v(ak)(n− k)−1 (an = 1, v(an) = 0) . (68)

The representationAP = A
∑n

i=0 biE
i gives rise to the following standard matrixA

[3, (195)]

A =

(
0 1 0 ··· 0
··· ··· ··· ··· ···
0 0 ··· 0 1

−b0 −b1 ··· ··· −bn−1

)
= A0 + zµA1(z

µ) with A1(z) ∈ C < z >n×n

A0 =

(
0 1 0 ··· 0
··· ··· ··· ··· ···
0 0 ··· 0 1

−b0(0) −b1(0) ··· ··· −bn−1(0)

)
∈ Cn×n, det(η idn−A0) =

n∑

i=0

bi(0)η
i,

(69)
and ensuingA-isomorphism [3, (197)]

A/AP ∼= A
1×n/A1×n(E idn−A), f +AP ←→ ξ +A

1×n(E idn−A)

f ∈ A, ξ = (ξ0, · · · , ξn−1) ∈ A
1×n, f =

n−1∑

i=0

ξEi, ξ = (f, 0, · · · , 0).
(70)

Remark 7.1. In [3, Thm. 2.8, (37), (201)] we usedm−1 instead ofµ from (65) in (69).
This was a slight error, but has no effect on the validity of the derivations in [3].
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Recall the action(a(zµ) ◦ w) (t) = a(t−µ)w(t) and−z2∂ ◦ w = w′. By duality
theA-isomorphism (70) induces the behavior isomorphisms [3, (198)]

B(P, τ) := {y ∈W (τ);P ◦ y = 0} ∼= B(E idn−A, τ) = {x ∈W (τ)n; E ◦ x = A ◦ x}
=
{
x ∈W (τ)n; x′(t) + tλ−1

(
A0 + t−µA1(t

−µ)
)
x(t) = 0

}
, y ↔ x

y = x0, x = (x0, · · · , xn−1)
⊤ = (y,E ◦ y, · · · , En−1 ◦ y)⊤

(71)
for all sufficiently largeτ . In (71) we applied

(E ◦ x)(t) =
(
zλ+1∂ ◦ x

)
(t) =

(
−zλ−1(−z2∂ ◦ x)

)
(t) = −t1−λx′(t). (72)

Equation (71) is the precise version of (1). The spectrumspec(A0) determines the
w.e.s. of the behaviorB and consists of the roots of the characteristic polynomial
det(η idn−A0) =

∑n
i=0 bi(0)η

i.
We finally relate the latter to theλ-symbolσλ(P ) from (36). Recall from Section 5
and 6 that

A
′ := A(m), grλ(A

′) = C[ξ, ξ−1, η], ξ = σλ(z
1/m), η = σλ(z∂)

grλ(A/AP ) = C[ξ, ξ−1, η]/C[ξ, ξ−1, η]σλ(P ).
(73)

According to (50) equation (73) furnishes
√

grλ(A
′)σλ(P ) = grλ(A

′)
∏

p∈Pr(λ,P )

p (74)

wherePr(λ, P ) is the set of prime factors ofσλ(P ). Thm. 6.1 shows that the ideal of
(74), andPr(λ, P ) are isomorphy invariants ofM .
The polynomialσλ(P ) is homogeneous ofλ-degree

d := degλ(P ) = maxi,ai 6=0 (λi− v(ai)) ∈ Zµ. (75)

The prime factors inPr(λ, P ) are also homogeneous. Due to (64) we have

λ := maxi,ai 6=0−v(ai)(n− i)−1 =⇒ ∀i with ai 6= 0 : λn ≥ λi− v(ai), d = λn,

=⇒ ∀i with ai 6= 0 : d = λi− v(ai) ⇐⇒ (n− i)λ+ v(ai) = 0.
(76)

For all i as in the last row of (76) write

v(ai) = k(i)/m, ai = αiz
k(i)/m + ãi, v(ai) = k(i)/m < v (ãi)

=⇒
(49)

σλ(P ) =
∑

i

{
αiξ

k(i)ηi; λi− v(ai) = d
}

and

z(n−i)λai = αi + di =
(67)

bi + zλci, v(di) > 0

=⇒ ∀i with λi− v(ai) = d : αi = bi(0)

=⇒ det(η idn−A0) =
(69)

∑

i

bi(0)η
i =

(67)

∑

i

{
bi(0)η

i; (n− i)λ+ v(ai) = 0
}

=
∑

i

{
αiη

i; λi− v(ai) = d
}
= σλ(P )(1, η).

(77)

For a complex polynomialf(η) let VC(f) denote the set of its zeros or roots.
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Corollary 7.2. For the irregular singularM ∼= A/AP and the data introduced above
we have

spec(A0) = VC(σλ(P )(1, η)) =
⋃
{VC(p(1, η)); p ∈ Pr(λ, P )} . (78)

SincePr(λ, P ) is an isomorphy invariant ofM according to Thm. 6.1 so isspec(A0).
Since

d := degλ(P ) = λn− v(an)

I := {i; 0 ≤ i ≤ n; λi− v(ai) = d} =
{
i; λ = (v(an)− v(ai))(n− i)−1

}

σλ(P )(1, η) =
(36)

∑

i∈I

αiη
i = αnη

n + · · · , spec(A0) = VC (σλ(P )(1, η))
(79)

this corollary contains a simple algorithm to check weak exponential stability of an
arbitrary autonomous differential system.

8 A supplement to weak exponential stability

The assumptions and notations of Section 7 are in force. Consider the state space
system of (71).Weak exponential stability(w.e.s.) was introduced and studied in [3,
Def. 2.4, Thm. 2.7,§4]. Fort ≥ t0 > τ ≥ 0 in (71) letΦA(t, t0) ∈ Gln(C

∞(τ,∞))
denote the transition matrix of the state space system, i.e.the unique solution of

Φ′
A(t, t0) + tλ−1

(
A0 + t−µA1(t

−µ)
)
ΦA(t, t0) = 0, ΦA(t0, t0) = idn . (80)

An important result is

Result 8.1. (cf. [3, Thms. 5.7, 5.8, Ex. 5.9]) There are positive constants τ, c, α > 0
such that for allt ≥ t0 > τ

‖ΦA(t, t0)‖
{
≤ c exp(−α(tλ − tλ0 )) if ∀ρ ∈ spec(A0) : ℜ(ρ) > 0

≥ c exp(α(tλ − tλ0 )) if ∃ρ ∈ spec(A0) : ℜ(ρ) < 0
. (81)

The system need not be w.e.s. if

∀ρ ∈ spec(A0) : ℜ(ρ) ≥ 0, ∃ρ ∈ spec(A0) : ℜ(ρ) = 0. (82)

The next result improves the case of (82).

Theorem 8.2. If the matrixA0 has a purely imaginary eigenvalue there is no inequality

‖ΦA(t, t0)‖ ≤ c exp(−α(tλ − tλ0 )), t ≥ t0 > τ ≥ 0, α > 0, (83)

for sufficiently largeτ .
As Example 8.3 shows the system may, however, be w.e.s. with adecay factorexp(−α′tλ

′

)
with λ′ < λ, 0 < α′.

Proof. Assume that

‖ΦA(t, t0)‖ ≤ c exp(−α(tλ − tλ0 )), t ≥ t0 > τ ≥ 0,
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holds and define the bounded trajectoryΦ̃(t) := exp(αtλ)ΦA(t, t0) for t ≥ t0 > τ .
Differentiation ofΦ̃(t) and the differential equation (80) furnish

Φ̃′(t) + tλ−1
(
(A0 − αλ idn) + t−µA1(t

−µ)
)
Φ̃′(t) = 0, t ≥ t0 > τ.

This equation has the same form as (71), but withA0 − αλ idn instead ofA0. The
matrix A0 − αλ idn has the eigenvalueρ − αλ with ℜ(ρ − αλ) = −αλ < 0. The
second inequality from (81) then implies thatΦ̃(t) is unbounded for sufficiently large
τ , and this is a contradiction.

Example 8.3. Consider the differential operator and ensuing differential equation

P = −z2∂ + z−1/2(i+ z1/2) = a1(z∂) + a0, a1 = −z, a0 = z−1/2(i+ z1/2)

=⇒ x′(t) + t1/2(i+ t−1/2)x(t) = x′ + (it1/2 + 1)x = 0, A0 = i.

The maximal slopeλ of the Newton polygon isλ := (v(a1) − v(a0))(2 − 1)−1 =
1− (−(1/2)) = 3/2 and henceP is irregular singular. The solution of the differential
equation is

x(t) = exp

(
−
∫ t

t0

(ix1/2 + 1)dx

)
x(t0)

= exp
(
−(2/3)i(t3/2 − t

3/2
0 )

)
exp(−(t− t0))x(t0).

This solution is obviously w.e.s. with decay factorexp(−t), but not with decay factor
exp(−αtλ) = exp(−αt3/2) as Thm. 8.2 states.

Acknowledgement: I thank the reviewer for her/his valuable work and sugges-
tions.
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