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Abstract— Serre (1953) was the first who considered cat-
egories of groups up to negligible ones, negligibility being
determined by the considered context. Gabriel in his thesis
(1962) developed this idea into a complete theory of quo-
tient categories, rings and modules which is called Gabriel
localization. This theory was nicely exposed by Stenström
(1975). The author has recently observed that this theory is a
valuable tool for stability and stabilization of multidimensional
behaviors where a finitely generated multivariate polynomial
torsion module is considered negligible if its characteristic
variety has points in a preselected stability region only or,
equivalently, if its associated autonomous behavior is stable, i.e.,
has polynomial-exponential solutions with frequencies in this
stability region only. Via the Integral Representation Formula
of Ehrenpreis/Palamodov corresponding properties hold for all
trajectories of the behavior. In the one-dimensional standard
cases stability signifies asymptotic stability. In our approach
to output feedback stabilization of multidimensional systems
almost direct decompositions, i.e., direct sum decompositions
up to negligible modules, are essential. Quadrat had observed
the significance of direct sum decompositions in stabilization
theory. These decompositions are usually hidden in coprime
factorizations of transfer matrices which, however, do not
always exist. Bisiacco, Valcher and Napp Avelli studied almost
direct decompositions for two-dimensional polynomial modules
and behaviors, but without using localization theory. This
paper explains Gabriel’s localization and quotient modules
and their use in multidimensional stabilization theory. It also
contains a new algorithm for the computation of the (Gabriel)
quotient module of a finitely generated torsionfree module over
a multivariate polynomial ring. This algorithm can also be
used for the computation of Willems closures of such modules
and thus generalizes work of Shankar, Sasane, Napp Avelli,
van der Put et al.. It is also useful for the computation of
the purity filtration of a finitely generated polynomial torsion
module which is the subject of Barakat’s talk at this conference
where also the history of this filtration is discussed. The author
gratefully acknowledges financial support of the Austrian FWF.
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I. INTRODUCTION

J.P. Serre [18] was the first who considered categories of
groups up to negligible ones, negligibility being determined
by the considered context. P. Gabriel in his thesis [7] devel-
oped this idea into a complete theory of quotient categories,
rings and modules which is called Gabriel localization. This
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theory was nicely exposed by B. Stenström [22]. The author
has recently observed [13] that this theory is a valuable tool
for stability and stabilization of multidimensional behaviors
where a finitely generated multivariate polynomial torsion
module M is considered negligible if its characteristic variety
has points in a preselected stability region only or, equiv-
alently, if its associated autonomous behavior B is stable,
i.e., has polynomial-exponential solutions with frequencies
in this stability region only. Via the Integral Representation
Formula of Ehrenpreis/Palamodov corresponding properties
hold for all trajectories of B. In the one-dimensional standard
cases stability of B signifies asymptotic stability. Direct
decompositions of modules up to negligible ones, also called
almost direct decompositions, are central to our approach to
stabilization. The connection of output feedback stabilization
with direct decompositions has been observed and investi-
gated by A. Quadrat [16], [17]. These decompositions are
usually hidden in coprime factorizations of rational transfer
matrices which, however, do not exist in general. In systems
theory almost direct decompositions were considered by M.
Bisiacco, M.E. Valcher [2], [3] and by D. Napp Avelli [9]
for two-dimensional behaviors.
The present article gives a survey of our approach to multi-
dimensional stabilization and some new results, also on the
computation of arbitrary Willems closures. Matlis’ theory on
injective modules [8, pp.145-150] is an essential ingredient
of our proofs. The survey [15] contains a comprehensive list
of researchers and references on multidimensional stabiliza-
tion.
AMS-classification: 93D15, 93B25, 93C20, 13P25
Key words: Gabriel localization, multidimensional behav-
ior, stability, stabilization, integral representation formula,
Willems closure

II. DATA

We present Gabriel localization and its systems theoretic
application in a continuous standard case. Let A := C[s] =
C[s1, . . . , sn] be the complex polynomial algebra in n ≥ 1
indeterminates with the category ModA of A-modules and
the sets Max(A) ⊆ Spec(A) of maximal resp. prime ideals.
We consider the standard injective cogenerator signal A-
module F := C∞(Rn, C) of smooth functions or F :=
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D′C(Rn) of distributions with the action si ◦ y := ∂y/∂xi

where x = (x1, . . . , xn) ∈ Rn. If a ⊆ A is an ideal we
define

V (a) := {p ∈ Spec(A); a ⊆ p},
VC(a) := {λ = (λ1, . . . , λn) ∈ Cn; a(λ) = 0} .

For λ ∈ Cn let
m(λ) := {f ∈ A; f(λ) = 0} =

n∑
i=1

A(si − λi) ∈ Max(A).

Every p ∈ Spec(A) and A-module M give rise to the local
ring

Ap :=
{
at−1 ∈ C(s); a ∈ A, t 6∈ p

}
and

ApMp :=
{
xt−1; x ∈ M, t 6∈ p

}
.

The associator of M is defined as

ass(M) := {p ∈ Spec(A); A/p ⊆ M (up to isom.)} .

Consider a matrix R ∈ Ak×` and its associated finitely
generated modules

U := A1×kR, M := A1×`/U (1)

and associated F-behavior

B := U⊥ :=
{
w ∈ F`; U ◦ w = 0

}
={

w ∈ F`; R ◦ w = 0
}

with U = B⊥.
(2)

The module is torsion or B is autonomous if and only if
rank(R) = `. Then the characteristic variety char(M) =
char(B) of M or B is [5, Sect. 8.1.7]

char(M) :=
{
λ ∈ Cn; Mm(λ) 6= 0

}
=

{λ ∈ Cn; rank(R(λ)) < rank(R) = `} =⋃
p∈ass(M)

VC(p).
(3)

The Integral Representation Formula of Ehren-
preis/Palamodov [5, Th. 8.1.3] says that every smooth
trajectory y ∈ B has a representation

y(x) =
T∑

i=1

∫
Cn

ai(λ, x)eλ•xdµi(λ) (4)

where λ • x := λ1x1 + . . . + λnxn with the following
specifications: The µi are measures on Cn with support
supp(µi) ⊆ char(B). The ai(λ, x) ∈ C[λ, x]` are polyno-
mial vectors with the property that for all λ ∈ supp(µi) the
polynomial-exponential trajectory ai(λ, x)eλ•x belongs to B.
The ai can be computed [12]. The convergence conditions
are omitted here.
For stability and stabilization we assume an arbitrary stability
decomposition

Cn := Λ1 ] Λ2, Λ2 6= ∅,
Λ1 =: stability region, Λ2 =: instability region,

(5)

a standard case being Λ2 := {z ∈ C; <(z) ≥ 0}n. In the
one-dimensional standard case Λ1 = C− is the left open
half-plane.

III. GABRIEL LOCALIZATION

The results of this section except for those using (5) are
originally due to Gabriel [7] and are exposed in Stenström’s
book [22].
The decomposition (5) induces the decomposition

Spec(A) = P1 ] P2 where
P1 := {p ∈ Spec(A); VC(p) ⊆ Λ1}.

(6)

The sets P1 and P2 satisfy the conditions

P1 3 p ⊆ q =⇒ q ∈ P1 and
P2 3 p ⊇ q =⇒ q ∈ P2

and give rise to the following full subcategory of ModA:

C :=
{
C ∈ ModA; ∀λ ∈ Λ2 : Cm(λ) = 0

}
=

{C ∈ ModA; ass(C) ⊆ P1} .

This category is closed under isomorphisms, subobjects,
factor objects, extensions and arbitrary direct sums. Such
full subcategories are called localizing and give rise to the
ideal set

T := {a ⊆ A; A/a ∈ C}

with the following properties:
1) If T 3 a ⊆ b then b ∈ T .
2) If a, b ∈ T then a

⋂
b ∈ T .

3) If T 3 a ⊇ b and (b : a) ∈ T holds for all a ∈ a then
b ∈ T .

Such a T is the basis of neighborhoods of 0 of a unique
linear topology on A and is called a Gabriel topology.

Lemma and Definition III.1. 1) There are bijective
correspondences between the data P1,P2,C, T with
the indicated properties given by

Spec(A) = P1 ] P2,

P1 = T
⋂

Spec(A) = {p ∈ Spec(A); A/p ∈ C} ,

T = {a ⊆ A; V (a) ⊆ P1} = {a ⊆ A; A/a ∈ C} ,

C = {C ∈ ModA; ass(C) ⊆ P1} =
{C ∈ ModA; ∀p2 ∈ P2 : Cp2 = 0} =

{C ∈ ModA; ∀x ∈ C∃a ∈ T with ax = 0} .

The modules in C are called C- or T -small or negli-
gible.

2) For P1 ( Spec(A) or {0} ∈ P2 (what we always
assume) each module in C is a torsion module.

3) Not all P1 come from a decomposition (5) via (6), for
instance [14, p.478]

P2(c) := {p ∈ Spec(A); dim (Ap) < c}
where 1 ≤ c ≤ n = dim(Ap) + dim(A/p),
P1(c) := {p ∈ Spec(A); dim(A/p) ≤ n− c}

where dim denotes the Krull dimension. For c = 2 the
associated negligible modules are called pseudo-zero
in [6, Section VII.4.4].
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4) The largest submodule in C of an A-module M exists,
is called its C-radical or T -torsion module and is
denoted by

RaC(M) = torT (M) = {x ∈ M ; Ax ∈ C} .

Then RaC (M/RaC(M)) = 0 and

RaC(M) 6= 0 ⇐⇒ ass(M)
⋂
P1 6= ∅.

If P1 = {p ∈ Spec(A); VC(p) ⊆ Λ1} according to (6)
then

RaC(M) 6= 0 ⇔ ∃p ∈ ass(M) with VC(p) ⊆ Λ1

RaC(M) = 0 ⇔ ∀p ∈ ass(M) : VC(p)
⋂

Λ2 6= ∅.

In the sequel we assume that the data from Lemma and
Definition III.1 are given.

Example III.2. Let S ⊆ A be any multiplicatively closed
set and AS ⊆ C(s) resp. MS the corresponding quotient
ring resp. module. Then CS := {C ∈ ModA; CS = 0} is a
localizing subcategory with Gabriel topology

TS =
{

a ⊆ A; a
⋂

S 6= ∅
}

and

torTS
(M) = ker (can : M → MS) =

{x ∈ M ; ∃s ∈ S with sx = 0} .

Example III.3. Assume 1 ≤ c ≤ n and consider

P1(c) = {p ∈ Spec(A); dim(A/p) ≤ n− c}
P2(c) = {p ∈ Spec(A); dim(Ap) < c}

from Lemma III.1,(3), and the associated localizing sub-
category

C(c) := {C ∈ ModA; ass(C) ⊂ P1(c)} .

If M is an A-module its (Krull) dimension resp. codimension
is given resp. defined as

dim(M) := max {dim(A/p); p ∈ ass(M)}
codim(M) := n− dim(M).

There results the equivalence

C ∈ C(c) ⇐⇒ dim(C) ≤ n− c ⇐⇒ codim(C) ≥ c.

Hence torc(M) := RaC(c)(M) is the largest submodule of
M of codimension greater or equal to c or of dimension at
most n− c. If M is finitely generated these torsion modules
can be computed by means of Theorem IV.1,(2), below.
Obviously the submodules decrease with increasing c, hence

M ⊇ tor(M) = tor1(M) ⊇ · · · ⊇ torn−1(M) ⊇ torn(M).

The equation

torc+1 (torc(M)/ torc+1(M)) ⊆
torc+1 (M/ torc+1(M)) = 0

implies that all p ∈ ass (torc(M)/ torc+1(M)) have dimen-
sion n − c, i.e., that torc(M)/ torc+1(M) is pure n − c-
dimensional. Therefore this filtration is called the purity
filtration of M in [1] where also the history of this filtration
and a computation by means of spectral sequences are

discussed. If M is finitely generated the module torn(M)
is the largest C-finite dimensional submodule of M whose
algorithmic computation was described in [14].

The data from Lemma and Definition III.1,(1), also induce
the saturated multiplicatively closed set

T :=
⋂

p2∈P2

(A \ p2) =: {stable polynomials} (7)

and its quotient ring

AT =
{
at−1; a ∈ A, t ∈ T

}
⊆ C(s)

of stable rational functions. Then

∀p2 ∈ P2 : Mp2 = (MT )p2
and thus

CT ⊆ C and TT ⊆ T .

If P1 = {p ∈ Spec(A); VC(p) ⊆ Λ1} (see (6)) then

T := {t ∈ A; VC(t) ⊆ Λ1} and

AT =
{
at−1 ∈ C(s); VC(t) ⊆ Λ1

}
.

(8)

The equality TT = T holds only in case Λ2 is ideal-convex
[20, Prop. 3.1.20], i.e., Max(AT ) = {m(λ)T ; λ ∈ Λ2} or,
equivalently, C is perfect [22, Prop. XI.3.4].

Corollary and Definition III.4. 1) An autonomous be-
havior

B :=
{
w ∈ F`; R ◦ w = 0

}
, R ∈ Ak×`,

where rank(R) = ` is called T -small, negligible or
stable, if its module M := A1×`/A1×kR is T -small,
ie., belongs to C.

2) Assume P1 = {p ∈ Spec(A); VC(p) ⊆ Λ1}. Then the
behavior from item 1. is T -stable if and only if its char-
acteristic variety char(B) = char(M) is contained in
Λ1. In this case only polynomial-exponential solutions
with frequencies λ ∈ Λ1 contribute to the solution
integral of (4).

3) In the standard one-dimensional case with Λ1 = C−
the equality T = TT holds and B is T -stable if and
only if it is asymptotically stable.

4) In the standard cases of multidimensional systems
theory the inclusion a ∈ T or VC(a) ⊆ Λ1 can be
decided via constructive real algebraic geometry.

Open problem III.5. For the standard systems theoretic
P1 and Λ1 and a ∈ T decide a ∈ TT , i.e., a

⋂
T 6= ∅,

algorithmically and eventually construct t ∈ a
⋂

T . This
open problem was already stated in [23].

An A-module N is called C- or T -closed if for each a ∈ T
the canonical map

can : N → HomA(a, N), x 7→ (a 7→ ax), a ∈ T ,

is bijective. Let ModA,T be the full subcategory of all T -
closed modules. In the situation of Example III.2 the category
ModA,TS

coincides with ModAS
. The following theorem

constructs the analogue of the quotient module MS .
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Theorem and Definition III.6. (Quotient functor) Data from
Lemma and Definition III.1.

1) The injection inj : ModA,T → ModA has a left adjoint
Q : ModA → ModA,T with its associated functorial
morphism η : idModA

→ inj Q such that

HomA(Q(M), N) ∼= HomA(M,N), g 7→ gηM ,

for M ∈ ModA, N ∈ ModA,T . Then

RaC(M) = ker(ηM ) and cok(ηM ) ∈ C.

2) The category ModA,T is abelian, the functor Q is exact
and inj is left exact, but not exact in general.

3) C = {C ∈ ModA; Q(C) = 0} and ModA,T = {N ∈
ModA; N ∼= Q(N)}.

4) The category ModA,T is a full subcategory of ModAT
.

The use of Q or of closed modules thus signifies to consider
A-modules up to T -negligible ones.

Example III.7. In the standard case C = CS of Example
III.2 the identity Q(M) = MS ∈ ModA,TS

= ModAS
holds

and inj is exact.

IV. QUOTIENT COMPUTATION

The following theorem was left as an open problem in
[15, p.168],[14, p.479].

Theorem IV.1. Data from Lemma and Definition III.1. Let
AU be a finitely generated torsionfree module or U ⊆ A1×`

without loss of generality.
1) Q(A) = AT , UT ⊆ Q(U) ⊆ A1×`

T and

Q(U)/UT = RaC

(
A1×`/U

)
T

.

2) If p ∈ P1 can be decided constructively there is
an algorithm for the computation of RaC

(
A1×`/U

)
via constructive primary decompositions and therefore
also one which computes Q(U) in the form Q(U) =
A1×k′

T R′, R′ ∈ Ak′×`. All steps use the Gröbner basis
algorithm.

3) If P1 = {p ∈ Spec(A); VC(p) ⊆ Λ1} and Λ1 is semi-
algebraic in Cn = R2n then p ∈ P1 can be decided by
constructive real algebraic geometry.

For arbitrary finitely generated AM the module AT
Q(M)

may not be finitely generated and there is presently no
algorithm to compute it.

V. LARGE INJECTIVE COGENERATORS

The injective cogenerators F from above and many others
of systems theoretic significance are large [11, Th. 4.54].
This signifies that every finitely generated module can be
embedded into a finite power of F or that ass(F) =
Spec(A).

Theorem and Definition V.1. Data from Lemma and Defi-
nition III.1.

1) The radical RaC(F) is injective and hence there is a
(non-constructive) direct complement F2 with

F = RaC(F)⊕F2 =
{negligible signals} ⊕ {essential signals} .

(9)

Any such F2 satisfies

F2
∼= Q(F) ∼= F/ RaC(F)

and is an injective cogenerator in ModA,T .
2) For the modules and behavior from (1) and (2) the

decomposition (9) induces the decomposition B =
RaC(B)⊕

(
B

⋂
F`

2

)
where

B
⋂
F`

2
∼= HomA(M,F2) ∼= HomA(Q(M),F2).

These isomorphisms, in turn, imply the equivalences

M ∈ C ⇐⇒ Q(M) = 0 ⇐⇒
HomA(M,F2) = 0 ⇐⇒ B = RaC(B).

3) Willems closures: If M = A1×`/U and RaC(M) =
Ũ/U then

RaC(M) = Ũ/U =

ker
(
M → FHomA(M,F2)

2 , x 7→ (ϕ(x))ϕ

)
or

Ũ =
{

ξ ∈ A1×`; ξ ◦
(
B

⋂
F`

2

)
= 0

}
and hence

Ũ = U ⇐⇒ ass(M) ⊂ P2.

If P1 = {p ∈ Spec(A); VC(p) ⊆ Λ1} then

Ũ = U ⇐⇒ ∀p ∈ ass(M) : VC(p)
⋂

Λ2 6= ∅.

The submodule Ũ is called the Willems closure of U
with respect to F2 and can be calculated via Theorem
IV.1. If U = Ũ then U is called Willems closed.

4) For every injective module I there is a suitable
Gabriel localization with its associated F2 such that
the Willems closures with respect to I and F2 coincide.

Item 3. generalizes computations of Shankar [21], [10],
Sasane [19] et al.

VI. STABILIZATION

We assume the data from Lemma and Definition III.1
and from (7). Consider two input/output (IO)-subbehaviors
Bi, i = 1, 2, of Fp+m:

B1 :=
{
( y1

u1 ) ∈ Fp+m; P1 ◦ y1 = Q1 ◦ u1

}
,

P1 ∈ Ak1×p, rank(P1) = rank(P1,−Q1) = p,

U1 := A1×k1(P1,−Q1) ⊆ A1×(p+m),

B2 :=
{
( u2

y2 ) ∈ Fp+m; P2 ◦ y2 = Q2 ◦ u2

}
,

P2 ∈ Ak2×m, rank(P2) = rank(−Q2, P2) = m,

U2 := A1×k2(−Q2, P2) ⊆ A1×(p+m).

Let l := p + m. Their output feedback behavior (compare
Fig. 1) is

B :=
{
( y

u ) ∈ F2l; P ◦ y = Q ◦ u
}

where
y := ( y1

y2 ) ∈ Fp+m, u := ( u2
u1 ) ∈ Fp+m,

P :=
(

P1 −Q1
−Q2 P2

)
, Q :=

(
0 Q1

Q2 0

)
,

U0 := A1×(k1+k2)P = U1 + U2.
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The feedback behavior B is well-posed if it is an IO-behavior
with input u or, equivalently,

rank(P ) = p + m or U0 = U1 ⊕ U2.

r r r r
r r

-

�

-
6
? ?

?

B1 B2

u2u1

y1 y2+ +

Fig. 1. The output feedback interconnection of two IO behaviors

Lemma and Definition VI.1. The feedback behavior is
called T -stable if it is well-posed and if its autonomous
part B0 := {y ∈ F`; P ◦ y = 0} is T -stable (see
Corollary and Definition III.4). Then B2 is called a T -
stabilizing compensator of B1, B1 is called T -stabilizable
and Q(U0) = Q(U1)⊕Q(U2) = A1×`

T .

Proof. B0 is T -stable if and only if

M0 := A1×`/U0 ∈ C ⇐⇒ Q(M0) = 0 ⇐⇒
Q(U0) = Q(A1×`) = A1×`

T .

Theorem VI.2. (compare [13], [15, Th. 8.1, Alg. 8.2])
The behavior B1 is T -stabilizable if and only if Q(U1) is
an AT -direct summand of A1×`

T . The module Q(U1) can
be computed by means of Th. IV.1. There is an algorithm
to decide T -stabilizability if open problem III.5 can be
solved. Then all stabilizing compensators can be constructed
(parametrization). The algorithms use the Gröbner basis
algorithm.

The construction of a direct complement of Q(U1) in A1×`
T

is related to the algorithm of [24].
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