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THE FAST FOURIER TRANSFORM∗

ULRICH OBERST†

Abstract. Fast Fourier transforms (FFTs) are fast algorithms, i.e., of low complexity, for the
computation of the discrete Fourier transform (DFT) on a finite abelian group. They are among
the most important algorithms in applied and engineering mathematics and in computer science, in
particular for one- and multidimensional systems theory and signal processing. We give a relatively
short survey of the FFT for arbitrary finite abelian groups, cyclic or not, with complete and partially
novel proofs, the main distinction being explicit induction formulas for the FFT in all cases which
generalize the original FFT-algorithm due to Cooley and Tukey and, much earlier, to Gauß. We
believe that our approach has didactic advantages over the usual ones. We also present the application
of the FFT to fast convolution algorithms, and the so-called number theoretic transforms over finite
coefficient rings. We do not treat those algorithms which decrease the multiplicative complexity at
the expense of many more rational linear combinations, which in this context are considered costless,
nor do we discuss the DFT for nonabelian finite groups.
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1. Introduction. Fast Fourier transforms (FFTs) are fast algorithms, i.e., of
low complexity, for the computation of the discrete Fourier transform (DFT) on a
finite abelian group which, in turn, is a special case of the Fourier transform on a
locally compact abelian group. The FFTs are among the most important algorithms
in applied and engineering mathematics and in computer science, in particular for one-
and multidimensional systems theory and signal processing as evidenced by references
[4], [11], [15], [19], [23], [26], [28], [34], [35], [40]. Various textbooks on the FFT are
mentioned at the end of this introduction.

The present article gives a relatively short survey of the FFT for arbitrary finite
abelian groups, cyclic or not, with complete and partially novel proofs which in our
opinion have didactic advantages over the usual ones. The main distinction consists
in explicit induction formulas for the FFT, proven and announced in 1988 [30], [31],
for all possible cases which generalize the FFT-algorithm on the group Z/Z2r due to
Cooley and Tukey [18] and, much earlier, to Gauß. We also treat the applications of
the FFT to fast convolution algorithms. We do not discuss the algorithms with fewer
essential multiplications at the expense of many more rational linear combinations,
i.e., those with low multiplicative complexity, for instance, those of Winograd [43].
Nor do we treat the FFT for noncommutative finite groups [5], [13].

An algorithm is called fast if it has low complexity, where the complexity is the
number of elementary computation steps necessary to execute it. In this paper and
in most computer processors such a step is of the form ax + y with numbers a, x, y;
i.e., it consists of one multiplication together with one addition.

The following motivational remarks taken from [6] and [24] on the Fourier theory
for general locally compact abelian groups or harmonic analysis will not be used in
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any way in the rest of this article. For the group G = Rr the Fourier transform of a
function a ∈ L1(Rr) is the bounded, continuous function

â(y) :=
∫

Rr a(x) exp(−2πix • y)dx, y ∈ Rr, where x • y := x1y1 + · · ·+ xryr

is the standard scalar product. Under suitable assumptions, for instance, if â is
absolutely integrable, too [22, p. 164], the Fourier inversion formula

a(x) =
∫

Rr â(y) exp(+2πix • y)dy
holds almost everywhere. For fixed y the map x �→ 〈x, y〉 := exp(−2πix • y) is a char-
acter on Rr, i.e., a continuous group homomorphism from Rr into the circle group
S1 := {z ∈ C; | z |= 1}. Let Grcont(Rr,S1) denote the multiplicative group of all
characters with the multiplication of functions. Then, more precisely, the continuous,
symmetric, bimultiplicative form 〈−,−〉 is nondegenerate, i.e., induces the (topologi-
cal) isomorphism

Rr ∼= Grcont(Rr,S1), y �→ 〈−, y〉,
and the Fourier inversion has the form

â(y) :=
∫

Rr a(x)〈x, y〉dx,
a(x) :=

∫
Rr â(y)〈−x, y〉dy, 〈−x, y〉 = 〈x, y〉−1 = 〈x, y〉.

In general, the character group Ĝ := Grcont(G,S
1) of a locally compact abelian group

G is not isomorphic to G, for instance, Ẑr ∼= (S1)r, but the form 〈−,−〉 : G × Ĝ →
S1, 〈g, ĝ〉 := ĝ(g), is nondegenerate in the sense that the map G→ Grcont(Ĝ,S

1), g �→
〈g,−〉, is a (topological) isomorphism and the Fourier inversion has the form

â(ĝ) :=
∫
G
a(g)〈g, ĝ〉dg, a ∈ L1(G),

a(g) :=
∫
Ĝ
â(ĝ)〈−g, ĝ〉dĝ, 〈−g, ĝ〉 = 〈g, ĝ〉−1 = 〈g, ĝ〉,

where dg, respectively, dĝ, are the suitably normalized Haar measures on G, respec-
tively, Ĝ.

We specialize the preceding considerations to the simple case of a finite abelian
group G of exponent d > 0, i.e., satisfying dG = 0. In various ways one can choose a
group Ĝ ∼= G, for instance, Ĝ = G, and a biadditive form

• : G× Ĝ→ Z/Zd such that

Ĝ ∼= Hom(G,Z/Zd), ĝ �→ (−) • ĝ, and G ∼= Hom(Ĝ,Z/Zd), g �→ g • (−),

are isomorphisms, the latter signifying that the form • is nondegenerate. In the engi-
neering literature the groups G and Ĝ are called the time, respectively, the frequency
domain, in the standard one-dimensional case of time signals. We choose a primitive
dth root of one in C, for instance, ζ := exp(− 2πi

d ); hence

Z/Zd ∼= μ := 〈ζ〉 = {1, ζ, · · · , ζd−1} ⊆ S1, k �→ ζk := ζk.

The nondegenerate form • thus induces the nondegenerate bimultiplicative form

〈−,−〉 : G× Ĝ→ μ, 〈g, ĝ〉 := ζg•ĝ, such that

Ĝ ∼= Gr(G,μ), ĝ �→ 〈−, ĝ〉, and G ∼= Gr(Ĝ, μ), g �→ 〈g,−〉.
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Here Gr(G,μ) denotes the multiplicative abelian group of homomorphisms from the
additive abelian group G into the multiplicative abelian group μ. The canonical group
isomorphisms

Ĝ ∼= Hom(G,Z/Zd) ∼= Gr(G,μ) = Gr(G,S1)

hold. In this article we use the chosen group Ĝ instead of the isomorphic character
group Gr(G,μ) for the development of the theory. The standard choices for the one-
dimensional DFT are

d > 0, G := Ĝ = Z/Zd, k • l = kl, 〈k, l〉 = exp
(−2πikld

)
.

It is a well-known and simple, but for this paper essential, observation that the con-
travariant duality functor G �→ Ĝ ∼= Gr(G,μ) is exact on finite abelian groups of
exponent d. The Haar integral on CG which is unique up to a multiplicative positive
constant is the map CG → C, a �→∑

g∈G a(g). Therefore we define two DFTs

FourG : CG → CĜ, a �→ â, â(ĝ) :=
∑

g∈G a(g)〈g, ĝ〉, and

FourĜ : CĜ → CG, b �→ b̂, b̂(g) :=
∑

ĝ∈Ĝ b(ĝ)〈g, ĝ〉.

The map FourĜ is sometimes called the inverse discrete Fourier transform (IDFT).
The Fourier inversion formula has the form

N−1̂̂a(−g) = a(g), where a ∈ CG, N := ord(G).

The form 〈−,−〉 and the Fourier transform can also be defined if C is replaced by
an arbitrary commutative ring K and if ζ is a primitive dth root of one in K, and
we will do this in these notes. However, the Fourier inversion holds under additional
assumptions on ζ only [29], [16], [20]. Interesting cases concern finite factor rings
K = Z/ZM of Z, where the corresponding DFT is also called a number theoretic
transform (NTT), or rings of algebraic integers. In our opinion the change of the
coefficient ring does not justify a change of the terminology, so we will always talk of
the DFT.

Any filtration or increasing sequence of subgroups 0 = G0 ⊆ G1 ⊆ · · · ⊆ Gr = G
of G gives rise to an FFT-algorithm for the computation of FourG. That nontrivial
subgroups H of G and their factor groups G/H are significant for the construction
of an FFT for FourG is one of the basic observations in this field since [18], and the
book [5], for instance, stresses this point of view. For groups of prime order there
are no FFTs in this sense, and different algorithms have been designed, the first one
by Rader [36]. Our description of the recursive FFT-algorithms gives simple explicit
recursion formulas and makes essential use of the exactness of the duality functor. For
the important case of cyclic groups similar formulas are contained in [8, pp. 188–191].

The central and novel sections of this survey paper are those on the FFT. The sec-
tions on duality theory, the DFT, and the complexity of linear maps contain necessary
preliminaries and are simple adaptions from the literature. The two short sections
on fast convolution algorithms derived from the FFT and on NTTs are included for
completeness’ sake and are also simple variants of the literature [29].

Since the FFT is so important in engineering applications there are very many
papers and books on this subject, too numerous to be available to and be read and
known by the author. Therefore the list of references at the end of this survey paper
contains only books and papers which are actually mentioned in the text, and omission
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of an article is no comment whatsoever on its historical or practical significance.
Standard textbooks on the FFT are those of Brigham [8], Nussbaumer [29], and Beth
[5] (in German), newer books are those of Clausen and Baum [13], Chu and George
[14], and Garg [20]. Besides the signal processing and systems textbooks quoted
above, the book [8] and especially that of Briggs and Henson [7] give surveys of the
many mathematical and technical applications of the DFT and thus of the FFT from
an engineering point of view, for instance, to the computation of Fourier integrals and
coefficients, to trigonometric interpolation, and to digital filtering.

We shortly discuss the literature on the construction of FFT and convolution
algorithms which minimize the multiplicative complexity according to Winograd and
which are otherwise not treated in the present paper. The seminal papers in this
direction are those of Winograd, Auslander, and Tolimieri and their coworkers [42],
[43], [2], [1], [38]. In [32], [41], and the book [33], which unfortunately has not yet
appeared, we constructed the optimal fast Fourier and Hartley, respectively, Gelfand,
transforms on arbitrary finite abelian groups, respectively, finite-dimensional, commu-
tative, semisimple Q-algebras, i.e., algorithms for these transformations of minimal
multiplicative complexity, and computed the exact value of the latter with the help of
[3]. The recent paper [39] emphasizes the renewed interest in such algorithms.

The present paper presupposes the algebraic knowledge of a mathematics student
at the end of the second university year. Some results are recalled under the title
Reminder.

2. Duality.
Reminder 1 (see [25, p. 46]). Let G = (G,+) be a finite abelian group, written

additively. Then there are numbers d1 > 0, · · · , dr > 0 and an isomorphism

G ∼= Z/Zd1 × · · · × Z/Zdr.(1)

The least common multiple

exp(G) := lcm(d1, · · · , dr) with Z exp(G) = {k ∈ Z; kG = 0}(2)

is called the exponent of G. If, in addition, d� divides d�+1 for all � = 1, · · · , r − 1,
then the d� are unique and are called the invariant factors of G and exp(G) = dr.
If d is a multiple of exp(G) or, in other terms, if dG = 0, we say that G is a group of
exponent d.

If G and H are additively written abelian groups, the group of all additive or
Z-linear homomorphisms from G to H is denoted by Hom(G,H) = HomZ(G,H) as
usual.

If r > 0 and K is a field, the map

• : Kr ×Kr → K, x • y := x1y1 + · · ·+ xryr for x = (x1, · · · , xr),
is a nondegenerate symmetric bilinear form; i.e., the induced map

Kr → HomK(Kr,K), y �→ (−) • y = y • (−),

is a K-isomorphism.
The following symmetric bilinear form is the analogue of the preceding one for

finite abelian groups.
Theorem 2 (nondegenerate bilinear form). Let

G = Z/Zd1 × · · · × Z/Zdr 	 g = (g1, · · · , gr), g� ∈ Z,
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be the finite abelian group of exponent d > 0, i.e., dG = 0. Then the map

• : G×G→ Z/Zd, g • h :=
∑r

�=1 g�h�
d
d�
,(3)

is well defined and is a nondegenerate, symmetric Z-bilinear form; i.e., the following
hold.

(1) The definition is independent of the representatives g�, h�.
(2) g • h = h • g, g • (h+ h′) = g • h+ g • h′ for all g, h, h′ in G.
(3) G ∼= Hom(G,Z/Zd), h �→ (−) • h.
Proof. (1) The map is well defined: Let g = (g1, · · · , gr) = (g′1, · · · , g′r); hence

g′� = g� + k�d�, k� ∈ Z, for � = 1, · · · , r. But then∑r
�=1 g

′
�h�

d
d�

=
∑r

�=1 g�h�
d
d�

+
∑r

�=1 g�h�k�d ∈
∑r

�=1 g�h�
d
d�

+ Zd, and hence∑r
�=1 g

′
�h�

d
d�

=
∑r

�=1 g�h�
d
d�

= g • h.
The independence of the representatives h� is shown in the same fashion.

(2) The symmetry and bilinearity follow trivially from the definition.
(3) It remains to show that G→ Hom(G,Z/Zd), h • (−) = (−) • h, is an isomor-

phism.
(i) Monomorphism: Assume that (−) • h = 0. For � = 1, · · · , r let δ� :=

(0, · · · , 0,
�

1, 0, · · · , 0) denote the analogue of the standard basis such that (g1, · · · , gr) =∑r
�=1 g�δ� for all g ∈ G. Then

0 = δ� • h = h�
d
d�
∈ Z/Zd; hence for � = 1, · · · , r

d | h� d
d�

or d� | h� and h� = 0 in Z/Zd�, i.e., h = 0.

(ii) Epimorphism: Let ϕ : G→ Z/Zd be any homomorphism. The equation

d�δ� = 0 implies d�ϕ(δ�) = 0 in Z/Zd; hence ϕ(δ�) = h�
d
d�

= δ� • h, h� ∈ Z,

and for g ∈ G : ϕ(g) = ϕ(
∑r

�=1 g�δ�) =
∑r

�=1 g�ϕ(δ�)

=
∑r

�=1 g�δ� • h = (
∑r

�=1 g�δ�) • h = g • h and ϕ = (−) • h.
Corollary 3. With the data of the preceding theorem, let G1 and G2 be two

groups which are isomorphic to G and let ϕi : Gi
∼= G, i = 1, 2, be two isomorphisms.

Then

• : G1 ×G2 → Z/Zd, g1 • g2 := ϕ1(g1) • ϕ2(g2),(4)

is a nondegenerate bilinear form; i.e., the maps

G1 → Hom(G2,Z/Zd), g1 �→ g1 • (−), and G2 → Hom(G1,Z/Zd), g2 �→ (−) • g2,
are isomorphisms.

The proof is obvious. The corollary implies that the following assumptions can
be realized in various ways.

Assumption 4. Let d > 0. In what follows we consider finite abelian groups G
with dG = 0. For each such G we choose a group Ĝ and a nondegenerate bilinear
form • : G× Ĝ→ Z/Zd, hence the canonical isomorphisms

can : G ∼= Hom(Ĝ,Z/Zd), g �→ g • (−), and can : Ĝ ∼= Hom(G,Z/Zd), ĝ �→ (−) • ĝ.
(5)
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For the groups G = Z/Zd1 × · · · × Z/Zdr the canonical choices are Ĝ = G and the

symmetric form of (3). In the context of the FFT the groups G (resp., Ĝ) are often
called the time domain (resp., the frequency domain), and therefore it is advantageous

to make a notational distinction between G and Ĝ even if G = Ĝ.

If G is any finite abelian group the theory applies for d = exp(G).

Reminder 5 (see [25, pp. 76,77]). Hom(G,H) is an additive functor in its two
variables G and H. In particular, a homomorphism ϕ : G1 → G2 of abelian groups
induces the homomorphism

Hom(ϕ,Z/Zd) : Hom(G2,Z/Zd)→ Hom(G1,Z/Zd), χ2 �→ χ2ϕ,

in the reverse direction. This assignment satisfies the relations

Hom(idG,Z/Zd) = idHom(G,Z/Zd),

Hom(ϕ1,Z/Zd) Hom(ϕ2,Z/Zd) = Hom(ϕ2ϕ1,Z/Zd) for G1
ϕ1−→ G2

ϕ2−→ G3,
Hom(ϕ−1,Z/Zd) = Hom(ϕ,Z/Zd)−1 if ϕ : G1

∼= G2.

Corollary 6. For each finite abelian group G of exponent d > 0 there is a
noncanonical isomorphism G ∼= Ĝ.

Proof. Choose an isomorphism ϕ : H = Z/Zd1 × · · · × Z/Zdr → G and on H the
bilinear form from (3) which induces the isomorphism H ∼= Hom(H,Z/Zd). Then

Ĝ ∼= Hom(G,Z/Zd)
Hom(ϕ,Z/Zd)∼= Hom(H,Z/Zd) ∼= H ∼= G.

Remark 7. If K is a field, V a finite-dimensional K-vector space, and V � :=
HomK(V,K) its dual space, the canonical Gelfand map

Gelf : V → V ��, v �→ Gelf(v), Gelf(v)(v�) := v�(v),

is a K-isomorphism. The following result is the analogue for finite abelian groups.

Theorem 8. There is the unique canonical Gelfand isomorphism

GelfG : G ∼= ̂̂
G with g • ĝ = ĝ •GelfG(g) for all g ∈ G, ĝ ∈ Ĝ.(6)

Proof.

G ∼= Hom(Ĝ,Z/Zd) ∼= ̂̂
G, g → g • (−) = (−) •GelfG(g)← GelfG(g).

Lemma and Definition 9. 1. For each homomorphism ϕ : G1 → G2 there is a
unique homomorphism

ϕ� : Ĝ2 → Ĝ1 such that ϕ(g1) • ĝ2 = g1 • ϕ�(ĝ2) for all g1 ∈ G1, ĝ2 ∈ Ĝ2.(7)

The map ϕ� is called the adjoint of ϕ.

2. The relations id�
G = idĜ and ϕ�

1ϕ
�
2 = (ϕ2ϕ1)

� for G1
ϕ1−→ G2

ϕ2−→ G3 hold.

Hence the assignment G �→ Ĝ, ϕ �→ ϕ�, is a contravariant functor on finite
abelian groups of exponent d > 0 and is called the duality functor in this article.
Observe that Ĝ ∼= Hom(G,Z/Zd) can be chosen in various ways.
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Proof. 1. There is a unique homomorphism ϕ� such that the following diagram
with vertical isomorphisms is commutative:

Ĝ2
ϕ�

−→ Ĝ1

↓ can2 ↓ can1

Hom(G2,Z/Zd)
Hom(ϕ,Z/Zd)−→ Hom(G1,Z/Zd)

ĝ2 �→ ϕ�(ĝ2)
↓ ↓

χ2 := (−) • ĝ2 �→ χ2ϕ = ϕ(−) • ĝ2 = (−) • ϕ�(ĝ2)

;(8)

viz., ϕ� := can−1
1 ◦Hom(ϕ,Z/Zd) ◦ can2. The commutativity signifies that

ϕ(g1) • ĝ2 = g1 • ϕ�(ĝ2) for all g1 ∈ G1, ĝ2 ∈ Ĝ2.

2. The relations follow from the commutative diagram (8) and from Reminder 5.
Lemma 10. The Gelfand map is a natural transformation; i.e., for ϕ : G1 → G2

the following diagram is commutative:

G1
ϕ−→ G2

↓ Gelf1 ↓ Gelf2̂̂
G1

ϕ��

−→ ̂̂
G2

.(9)

Proof. For all g1 ∈ G1 and ĝ2 ∈ Ĝ2 we have

ĝ2 •Gelf2(ϕ(g1)) = ϕ(g1) • ĝ2 = g1 • ϕ�(ĝ2)
= ϕ�(ĝ2) •Gelf1(g1) = ĝ2 • ϕ��(Gelf1(g1)); hence

Gelf2(ϕ(g1)) = ϕ��(Gelf1(g1)).

Reminder 11 (exactness, [25, pp. 16, 77]). 1. Consider a sequence of abelian
groups and homomorphisms

G1
ϕ1−→ G2

ϕ2−→ G3.(10)

The sequence is called a complex if ϕ2ϕ1 = 0 or im(ϕ1) ⊆ ker(ϕ2).
2. The sequence (10) is called exact if im(ϕ1) = ker(ϕ2).
3. A possibly infinite sequence

G∗ : · · · → Gi+1
di+1−→ Gi

di−→ Gi−1 → · · · , i ∈ Z,(11)

is called a complex (resp., exact) if and only if all three member subsequences have
this property, i.e. Bi := im(di+1) ⊆ Zi := ker(di) (resp., Bi = Zi) for all i. The
groups Hi(G∗) := Zi/Bi are called the homology groups of the complex and are all
zero if and only if G∗ is exact.

4. For a sequence

0 −→ G1
ϕ1−→ G2

ϕ2−→ G3(12)

the following properties are equivalent.
(a) The sequence is exact.
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(b) ker(ϕ1) = 0, i.e., ϕ1 is a monomorphism, and im(ϕ1) = ker(ϕ2).
(c) The map ϕ1 induces an isomorphism ϕ1,ind : G1

∼= ker(ϕ2).
5. For a sequence

G1
ϕ1−→ G2

ϕ2−→ G3 −→ 0(13)

and the cokernel cok(ϕ1) := G2/ im(ϕ1) the following properties are equivalent.
(a) The sequence is exact.
(b) im(ϕ2) = G3, i.e., ϕ2 is an epimorphism, and im(ϕ1) = ker(ϕ2).
(c) The map ϕ2 induces the isomorphism ϕ2,ind : cok(ϕ1) ∼= G3, g2 �→ ϕ2(g2).
6. The Hom-functor is left exact. Moreover, the sequence (13) is exact if and

only if for all abelian groups X the derived sequence

Hom(G1, X)
Hom(ϕ1,X)←− Hom(G2, X)

Hom(ϕ2,X)←− Hom(G3, X)←− 0(14)

is exact.
The next duality theorem states that the duality functor G �→ Ĝ preserves and

reflects exactness.
Theorem 12 (duality theorem). A sequence

G1
ϕ1−→ G2

ϕ2−→ G3(15)

of finite abelian groups G of exponent d (dG = 0) is exact if and only if its dual
sequence

Ĝ1
ϕ�

1←− Ĝ2
ϕ�

2←− Ĝ3(16)

has this property.
Proof. ⇒ : 1. Assume first that the sequence

G1
ϕ1−→ G2

ϕ2−→ G3 −→ 0(17)

is exact, i.e., ϕ2 is surjective. Lemma 9 implies the commutative diagram

Ĝ1
ϕ�

1←− Ĝ2
ϕ�

2←− Ĝ3 ← 0
↓ can1 ↓ can2 ↓ can3

Hom(G1,Z/Zd)
Hom(ϕ1,Z/Zd)←− Hom(G2,Z/Zd)

Hom(ϕ2,Z/Zd)←− Hom(G3,Z/Zd) ← 0

with vertical isomorphisms whose lower row is exact according to part 6 of Re-
minder 11. The commutativity then implies that also the upper row is exact.

2. We prove that ϕ� is an epimorphism if ϕ : G1 → G2 is a monomorphism.
The sequence

0← C := cok(ϕ�)
can←− Ĝ1

ϕ�

←− Ĝ2

is exact. Part 1 of this proof and Lemma 10 imply the commutative diagram

G1
ϕ−→ G2

↓ Gelf1 ↓ Gelf2

0 → Ĉ
can�

−→ ̂̂
G1

ϕ��

−→ ̂̂
G2
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with exact row and vertical isomorphisms. Since ϕ is a monomorphism, so is ϕ��, and
hence Ĉ = 0. Since C and Ĉ are isomorphic, we obtain C = cok(ϕ�) = 0 or that ϕ�

is surjective.
3. The exact sequence (15) gives rise to the commutative diagram

G1
ϕ1−→ G2

can−→ C := cok(ϕ1) −→ 0
↓ ϕ2 ↓ ψ
G3 = G3

,

where ψ(g2) = ϕ2(g2). Since C = G2/ im(ϕ1) = G2/ ker(ϕ2), the homomorphism
theorem implies that ψ is a monomorphism. Dual to the preceding one is the com-
mutative diagram

Ĝ1
ϕ�

1←− Ĝ2
can�

←− Ĉ ←− 0
↑ ϕ�

2 ↑ ψ�

Ĝ3 = Ĝ3

.

Its first row is exact, and ψ� is an epimorphism according to parts 1 and 2 of the
proof. Since ϕ�

2 = can� ψ�, we conclude that im(ϕ�
2) = im(can�) = ker(ϕ�

1) and thus
the exactness of (16).
⇐ : Assume that (16) is exact. There results the diagram

G1
ϕ1−→ G2

ϕ2−→ G3

↓ Gelf1 ↓ Gelf2 ↓ Gelf3̂̂
G1

ϕ��
1−→ ̂̂

G2
ϕ��

2−→ ̂̂
G3

.

The exactness of (16) and the proof “⇒” imply the exactness of its lower row, and
Lemma 10 implies its commutativity. Since the Gelfand maps are isomorphisms, the
wanted exactness of the upper row follows.

3. The discrete Fourier transform. In this section we define and investigate
the DFT for K-valued functions on a finite abelian group where K denotes a suitable
coefficient field or even ring.

Assumption 13. The assumptions of section 2 remain in force, in particular d > 0.
We consider finite additively written abelian groups G of exponent d (dG = 0) and the

nondegenerate bilinear forms • : G× Ĝ→ Z/Zd. Let K be a commutative coefficient
ring. Then KG is the K-module of functions from G to K with its argumentwise
addition and scalar multiplication. The standard case for the FFT will be the coef-
ficient field C of complex numbers. However, since we are also going to discuss the
so-called arithmetic transforms with a finite coefficient ring or field, we consider the
more general situation from Assumption 13. Let U(K) denote the group of units
or invertible elements of K. For the definition of the DFT on KG we also need an
analogue of the circle group S1 = {z ∈ C; | z |= 1} ⊂ U(C) in the standard case of
complex Fourier transforms. Therefore we make the following additional assumption
for the ring K.

Assumption 14. Let ζ ∈ U(K) be a primitive dth root of one in K, i.e.

ζd = 1, μ := 〈ζ〉 = {1, ζ, · · · , ζd−1} ⊆ U(K), ord(ζ) = ord(μ) = d.

Examples 15.
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(1) Let

K := C, ζ := exp
(− 2πi

d

)
. Then μ := 〈ζ〉 = {η ∈ C; ηd = 1}

is the group of all dth roots of one in C and consists of the vertices of the
regular d-gon. These data are those of the standard complex DFT.

(2) Let d := 2, K := R, ζ := −1. These data are used for the discrete Walsh–
Fourier transform.

(3) Let K := C× C, ζ := (ζ1, ζ2) := (exp(− 2πi
d ), 1). This is a primitive dth root

of one, but it does not generate the finite group of all dth roots of one which
consists of the elements (ζm1 , ζ

n
1 ).

(4) Let K be a finite field of characteristic p and dimension [K : Z/Zp] = n,
hence with q := pn elements. The group U(K) = K \ {0} is cyclic and hence
generated by a primitive root of order d := q−1. For instance, U(Z/Z7) = 〈3〉,
whereas ord(2) = 3.

If G1 and G2 are arbitrary abelian groups and one of them is multiplicatively
written, we denote the group of all homomorphisms from G1 to G2 by Gr(G1, G2)
instead of Hom(G1, G2).

Lemma 16. Consider the situation of Example 15(1) and a finite abelian group
G with dG = 0. Then Gr(G,μ) = Gr(G,S1) is the group of all complex characters
on G.

Proof. Let χ : G → S1 be any character, i.e., homomorphism. The relations
dg = 0 for g ∈ G imply χ(g)d = 1 and hence χ(g) ∈ μ since μ is the group of all roots
of 1.

This result suggests that we consider the group Gr(G,μ) as a suitable analogue
of the character group for general coefficient rings, and we will do this; i.e, we call
this group the character group of G. Notice that, in general, this group depends on
the choice of ζ in contrast to the complex case.

Corollary and Definition 17. The maps

Z/Zd ∼= μ = 〈ζ〉, k �→ ζk := ζk, hence also

Hom(G,Z/Zd) ∼= Gr(G,μ), ϕ �→ χ, χ(g) = ζϕ(g),
(18)

are isomorphisms. For each group G (finite abelian, dG = 0) the nondegenerate

bilinear form • : G× Ĝ→ Z/Zd induces the nondegenerate bimultiplicative form

〈−,−〉 : G× Ĝ→ μ = 〈ζ〉, 〈g, ĝ〉 := ζg•ĝ; i.e.,(19)

(1) for all g1, g2 ∈ G and ĝ1, ĝ2 ∈ Ĝ
〈g1, ĝ1 + ĝ2〉 = 〈g, ĝ1〉〈g, ĝ2〉, 〈g1 + g2, ĝ〉 = 〈g1, ĝ〉〈g2, ĝ〉,

(2)

G ∼= Gr(Ĝ, μ), g �→ 〈g,−〉, Ĝ ∼= Gr(G,μ), ĝ �→ 〈−, ĝ〉.
The proof of this corollary is obvious since it consists in just replacing the additive

group Z/Zd by the multiplicative group μ = 〈ζ〉.
Reminder 18. The K-module KG of all functions a = (a(g))g∈G : G → K has

the standard basis δh := (δh,g)g∈G, h ∈ G, and the basis representation is

a = (a(g))g∈G =
∑

g∈G a(g)δg.
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We also consider the function module KĜ with the corresponding structure.
Lemma and Definition 19 (DFT). The data are as introduced above. The map

FourG : KG → KĜ, a �→ â, â(ĝ) :=
∑

g∈G a(g)〈g, ĝ〉,

is K-linear and is called the discrete Fourier transform (DFT). The function â ∈ KĜ

is also called the Fourier transform of a. The analogous map

FourĜ : KĜ → KG, b �→ b̂, b̂(g) :=
∑

ĝ∈Ĝ b(ĝ)〈g, ĝ〉,

is called the Fourier transform on KĜ or inverse Fourier transform (IDFT). Notice

that FourĜ maps into KG and not into K
̂̂
G.

The Fourier transform depends on the choice of the non-degenerate form • and
of the primitive dth root ζ.

Examples 20. (1) Let d := n > 0, K := C, ζ := exp(− 2πi
n ), and G := Zn :=

Z/Zn = Ĝ with k • l := kl ∈ Zn and hence 〈k̂, l̂〉 = ζkl = exp(−2πikln ).
We identify

G = Zn = {0, · · · , n− 1} = {0, · · · , n− 1},
CG = CĜ = CZn = Cn 	 a = (a(k))k∈Zn

= (a(0), · · · , a(n− 1) = (a(0), · · · , a(n− 1)), and hence
FourG = FourĜ : Cn → Cn.

The Fourier transform of a = (a(0), · · · , a(n− 1)) is

â = (â(0), · · · , â(n− 1)),

â(l) =
∑

k∈Zn
a(k)〈k, l〉 =

∑n−1
k=0 a(k)ζ

kl =
∑n−1

k=0 a(k) exp
(−2πikln

)
.

(2) Let d := 2, K := R, ζ := −1, and G = Zr
2 	 g = (g1, · · · , gr) the finite-

dimensional Z2-vector space which is the typical finite group of exponent 2. We
choose

Ĝ := G, g • h := g1h1 + · · ·+ grhr, and hence 〈g, h〉 = (−1)g•h.

The Fourier transform â of a ∈ RG is given by â(h) =
∑

g∈G a(g)(−1)g•h. One also
talks about the Walsh–Fourier transform in this case.

Lemma 21. For each g ∈ G the Fourier transform of

δg ∈ KG is δ̂g = 〈g,−〉 ∈ Gr(Ĝ, μ) ⊂ KĜ.

Proof. δ̂g(ĝ) =
∑

h∈G δg(h)〈h, ĝ〉 = 〈g, ĝ〉.
The K-module KG admits two structures as commutative K-algebras which are

both significant for the DFT.
Lemma and Definition 22. With the argumentwise multiplication

(a1a2)(g) := a1(g)a2(g), a1, a2 ∈ KG, g ∈ G,(20)

the K-module KG is a commutative K-algebra whose identity 1KG is the constant
function with value 1. The standard basis consists of complete orthogonal idempotents,
i.e., ∑

g∈G δg = 1, δgδh = δg,hδg.
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The proof is obvious.
Lemma and Definition 23. With the convolution multiplication

(a1 ∗ a2)(g) :=
∑

g1+g2=g a1(g1)a2(g2) =
∑

h∈G a1(g − h)a2(h)

=
∑

h∈G a1(h)a2(g − h)
(21)

the K-module KG is a commutative K-algebra with the identity δ0. One writes
K[G] := (KG, ∗) and calls this algebra the group algebra of G with coefficients in
K. The map

δ : G→ U(K[G]), g �→ δg,(22)

is a group monomorphism, i.e., injective with

δ0 = 1, δg1+g2 = δg1 ∗ δg2 , hence δ−1
g = δ−g.

The proof is analogous to that for the polynomial algebra K[X] := K[N] and is
omitted.

The map δ : G → U(K[G]) has the following universal property. For two K-
algebras A and B let AlK(A,B) denote the set of K-algebra homomorphisms from A
to B.

Theorem 24 (universal property). For each K-algebra B the map

AlK(K[G], B)→ Gr(G,U(B)), ϕ �→ χ := ϕ ◦ δ,(23)

is bijective. The inverse map is given by

χ �→ ϕ, ϕ(a) =
∑

g∈G a(g)χ(g), a ∈ KG.

Proof. The map is injective since χ := ϕ ◦ δ, χ(g) = ϕ(δg), implies

ϕ(a) = ϕ
(∑

g∈G a(g)δg
)

=
∑

g∈G a(g)ϕ(δg) =
∑

g∈G a(g)χ(g).(24)

Let, conversely, χ be given and define ϕ via the K-linear map (24), in particular,

ϕ(δg) = χ(g) and ϕ(1K[G]) = ϕ(δ0) = χ(0) = 1B .

Then

ϕ(δg1
∗ δg2) = ϕ(δg1+g2) = χ(g1 + g2) = χ(g1)χ(g2) = ϕ(δg1)ϕ(δg2).

Therefore ϕ is multiplicative on the standard basis and therefore a K-algebra homo-
morphism by bilinear extension.

Corollary 25. For B := K there results the bijection

AlK(K[G],K) ∼= Gr(G,U(K)), ϕ �→ ϕ ◦ δ.
In particular, for every ĝ ∈ Ĝ, the group homomorphism 〈−, ĝ〉 : G → μ ⊆ U(K)
induces the K-algebra homomorphism

K[G] = (KG, ∗)→ K, a �→∑
g∈G a(g)〈g, ĝ〉 = â(ĝ).

Theorem 26 (convolution theorem). The K-linear Fourier transform

FourG : K[G]→ KĜ is an algebra homomorphism, i.e.,

δ̂0 = 〈0,−〉 = 1
KĜ , â1 ∗ a2(ĝ) = â1(ĝ)â2(ĝ).
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Proof. Since KĜ is supplied with the argumentwise multiplication, the theorem
is a direct consequence of the Corollary 25.

Corollary and Definition 27 (Antipode). The group automorphism g �→ −g
of G induces the algebra automorphism

SG : KG ∼= KG, δg �→ δ−g, SG(a)(g) = a(−g),

with respect to both multiplications on KG. This map is called the antipode on KG

and is an involution, i.e., S2
G = idKG or S−1

G = SG . We likewise define SĜ on KĜ.
Proof. For the convolution multiplication this follows from the universal property

of K[G], and for the argumentwise multiplication directly from the definition.
Lemma 28. The antipode commutes with the Fourier transform, i.e., the diagram

KG FourG−→ KĜ

↓ SG ↓ SĜ

KG FourG−→ KĜ

is commmutative or FourG SG = SĜ FourG .

Proof. FourG SG(δg) = FourG(δ−g) = 〈−g,−〉 = SĜ(〈g,−〉) = SĜ FourG(δg).
For the proof of the Fourier inversion theorem we need an additional assumption

on the root ζ.
Assumption 29 (see [16, Satz 2.8]). For the data of Assumption 14 we assume in

what follows that d is invertible in K and that for each divisor m > 1 of d and the
root η := ζ

d
m of order ord(η) = m the relation

1 + η + · · ·+ ηm−1 = 0

holds. In Theorem 80 we will give several equivalent conditions for this assumption
as in [16, Satz 2.8].

Recall that all considered groups G are finite abelian of exponent d (dG = 0).
Let N := ord(G) denote the order of G.

Corollary 30. The preceding Assumption 29 is satisfied if K is a field.
Proof. The second property follows from the relation

0 = ηm − 1 = (η − 1)(ηm−1 + · · ·+ η + 1)

since ord(η) = m �= 1; hence η �= 1. Assume that the characteristic p of K divides d
or d = 0 in K. Then p is prime and

d = pk ⇒ 0 = ζd − 1 = (ζk)p − 1p = (ζk − 1)p ⇒ ζk = 1 ⇒ ord(ζ) ≤ k < d,

a contradiction to ord(ζ) = d.
Corollary 31. Under Assumption 29 the order N := ord(G) of G is also

invertible in K.
Proof. If G ∼= Z/Zd1 × · · · × Z/Zdr with d� | d, then N = d1 ∗ · · · ∗ dr divides dr

and therefore is invertible like d.
Lemma 32. Under Assumption 29 any character χ ∈ Gr(G,μ) of the group G

satisfies the relation

∑
g∈G χ(g) = Nδ1,χ =

{
N if χ = 1,

0 if χ �= 1.
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Here 1 : G → μ, g �→ 1, denotes the trivial character which is the neutral element of
the character group.

Proof. The assertion is obvious for χ = 1. Assume therefore that χ �= 1 and that
the image im(χ) has the order m �= 1. Then im(χ) is the unique subgroup of order

m of the cyclic group μ = 〈ζ〉 and is generated by η := ζ
d
m ; hence im(χ) = 〈η〉 =

{1, η, · · · , ηm−1}. Let η = χ(g). The isomorphism

G/ ker(χ) ∼= im(χ) = 〈η〉, ig �→ χ(ig) = χ(g)i = ηi,

implies that every element h ∈ G has a unique representation

h = ig + k, 0 ≤ i ≤ m− 1, k ∈ ker(χ).

We infer ∑
h∈G χ(h) =

∑ {χ(ig + k); 0 ≤ i ≤ m− 1, k ∈ ker(χ)}
=

∑
i,k χ(g)i =

∑
k

(∑m−1
i=0 ηi

)
= 0,

where
∑m−1

i=0 ηi = 0 according to Assumption 29.

Theorem 33. The following equations hold for a ∈ KG, b ∈ KĜ, g ∈ G, ĝ ∈ Ĝ:

Na(0) =
∑

ĝ∈Ĝ â(ĝ), Nb(0) =
∑

g∈G b̂(g),

Nδ0,g =
∑

ĝ∈Ĝ〈g, ĝ〉, Nδ0,ĝ =
∑

g∈G〈g, ĝ〉.

Proof. Since δ̂g = 〈g,−〉 and δ̂ĝ = 〈−, ĝ〉 only the first equation has to be shown.

With χ := 〈g,−〉 : Ĝ→ μ Lemma 32 implies
∑

ĝ∈Ĝ〈g, ĝ〉 = Nδ0,g; hence∑
ĝ∈Ĝ â(ĝ) =

∑
ĝ∈Ĝ,g∈G a(g)〈g, ĝ〉

=
∑

g a(g)
∑

ĝ〈g, ĝ〉 =
∑

g a(g)Nδ0,g = Na(0).

Theorem 34 (Fourier inversion theorem). Under Assumption 29 the Fourier
transform FourG is an isomorphism and

FourĜ ◦FourG = N SG or Four−1
G = N−1 SG FourĜ = N−1 FourĜ SĜ or̂̂a(g) = Na(−g) or ̂̂a = N SG(a).

Proof. All assertions follow from the last equation which has to be shown for the
standard basis vectors only, from the invertibility of N and of the antipode and the
same properties for FourĜ instead of FourG. But for g, h ∈ G

̂̂
δh(g) = 〈̂h,−〉(g) =

∑
ĝ∈Ĝ〈h, ĝ〉〈g, ĝ〉 =

∑
ĝ∈Ĝ〈g + h, ĝ〉

= Nδ0,g+h = Nδ−h(g) = N SG(δh)(g); hence
̂̂
δh = N SG(δh).

Example 35. In the situation of Example 20(1), with d = N = n the Fourier
inversion has the form

a↔ â, â(l) =
∑n−1

k=0 a(k) exp
(−2πikln

)
, a(k) = n−1

∑n−1
l=0 â(l) exp

(
+2πikln

)
.

Theorem 36 (product theorem). The map N−1 FourG : KG → K[Ĝ] is an
algebra isomorphism; i.e.,

N−1â1a2 = N−1â1 ∗N−1â2 or â1a2 = N−1â1 ∗ â2 and N−11̂ = δ0 or 1̂ = Nδ0.
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Proof. The Fourier inversion theorem (Theorem 34) and Lemma 28 imply that

N−1 SG FourĜ : KĜ → K[G] and SG : K[G]→ K[G] are algebra isomorphisms. The
same follows for N−1 FourĜ and then also for N−1 FourG.

The action of the group G on itself by translation induces an action on KG by
K-algebra automorphisms, viz.,

◦ : G×KG, (g, a) �→ g ◦ a := δg ∗ a, (g ◦ a)(h) = a(h− g).(25)

Similarly Ĝ acts on KĜ.
Theorem 37 (shift theorem). For a ∈ KG, g ∈ G, and ĝ ∈ Ĝ the following

relations hold:

FourG(g ◦ a) = 〈g,−〉â, FourG(〈−, ĝ〉a) = (−ĝ) ◦ â.(26)

Proof. The first equation follows from the convolution theorem since

ĝ ◦ a = δ̂g ∗ a = δ̂gâ = 〈g,−〉â,
and the second from

FourG(〈−, ĝ1〉a)(ĝ2) =
∑

g∈G〈g, ĝ1〉a(g)〈g, ĝ2〉
=

∑
g∈G a(g)〈g, ĝ1 + ĝ2〉 = â(ĝ1 + ĝ2) = ((−ĝ1) ◦ â)(ĝ2).

Corollary and Definition 38 (correlation). The correlation function a ◦ b ∈
KG of two functions a, b ∈ KG is defined as

a ◦ b := (SG a) ∗ b, i.e. ,
(a ◦ b)(h) :=

∑
g∈G(SG a)(g)b(h− g)

=
∑

g∈G a(−g)b(h− g) =
∑

g∈G a(g)b(h+ g).

Then

b ◦ a = SG(a ◦ b) and FourG(a ◦ b) = (SĜ â)̂b.

Proof. Since SG is an involution and an algebra homomorphism, we infer

SG(a ◦ b) = S2
Ga ∗ SGb = SGb ∗ a = b ◦ a.

The second equation follows from the convolution theorem and from SĜ FourG =
FourG SG.

For the coefficient field K := C the preceding considerations can be slightly
changed. For a function a ∈ CG we define the complex conjugate function a ∈
CG as a(g) := a(g) and likewise for a ∈ CĜ. On CG and likewise on CĜ we define the
standard hermitian inner product

(a1, a2) :=
∑

g∈G a1(g)a2(g) =
∑

g∈G(Sa1)(−g)a2(g) = (Sa1 ∗ a2)(0) = (a1 ◦ a2)(0),

(27)

where S denotes either SG or SĜ.

Lemma 39. â = Sâ, and hence Sâ = â.
Proof.

â(ĝ) =
∑

g a(g)〈g, ĝ〉 =
∑

g a(g)〈g,−ĝ〉 = Sâ(ĝ).
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Theorem 40 (Plancherel). For a1, a2 ∈ CG : N(a1, a2) = (â1, â2).
Proof. Using (27), Theorem 33, Corollary 38, and finally the preceding lemma,

we get

N(a1, a2) = N(a1 ◦ a2)(0) =
∑

ĝ∈Ĝ â1 ◦ a2(ĝ)

=
∑

ĝ∈Ĝ((Sâ1)â2)(ĝ) =
∑

ĝ∈Ĝ(â1â2)(ĝ) = (â1, â2).

Corollary 41 (orthogonality relations). For two characters ai := 〈−, ĝi〉, ĝ1,
ĝ2 ∈ Ĝ, on G one obtains the orthogonality relation

(a1, a2) = N(δĝ1
, δĝ2

) = Nδĝ1,ĝ2
.

Hence the characters 〈−, ĝ〉 are an orthogonal basis of CG.

Proof. This follows from the preceding theorem and δ̂ĝi = 〈−, ĝi〉 with the roles

of G and Ĝ interchanged.

4. Linear complexity. The FFT is a fast algorithm for the computation of the
DFT. An algorithm is called fast if it has low complexity. In this section we define
the linear complexity [9, Chap. 13] of matrices and in particular of the DFT to make
this terminology precise. See [37] or the book [9] for a comprehensive treatment of
algebraic complexity theory.

Let K again denote a commutative ring and I, J finite sets, for instance, G and
Ĝ in the preceding section. We consider the free column module KJ := KJ×1 with
the column vectors ξ = (ξj)j∈J , the free row module K1×J with the row vectors
x = (xj)j∈J and the standard basis δj , j ∈ J, and the free module KI×J of I × J
matrices with coefficients in K. We identify

KI×J = HomK(KJ ,KI), A = (ξ �→ Aξ), in particular,

K1×J = HomK(KJ ,K), x = (ξ �→ xξ =
∑

j∈J xjξj).
(28)

The following considerations will be applied mainly to FourG ∈ KĜ×G =

HomK(KG,KĜ). In the complexity theoretic arguments below we will mostly assume
A ∈ Km×n.

Motivation 42. For A ∈ KI×J the complexity or cost of an algorithm for the
computation of Aξ for arbitrary ξ will be the number of necessary elementary com-
putation steps whose cost is defined to be 1. Such a step could be an addition or a
multiplication, but we will use steps of the form (x, y) �→ ax+ y of one multiplication
and one addition for numbers a, x, y in K as realized in many standard computer pro-
cessors. If, more generally, a ∈ K is a constant and v, w ∈ K1×J , ξ ∈ KJ are vectors,
then (av + w)ξ = a(vξ) + (wξ); i.e., the result is obtained from the numbers vξ and
wξ with one elementary computation step. This motivates the following definitions
of an algorithm and its complexity.

Definition 43. Let I, J be finite sets and let A ∈ KI×J . A sequential algorithm
of complexity or cost M ≥ 0 for A or, in more detail, for the computation of Aξ
for all ξ ∈ KJ is a sequence v1, · · · , vM of row vectors in K1×J with the following
properties.

(1) Each row Ai−, i ∈ I, belongs to V := {δj ; j ∈ J} ∪ {0} ∪ {v1, · · · , vM}.
(2) For each k = 1, · · · ,M the vector vk is given in the form vk = av+w, where

a ∈ K and v, w ∈ {δj ; j ∈ J} ∪ {0} ∪ {v1, · · · , vk−1}.
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The data a, v, w depend on k, but do not get an index for notational simplic-
ity. The algorithm to compute Aξ for arbitrary ξ computes the list of M values
v1ξ, · · · , vMξ with M elementary computation steps vkξ = a(vξ) + (wξ) for values
vξ and wξ computed earlier, and the (Aξ)i = Ai−ξ, i ∈ I, are among these by con-
dition (1) of Definition 43. In contrast, the computation of 0ξ = 0 and δjξ = ξj is
costless. This signifies that the access time to the components of ξ on a real computer
is neglected.

Lemma 44. For the computation of A ∈ Km×n there is an algorithm of complexity
≤ mn.

Proof. The algorithm is the standard one for the matrix-vector product and is
given by the sequence of vectors

v1,1 := A11δ1 · · · v1,j = A1jδj + v1,j−1 · · · v1,n = A1− = A1nδn + v1,n−1

· · · · · · · · · · · · · · ·
vi,1 := Ai1δ1 · · · vi,j = Aijδj + vi,j−1 · · · vi,n = Ai− = Ainδn + vi,n−1

· · · · · · · · · · · · · · ·
vm,1 := Am1δ1 · · · vm,j = Amjδj + vm,j−1 · · · vm,n = Am− = Amnδn + vm,n−1.

If in the preceding proof Aij = 0 and hence vi,j = vi,j−1, one of these vectors can
be omitted and hence the following corollary holds.

Corollary 45. If N is the number of nonzero components of a matrix A ∈
Km×n, then there is an algorithm for A of complexity N .

Definition and Corollary 46. The linear complexity μ(A) of a matrix A ∈
KI×J is the minimal complexity of an algorithm for A. Then

(1) μ(A) ≤ N , where N is the number of non-zero components of A;
(2) μ(A) = 0 if and only if each row of A is either zero or a standard basis vector;
(3) μ(1, a2, · · · , an) ≤ n− 1 for a2, · · · , an ∈ K.

More generally, if KW and KV are free K-modules of finite dimension, then n :=
[W : K] (resp., m := [V : K]), if w = (w1, · · · , wn) (resp., v = (v1, · · · , vm)) are
fixed chosen bases of these modules, and if f : W → V, f(w) = vA, is a linear map
with the matrix A with respect to the chosen bases, then we define the complexity

μ(f) := μw,v(f) := μ(A)

as that of the matrix A. Of course, basis transformations of V do not have complexity
zero in general.

Proof. Concerning the last item the 1 × n matrix A := (1, a2, · · · , an) admits
the algorithm v2 := δ1 + a2δ2, · · · , vn := A since the computation of 1ξ1 = ξ1 is of
complexity zero.

Corollary 47. If Assumption 29 holds and G is a group of order N , the

complexity of the Fourier transform FourG = (〈g, ĝ〉)ĝ∈Ĝ,g∈G ∈ KĜ×G is at most

N(N − 1).
Proof. This follows like item 3 of Corollary 46 since for the column index g := 0

and any row index ĝ the entry of FourG is 〈0, ĝ〉 = 1.
Definition and Corollary 48. If α : I → J is any map between finite index

sets, the map

Kα : KJ → KI , ξ = (ξj)j∈J �→ ξ ◦ α = (ξα(i))i∈I

is called an index transformation and is of complexity zero.
Proof. The computation of Kα(ξ)i = ξα(i) just reads off one component of ξ, and

these operations are costless.
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The following theorem is decisive for the computation of an upper bound of the
FFT.

Theorem 49. If A ∈ Km×n and B ∈ Kn×p, then μ(AB) ≤ μ(A) + μ(B).
Proof. Let v1, · · · , vM (resp., w1, · · · , wN be algorithms for A resp., B of minimal

complexity M := μ(A) and N := μ(B). We are going to show that w1, · · · , wN , v1B,
· · · , vMB is an algorithm for AB; hence μ(AB) ≤M +N = μ(A) + μ(B). Let

VA := {δi; i = 1, . . . , n} ∪ {0} ∪ {v1, · · · , vM},
VB := {δj ; j = 1, . . . , p} ∪ {0} ∪ {w1, · · · , wN},

VAB := {δj ; j = 1, . . . , p} ∪ {0} ∪ {w1, · · · , wN , v1B, · · · , vMB}.

By definition VB ⊆ VAB . We have to show that VAB satisfies properties (1) and (2)
from Definition 43.

(1) We use Ai− ∈ VA, Bj− ∈ VB and show that (AB)i− = Ai−B ∈ VAB .
Case 1. Ai− = 0 ⇒ Ai−B = 0 ∈ VAB .
Case 2. Ai− = δk ⇒ Ai−B = δkB = Bk− ∈ VB ⊆ VAB .
Case 3. Ai− = vk ⇒ Ai−B = vkB ∈ VAB .
(2) We have to show that each vector x in {w1, · · · , vMB} is obtained from vectors

in VAB preceding x by an elementary computation step. For the vectors wl ∈ VB this
is obvious. Therefore consider a vector x = vkB ∈ VAB , where vk = au1 + u2 with
a ∈ K and vectors u1, u2 ∈ VA preceding vk. Then x = vkB = a(u1B) + (u2B), and
we have to show that u1B and u2B precede x in VAB .

Case 1. uj = 0 ⇒ ujB = 0 ∈ VAB preceding x.
Case 2. uj = standard basis vector ⇒ ujB = row of B ⇒ ujB ∈ VB ⊆ VAB

preceding x = vkB.
Case 3. uj = vl, l < k ⇒ ujB = vlB ∈ VAB preceding x = vkB.
Hence VAB has the properties of an algorithm.
Corollary 50. The complexity of block matrices satisfies

μ

((
A 0
0 B

))
≤ μ(A) + μ(B), A,B ∈ K•×• of arbitrary size.

Proof. Theorem 49, (A 0
0 B ) =

(
A 0
0 id

) (
id 0
0 B

)
, and the trivial relation μ

(
A 0
0 id

)
=

μ(A) yield the result.
Remark 51 (multiplicative complexity). Let (X − x1) ∗ · · · ∗ (X − xn) ∈ Q[X] ⊂

C[X] be a rational polynomial with n distinct rational roots xi, i = 1, . . . , n. Then
Lagrange interpolation or the Chinese remainder theorem implies the canonical C-
isomorphism

ϕ : C[X]<n
∼= Cn, f �→ (f(x1), · · · , f(xn)),

where C[X]〈n is the space of polynomials of degree less than n. The domain (resp.,
the codomain) of ϕ has the basis 1, · · · , Xn−1 (resp., the standard basis δ1, · · · , δn).
For fixed j and f = an−1X

n−1 + · · ·+ a0 ∈ C[X] euclidean division furnishes

f = g(X − xj) + f(xj), g := bn−2X
n−2 + · · ·+ b0 with

bn−2 = an−1, bi−1 = ai + xjbi, i = n− 2, . . . , 1, f(xj) = a0 + xjb0.

This shows that f(xj) can be computed from f with n − 1 elementary computation
steps and hence μ(ϕ) ≤ n(n−1). Observe, however, that the necessary multiplications
have the rational factor xj . In the multiplicative complexity theory due to Winograd
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[43] which is, for instance, also used in [29] or [20], these rational multiplications—at
least if the xj are small integers—and rational linear combinations are considered
costless, and therefore the complexity of ϕ is considered to be zero. This is not
justified for those computers where the elementary computation step consists of one
multiplication and one addition. The same cautionary remarks apply to almost all
fast algorithms which use the Chinese remainder theorem and which are not discussed
in this paper.

5. The fast Fourier transform (FFT). This is the central section of this
article. Assumptions 14 and 29 are in force, all groups are finite abelian of exponent
d > 0.

Reminder 52. If ϕ : G → H is a group epimorphism of additive groups, a map
σ : H → G is called a section of ϕ if ϕσ = idH . Then σ is injective, and the elements
σ(h), h ∈ H, are a system of representatives of G/ ker(ϕ); i.e., the map

H × ker(ϕ)→ G, (h, k) �→ σ(h) + k,(29)

is bijective. The map (29) is an isomorphism, and especially G = σ(H) ⊕ ker(ϕ) if
and only if σ is a monomorphism, but, in general, these properties do not hold.

We construct the FFT algorithm by means of a given filtration or sequence of
subgroups

G0 = 0 ⊆ G1 ⊆ · · · ⊆ Gr = G.(30)

A filtration (30) gives rise to the commutative exact diagrams (with exact rows and
columns) for i = 1, . . . , r:

0⏐⏐�
0 Gi/Gi−1⏐⏐� ⏐⏐�γi:=inj

0 −−−−→ Gi−1
αi−1:=inj−−−−−−→ G

λi−1:=can−−−−−−→ G/Gi−1 −−−−→ 0⏐⏐�βi:=inj

∥∥∥ ⏐⏐�νi:=can

0 −−−−→ Gi
αi:=inj−−−−→ G

λi:=can−−−−−→ G/Gi −−−−→ 0⏐⏐�μi:=can

⏐⏐�
Gi/Gi−1 0⏐⏐�

0

,(31)

where inj (resp., can) are the canonical injections (resp., surjections). Moreover, λ0

and αr are isomorphisms, and the compatibility relations λi−1αi = γiμi hold. For
more flexibility we now make the following, formally more general assumption.

Assumption 53. Assume that Assumptions 14 and 29 are satisfied and that
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commutative exact diagrams (32) are given for i = 1, . . . , r:

0⏐⏐�
0 Ki⏐⏐� ⏐⏐�γi

0 −−−−→ Gi−1
αi−1−−−−→ G

λi−1−−−−→ Hi−1 −−−−→ 0⏐⏐�βi

∥∥∥ ⏐⏐�νi

0 −−−−→ Gi
αi−−−−→ G

λi−−−−→ Hi −−−−→ 0⏐⏐�μi

⏐⏐�
Ki 0⏐⏐�
0

(32)

such that the following additional properties hold:

(1) G0 and Hr are zero or λ0 and αr are isomorphisms.

(2) The compatibility relations λi−1αi = γiμi, i = 1, . . . , r, hold.

(3) Sections σi : Ki → Gi, i = 1, . . . , r, with μiσi = idKi
and σi(0) = 0 are chosen

arbitrarily.

These diagrams, in turn, induce the filtration 0 ⊆ α1(G1) ⊆ · · · ⊆ αr(Gr) = G
and the isomorphisms

G/αi(Gi) ∼= Hi, ḡ �→ λi(g),

Gi/βi(Gi−1) ∼= αi(Gi)/αi−1(Gi−1) ∼= Ki, gi �→ αi(gi) �→ μi(gi).

In the situation of the preceding assumption we define

N := ord(G) and e� := ord(K�); hence N = e1 ∗ · · · ∗ er.(33)

Recall that every group admits a Jordan–Hölder series, i.e., a filtration (30) or dia-
grams (31) or (32) with the property that the factors K�

∼= G�/G�−1 are simple or
have prime order e�, and that these prime numbers are uniquely determined by G.

Application of the duality functor G �→ Ĝ to the preceding diagram yields further
commutative exact diagrams.

Corollary 54. Under Assumption 53 the following diagrams are commutative
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and exact:

0⏐⏐�
0 K̂j⏐⏐� ⏐⏐�μ�

j

0 −−−−→ Ĥj

λ�
j−−−−→ Ĝ

α�
j−−−−→ Ĝj −−−−→ 0⏐⏐�ν�

j

∥∥∥ ⏐⏐�β�
j

0 −−−−→ Ĥj−1

λ�
j−1−−−−→ Ĝ

α�
j−1−−−−→ Ĝj−1 −−−−→ 0⏐⏐�γ�

j

⏐⏐�
K̂j 0⏐⏐�
0

(34)

for j = r, r − 1, . . . , 1. Furthermore, they have the additional properties that
1. λ�0 and α�

r are isomorphisms,
2. α�

jλ
�
j−1 = μ�

jγ
�
j , and

3. sections σ̂j : K̂j → Ĥj−1 with γ�j σ̂j = id
K̂j

and σ̂j(0) = 0 are chosen arbitrar-

ily.
Thus, up to the reverse numbering, the diagrams from (34) satisfy the same

properties as the diagrams (32) of Assumption 53, and the same arguments apply to
both of them.

Lemma 55. Under Assumption 53 the map

ind :
∏r

i=1Ki → G, k = (ki)i=1,...,r �→ ind(k) :=
∑r

i=1 αiσi(ki),

is bijective; i.e., every g ∈ G admits a unique representation g =
∑r

i=1 αiσi(ki) with
ki ∈ Ki.

Proof. By induction on i = 0, . . . , r we show that g = αi(gi) ∈ αi(Gi), gi ∈ Gi,
admits a unique representation

g =
∑i

j=0 αjσj(kj), kj ∈ Kj .

The assertion is trivial for i = 0 and α0(G0) = 0. For i > 0 the exact sequence

0→ Gi−1
βi→ Gi

μi

�
σi

Ki → 0

with the section σi of μi and (29) imply the unique representation

gi = βi(gi−1) + σi(ki), gi−1 ∈ Gi−1, ki ∈ Ki,

and

g = αi(gi) = αiβi(gi−1) + αiσi(ki) = αi−1(gi−1) + αiσi(ki).
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By induction there are unique kj ∈ Kj , j = 0, . . . , i− 1 with

αi−1(gi−1) =
∑i−1

j=0 αjσj(kj); hence g = αi(gi) =
∑i

j=0 αjσj(kj).

Application of the Lemma 55 to diagram (34) yields the corollary.

Corollary 56. Under Assumption 53 every ĝ ∈ Ĝ has a unique representation

ĝ =
∑r

j=1 λ
�
j−1σ̂j(k̂j), k̂j ∈ K̂j ,

or, in other terms, the map

înd :
∏r

j=1 K̂j → Ĝ, k̂ = (k̂j)j=1,...,r �→ înd(k̂) :=
∑r

j=1 λ
�
j−1σ̂j(k̂j),

is bijective.
Corollary and Definition 57 (index transformations). The maps

Ind := K ind : KG → K
∏r

i=1 Ki , a �→ a0 := a ◦ ind,
a0(k1, . . . , kr) = a (

∑r
i=1 αiσi(ki)) , ki ∈ Ki,

and

Înd := K înd : KĜ → K
∏r

j=1 K̂j , b �→ br := b ◦ înd,

br(k̂1, . . . , k̂r) = b
(∑r

j=1 λ
�
j−1σ̂j(k̂j)

)
are K-isomorphisms and index transformations according to Definition 48, and hence
are of complexity zero.

The following easy considerations are central for the fast computation of the
Fourier transform â of a function a ∈ KG given by â(ĝ) =

∑
g∈G a(g)〈g, ĝ〉. According

to Lemmas 55 and 56 we write g and ĝ as

g = ind(k) =
∑r

i=1 αiσi(ki), k = (ki)i=1,...,r ∈
∏r

i=1Ki,

ĝ = înd(k̂) =
∑r

j=1 λ
�
j−1σ̂j(k̂j), k̂ = (k̂j)j=1,...,r ∈

∏r
j=1 K̂j ,

and compute the bimultiplicative form 〈g, ĝ〉 as

〈g, ĝ〉 =
〈∑r

i=1 αiσi(ki),
∑r

j=1 λ
�
j−1σ̂j(k̂j)

〉
=

∏r
i,j=1 factij(k, k̂), where

factij(k, k̂) := 〈αiσi(ki), λ
�
j−1σ̂j(k̂j)〉 = 〈λj−1αiσi(ki), σ̂j(k̂j)〉.

(35)

For j > i the commutativity of the diagram (32) furnishes

λj−1 ◦ αi = νj−1 ◦ · · · ◦ νi+1 ◦ λi ◦ αi = 0 since

λi ◦ αi = 0; hence facti,j(k, k̂) = 〈0, σ̂j(k̂j)〉 = 1.

For j = i we use the compatibility condition (2) from Assumption 53 and infer

factii(k, k̂) = 〈λi−1αiσi(ki), σ̂i(k̂i)〉 = 〈γiμiσi(ki), σ̂i(k̂i)〉
= 〈μiσi(ki), γ

�
i σ̂i(k̂i)〉 = 〈ki, k̂i〉.

Thus

factij(k, k̂) = 〈αiσi(ki), λ
�
j−1σ̂j(k̂j)〉 =

{
〈ki, k̂i〉 if i = j,

1 if i < j.
(36)
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From (35) and (36) we infer

〈g, ĝ〉 =
∏

j≤i factij(k, k̂) =
∏r

i=1

∏i
j=1 factij(k, k̂)

=
∏r

i=1 ϕi(ki; k̂1, · · · , k̂i), where ϕi : Ki × K̂1 × · · · × K̂i → K,

ϕi(ki; k̂1, · · · , k̂i) :=
∏i

j=1 factij(k, k̂) =
〈
αiσi(ki),

∑i
j=1 λ

�
j−1σ̂j(k̂j)

〉
.

(37)

The decisive property of the functions ϕi is that they depend on the first i components
k̂1, · · · , k̂i of k̂ only. In the same fashion (35) and (36) give rise to the representation

〈g, ĝ〉 =
∏r

j=1

∏r
i=j factij(k, k̂) =

∏r
j=1 ϕ̂j(kj , · · · , kr; k̂j) with

ϕ̂j : Kj × · · · ×Kr × K̂j → K,

ϕ̂j(kj , · · · , kr; k̂j) :=
∏r

i=j factij(k, k̂) =
〈∑r

i=j αiσi(ki), λ
�
j−1σ̂j(k̂j)

〉
.

(38)

For fixed ĝ = înd(k̂) ∈ Ĝ Lemma 55 and (37) imply

â(ĝ) =
∑

g∈G a(g)〈g, ĝ〉 =
∑

k∈∏r
i=1 Ki

a(ind(k))〈ind(k), înd(k̂)〉
=

∑
k1∈K1, ··· , kr∈Kr

a0(k1, · · · , kr)
∏r

i=1 ϕi(ki; k̂1, · · · , k̂i),
(39)

where a0 = a◦ ind = Ind(a) according to Corollary 57. This formula for â(ĝ) suggests
that we define, for � = 1, . . . , r, intermediate functions

a� : K̂1 × · · · × K̂� ×K�+1 × · · · ×Kr → K,

a�(k̂1, · · · , k̂�, k�+1, · · · , kr)
:=

∑
k1∈K1, ··· , k�∈K�

a0(k1, · · · , kr)
∏�

i=1 ϕi(ki; k̂1, · · · , k̂i).
(40)

By definition resp. (39)

a0(k1, · · · , kr) = a(ind(k)) and ar(k̂1, · · · , k̂r) = â(înd(k̂)).

The next theorem is the most important result of this paper. Its main idea, viz., the
recursive computation of the DFT, is due to Cooley and Tukey [18] who developed
the algorithm for the group G = Z/Z2r on the basis of the filtration

G0 := 0 ⊂ G1 := Z2r−1/Z2r ⊂ · · · ⊂ Gi := Z2r−i/Z2r ⊂ · · · ⊂ Gr = G.

Later it turned out that the same idea had been used before, in particular, by Gauss.
See the introduction of [8] for a short historical survey. The “decimation in time”
and “decimation in frequency” terminology used below comes from the application
of the DFT to the computation of one-dimensional Fourier integrals or series where
R or Z are interpreted as time or frequency models, and has been adapted from [8,
pp. 188–191].

Theorem 58 (Cooley–Tukey FFT or decimation in time). The following recur-

sive algorithm computes the Fourier transform â ∈ KĜ of a function a ∈ KG. By
induction on � = 0, · · · , r define functions

a� : K̂1 × · · · × K̂� ×K�+1 × · · · ×Kr → K by
a0(k1, · · · , kr) := a (

∑r
i=1 αiσi(ki)) and for 1 ≤ � ≤ r

a�(k̂1, · · · , k̂�, k�+1, · · · , kr)
:=

∑
k�∈K�

a�−1(k̂1, · · · , k̂�−1, k�, k�+1, · · · , kr)ϕ�(k�; k̂1, · · · , k̂�), where

ϕ�(k�; k̂1, · · · , k̂�) =
〈
α�σ�(k�),

∑�
j=1 λ

�
j−1σ̂j(k̂j)

〉
.
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Then

â(ĝ) = ar(k̂1, · · · , k̂r) for ĝ = înd(k̂) =
∑r

j=1 λ
�
j−1σ̂j(k̂j) ∈ Ĝ, k̂j ∈ K̂j .

Proof. It remains to show that the functions a� defined in (40) satisfy these
recursive relations. But for � > 0

a�(k̂1, · · · , k̂�, k�+1, · · · , kr)
=

∑
k1, ··· , k�

a0(k1, · · · , kr)
∏�

i=1 ϕi(ki; k̂1, · · · , k̂i)
=

∑
k�∈K�

ϕ�(k�; k̂1, · · · , k̂�)
∑

k1, ··· , k�−1
a0(k1, · · · , kr)

∏�−1
i=1 ϕi(ki; k̂1, · · · , k̂i)

=
∑

k�∈K�
ϕ�(k�; k̂1, · · · , k̂�)a�−1(k̂1, · · · , k̂�−1, k�, · · · , kr).

The induction formula of the preceding theorem can be given another traditional
form. From the definition of ϕ� in (37) and from (36) we infer

ϕ�(k�; k̂1, · · · , k̂�) =
〈
α�σ�(k�),

∑�
j=1 λ

�
j−1σ̂j(k̂j)

〉
= 〈k�, k̂�〉

〈
α�σ�(k�),

∑�−1
j=1 λ

�
j−1σ̂j(k̂j)

〉
or

ϕ�(k�; k̂1, · · · , k̂�) = 〈k�, k̂�〉τ�(k�; k̂1, · · · , k̂�−1) with

τ�(k�; k̂1, · · · , k̂�−1) :=
〈
α�σ�(k�),

∑�−1
j=1 λ

�
j−1σ̂j(k̂j)

〉
.

(41)

The elements τ� are roots of unity and hence nonzero and are usually called the
twiddle factors [8, p. 191], [5, p. 121]. With their help we define, for � = 1, . . . , r, the
isomorphisms

T� : KK̂1×···×K̂�−1×K�×···×Kr → KK̂1×···×K̂�×K�+1×···×Kr ,

T�(c)(k̂1, · · · , k̂�, k�+1, · · · , kr)
:=

∑
k�∈K�

c(k̂1, · · · , k̂�−1, k�, · · · , kr)ϕ�(k�; k̂1, · · · , k̂�)
= FourK� [c(k̂1, · · · , k̂�−1,−, k�+1, · · · , kr)τ�(−; k̂1, · · · , k̂�−1)](k̂�).

(42)

Here the argument of FourK� is a function in KK� which depends on the parameters

k̂1, · · · , k̂�−1, k�+1, · · · , kr. The map T� is an isomorphism since the multiplication
with τ� and the Fourier transform FourK� are bijective.

Theorem 59. In the situation of Theorem 58 the induction formula computing
a� from a�−1 can be expressed as a� = T�(a�−1), � = 1, . . . , r; hence

FourG = Înd
−1 ◦ Tr ◦ · · · ◦ T1 ◦ Ind : KG → KĜ.

With e� := ord(K�) and N := e1 ∗ · · · ∗ er = ord(G) the complexity satisfies

μ(FourG) ≤ N(e1 + · · ·+ er − r).
Proof. The first assertion is obvious. Concerning the complexity recall the con-

dition σ�(0) = 0 from Assumption 53 and

ϕ�(k�; k̂1, · · · , k̂�) =
〈
α�σ�(k�),

∑�
j=1 λ

�
j−1σ̂j(k̂j)

〉
; hence ϕ�(0; k̂1, · · · , k̂�) = 1.
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From this and equation (42) we infer μ(T�) ≤ N(e� − 1) as in Definition and 46(3).
Since index transformations are costless according to Definition and 48, we conclude
by means of Theorem 49 that

μ(FourG) ≤∑
� μ(T�) ≤ N(e1 − 1 + · · ·+ er − 1) = N(e1 + · · ·+ er − r).

Remark 60 (butterfly diagrams). In the literature special cases of the induction
formula of Theorem 58 are often represented by means of a directed graph or so-called
butterfly diagram. Such a graph can be introduced in general; it is, however, useless
for the actual execution of the fast algorithm. Its graphical representation in the
plane is also of no practical significance and, moreover, is complicated except in the
simplest cases such as G = Z/Z8 where it is usually shown. Indeed, consider the
graph Γ := (V,E) with vertex (resp., edge) sets V (resp., E), where

V :=
⊎r

�=0 V�, V� := K̂1 × · · · × K̂� ×K�+1 × · · · ×Kr, E ⊂ V × V,

with edges from (k̂1, · · · , k̂�−1, k�, · · · , kr) to (k̂1, · · · , k̂�, k�+1, · · · , kr) or from V�−1

to V� only. For w = (k̂1, · · · , k̂�, k�+1, · · · , kr) ∈ V�, � ≥ 1, there results the bijection

K�
∼= {(v, w); (v, w) is an edge of Γ with endpoint w},

k� �→ (v, w), v := (k̂1, · · · , k̂�−1, k�, · · · , kr) ∈ V�−1.

With the abbreviation a(v) := a�−1(k̂1, · · · , k̂�−1, k�, · · · , kr) the recursion formula
of Theorem 58 has the form

a(w) =
∑
a(v)ϕ�(k�; k̂1, · · · , k̂�),

where v = (k̂1, · · · , k̂�−1, k�, · · · , kr) runs over all sources of edges with sink w.

The next theorem on the “decimation in frequency” FFT computes FourĜ : KĜ →
KG and is proved in the same fashion as Theorem 58 on the basis of (38) instead of

(37). For the choice Ĝ = G it yields a second fast algorithm for the computation of
FourG (compare [8, p. 192]).

Theorem 61 (Sande–Tukey FFT or decimation in frequency). Data from As-
sumption 53 and Corollary 54. The following algorithm computes the Fourier trans-

form b̂ ∈ KG of a function b ∈ KĜ. By recursion from � = r to 0 define functions

b� : K̂1 × · · · × K̂� ×K�+1 × · · · ×Kr → K, � = r, . . . , 0,

br(k̂1, · · · , k̂r) := b
(∑r

j=1 λ
�
j−1σ̂j(k̂j)

)
, k̂j ∈ K̂j , and for r ≥ � > 0

b�−1(k̂1, · · · , k̂�−1, k�, · · · , kr)
:=

∑
k̂�∈K̂�

b�(k̂1, · · · , k̂�, k�+1, · · · , kr)ϕ̂�(k�, · · · , kr; k̂�).

Then

b̂(g) =
∑

ĝ∈Ĝ b(ĝ)〈g, ĝ〉 = b0(k1, · · · , kr) for g =
∑r

i=1 αiσi(ki) ∈ G, ki ∈ Ki.

Proof. According to (38) we have

b̂(g) =
∑

k̂∈∏r
j=1 K̂j

b(înd(k̂))〈ind k, înd(k̂)〉
=

∑
k̂1∈K̂1, ··· , k̂r∈K̂r

br(k̂1, · · · , k̂r)
∏r

j=1 ϕ̂j(kj , · · · , kr; k̂j).
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In analogy to (40) we define functions b�, r ≥ � ≥ 0, by

br(k̂1, · · · , k̂r) := b(înd(k̂)) and for � < r

b�(k̂1, · · · , k̂�, k�+1, · · · , kr)
=

∑
k̂�+1∈K̂�+1, ··· , k̂r∈K̂r

br(k̂1, · · · , k̂r)
∏r

j=�+1 ϕ̂j(kj , · · · , kr; k̂j)

and show that they satisfy the recursive relations from which the theorem follows
directly. But, indeed,

b�−1(k̂1, · · · , k̂�−1, k�, · · · , kr)
=

∑
k̂�∈K̂�

ϕ̂�(k�, · · · , kr; k̂�)
∑

k̂�+1∈K̂�+1, ··· , k̂r∈K̂r
br(k̂1, · · · , k̂r),∏r

j=�+1 ϕ̂j(kj , · · · , kr; k̂j)
=

∑
k̂�∈K̂�

ϕ̂�(k�, · · · , kr; k̂�)b�(k̂1, · · · , k̂�, k�+1, · · · , kr).

In analogy to (41) and (42) we also obtain, for � = r, . . . , 1,

ϕ̂�(k�, · · · , kr; k̂�) = 〈k�, k̂�〉τ̂�(k�+1, · · · , kr; k̂�),
τ̂�(k�+1, · · · , kr; k̂�) :=

〈∑r
i=�+1 αiσi(ki), λ

�
�−1σ̂�(k̂�)

〉
,

(43)

and define the isomorphism

T̂� : KK̂1×···×K̂�×K�+1×···×Kr ∼= KK̂1×···×K̂�−1×K�×···×Kr ,

T̂�(c) := Four
K̂�

[c(k̂1, · · · , k̂�−1,−, k�+1, · · · , kr)τ̂�(k�+1, · · · , kr;−)].
(44)

Theorem 62. In the situation of Theorem 61 and with the isomorphisms T̂�

from (44) and Ind, Înd from Corollary 57, we have

FourĜ = Ind−1 ◦T̂1 ◦ · · · ◦ T̂r ◦ Înd and
μ(FourĜ) ≤ N(e1 + · · ·+ er − r),

where e� := ord(K�) and N := e1 ∗ · · · ∗ er = ord(G).
Theorems 59 and 62 signify that the FFT-algorithms in Theorems 58 and 61 are

fast, i.e., of relatively low complexity N(e1 + · · · + er − r) instead of the N(N − 1)
of the direct computation of FourG. Recall that the algorithms and their complexity
depend on the diagrams from Assumption 53.

The best FFT-algorithms according to the preceding theorems are obtained when
the diagrams from Assumption 53 are constructed by means of a Jordan–Hölder series
of G which are characterized by the property that the numbers e� are prime numbers;
hence N = e1 ∗ · · · ∗ er is the prime factor decomposition of N = ord(G).

For the next theorem we introduce a logarithm type arithmetic function Λ. Let
N := {0, 1, · · · } denote the additive monoid of natural numbers and N>0 := {1, 2, · · · }
the multiplicative monoid of positive numbers. Every N ∈ N>0 admits the unique
prime factor decomposition

N =
∏

p∈P p
ordp(N), ordp(N) = 0 for almost all p,

where P = {2, 3, 5, · · · } is the set of prime numbers. The standard isomorphism

N>0
∼= N(P) := {ν ∈ NP ; ν(p) = 0 for almost all p ∈ P}, N �→ (ordp(N))p∈P ,
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follows and induces the composed epimorphism

Λ : N>0
∼= N(P) → N, N �→ (ordp(N))p∈P �→ Λ(N) :=

∑
p∈P(p− 1) ordp(N);(45)

hence Λ(1) = 0, and Λ(M ∗N) = Λ(M) + Λ(N). The obvious inequality

1 + (p− 1)m < (1 + p− 1)m = pm for m ≥ 2 implies Λ(N) ≤ N − 1 and
Λ(N) = N − 1 ⇔ N = 1 or N is prime.

Theorem 63. Let G be an abelian group of exponent d and order N . Then

μ(FourG) ≤ NΛ(N) ≤ N(N − 1).

The equality N(N − 1) = NΛ(N) holds if and only if G is simple or zero.
Proof. Choose a Jordan–Hölder series of G, the corresponding diagrams (31)

as those in (32), and the FFT-algorithms derived from these diagrams. Then the
numbers e� are exactly the prime factors of N = e1 ∗ · · · ∗ er and

Λ(e�) = e� − 1, Λ(N) = Λ(e1 ∗ · · · ∗ er) =
∑

� Λ(e�) =
∑

�(e� − 1); hence

μ(FourG) ≤ N(e1 − 1 + · · ·+ er − 1) = NΛ(N).

Examples 64. Let G be a group of order N .
(1) The first standard case was that of Cooley and Tukey [18]:

N = 2r, Λ(N) = (2− 1) ∗ r = r, μ(FourG) ≤ 2r ∗ r = N log2(N).

(2)

N = 675 = 33 ∗ 52, Λ(N) = (3− 1) ∗ 3 + (5− 1) ∗ 2 = 14 and
NΛ(N) = 675 ∗ 14 = 9450 < N(N − 1) = 454950,

(3) G := Z/Z210 × Z/Z210, N = 220. This group can be considered as a lattice
with approximately one million points and may, for instance, be used for
digital image processing. The direct computation of FourG has complexity
N(N − 1) ∼ 240, whereas that of the FFT is 20 ∗ 220 = 1, 25 ∗ 224. The
improvement of the complexity is dramatic.

6. The FFT in the standard cases. Assumption 29 remains in force. In this
section we derive the standard special cases of the FFT and start with that of a cyclic
group G = Z/Zn of exponent d > 0, i.e., with n | d. As usual in the engineering
literature we often identify

Z/Zn = {0, 1, . . . , n− 1}, k = k, 0 ≤ k ≤ n− 1,(46)

and emphasize that the necessary care has to be taken in context with this identifi-
cation. For G = Z/Zn we choose

Ĝ := G = Z/Zn, 〈k, l〉 := ζkld/n, k, l ∈ Z/Zn,(47)

according to Theorem 2. A factorization n = n1n2 of n gives rise to the exact sequence
with a natural section σ : Z/Zn2 → Z/Zn:

0 −−−−→ Z/Zn1
inj−−−−→ Z/Zn

can−−−−→ Z/Zn2 −−−−→ 0

‖ ‖ ‖,
{0, . . . , n1 − 1} {0, . . . , n− 1} {0, . . . , n2 − 1}

,

(48)
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where inj(k1) := k1n2, can(k) := k, σ(k2) := k2 if 0 ≤ k2 ≤ n2 − 1. For k ∈ Z/Zn
and k2 ∈ Z/Zn2 the equations

〈can(k), k2〉Z/Zn2
= ζkk2d/n2 = ζk(k2n1)d/n = 〈k, inj(k2)〉Z/Zn

prove can�(k2) = inj(k2); hence

(can : Z/Zn→ Z/Zn2)
� = inj : Z/Zn2 → Z/Zn and

(inj : Z/Zn1 → Z/Zn)� = can : Z/Zn→ Z/Zn1,
(49)

the second equality following from the first by means of inj� = (can�)� = can. Now
assume that a factorization of d is given from which we derive the following data:

d = e1 ∗ · · · ∗ er, d1(i) := e1 ∗ · · · ∗ ei, i = 0, . . . , r; hence

d1(0) = 1, d1(i) = d1(i− 1) ∗ ei,
d2(j) := d/d1(j) = ej+1 ∗ · · · ∗ er, j = r, . . . , 0,

d2(r) = 1, d2(j − 1) = d2(j) ∗ ej .

(50)

From (50) and by means of (48) we construct commutative exact diagrams of the
type (53):

0⏐⏐�
0 Z/Zei⏐⏐� ⏐⏐�γi=inj

0 −−−−→ Z/Zd1(i− 1)
αi−1=inj−−−−−−→ Z/Zd

λi−1=can−−−−−−→ Z/Zd2(i− 1) −−−−→ 0⏐⏐�βi=inj

∥∥∥ ⏐⏐�νi=can

0 −−−−→ Z/Zd1(i)
αi=inj−−−−→ Z/Zd

λi=can−−−−→ Z/Zd2(i) −−−−→ 0⏐⏐�μi=can

⏐⏐�
Z/Zei 0⏐⏐�

0

(51)

with the natural sections σ from (48) in Z/Zd1(i)
μi=can

�
σi=σ

Z/Zei. Application of the

exact duality functor H �→ Ĥ = H to the cyclic groups of the preceding diagram and
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the identities (49) yield the dual commutative exact diagrams of the type (34):

0⏐⏐�
0 Z/Zej⏐⏐� ⏐⏐�μ�

j=inj

0 −−−−→ Z/Zd2(j)
λ�
j=inj−−−−→ Z/Zd

α�
j=can−−−−−→ Z/Zd1(j) −−−−→ 0⏐⏐�ν�

j =inj

∥∥∥ ⏐⏐�β�
j =can

0 −−−−→ Z/Zd2(j − 1)
λ�
j−1=inj−−−−−−→ Z/Zd

α�
j−1=can−−−−−−→ Z/Zd1(j − 1) −−−−→ 0⏐⏐�γ�

j =can

⏐⏐�
Z/Zej 0⏐⏐�

0

(52)

with the natural sections σ̂ from (48) in Z/Zd2(j − 1)
γ�
j =can

�
σ̂j=σ

Z/Zej . According to

Lemma 55 the diagram (51) gives rise to the index bijection

ind :
∏r

i=1 Z/Zei =
∏r

i=1{0, · · · , ei − 1} ∼= Z/Zd = {0, · · · , d− 1},
ind(k1, · · · , kr) =

∑r
i=1 αiσi(ki) =

∑r
i=1 kid/d1(i)

=
∑r

i=1 kid2(i) =
∑r

i=1 ki ∗ ei+1 ∗ · · · ∗ er.
(53)

Likewise, the diagram (52) induces the bijection

înd :
∏r

j=1 Z/Zej =
∏r

j=1{0, · · · , ej − 1} ∼= Z/Zd = {0, · · · , d− 1},
înd(k̂1, · · · , k̂r) =

∑r
j=1 λ

�
j−1σ̂j(k̂j) =

∑r
j=1 k̂jd/d2(j − 1)

=
∑r

j=1 k̂j ∗ e1 ∗ · · · ∗ ej−1.

(54)

Corollary 65. The unique representation

n =
∑r

i=1 ki ∗ ei+1 ∗ · · · ∗ er, 0 ≤ n < d, 0 ≤ ki < ei, i = 1, . . . , r,

according to (53) is obtained by recursion with respect to i as

nr := n, ni := ni−1 ∗ ei + ki, 0 ≤ ki < ei, i = r, . . . , 1.

Likewise, the unique representation

n =
∑r

j=1 k̂j ∗ e1 ∗ · · · ∗ ej−1, 0 ≤ n < d, 0 ≤ k̂j < ej , j = 1, . . . , r,

according to (54) is obtained by induction with respect to j as

n̂0 := n, n̂j−1 = n̂j ∗ ej + k̂j , 0 ≤ k̂j < ej , j = 1, . . . , r.
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Proof. The proof is the same as that of the q-adic representation of a natural
number for q > 1. For instance,

d > n =: nr := nr−1 ∗ er + kr, 0 ≤ kr < er, nr−1 ≤ n
er
< d

er
= e1 ∗ · · · ∗ er−1,

d > n =: n̂0 = n̂1 ∗ e1 + k̂1, 0 ≤ k̂1 < e1, n̂1 < e2 ∗ · · · ∗ er.

For vectors (ki; k̂1, · · · , k̂i) with components ki, k̂i ∈ Z/Zei = {0, · · · , ei−1} the
function ϕi according to (37) is defined by

ϕi(ki; k̂1, · · · , k̂i) =
〈
αiσi(ki),

∑i
j=1 λ

�
j−1σ̂j(k̂j)

〉
=

〈
kid/d1(i),

∑i
j=1 k̂jd/d2(j − 1)

〉
= ζεi(ki;k̂1, ··· , k̂i), where

εi(ki; k̂1, · · · , k̂i) := ki ∗ ei+1 ∗ · · · ∗ er ∗
∑i

j=1 k̂j ∗ e1 ∗ · · · ∗ ej−1, 0 ≤ ki, k̂i < ei.

(55)

Similarly the function ϕ̂j from (38) has the form

ϕ̂j(kj , · · · , kr; k̂j) = ζ ε̂j(kj , ··· , kr;k̂j), j = 1, · · · , r, where

ε̂j(kj , · · · , kr; k̂j) := k̂j ∗ e1 ∗ · · · ∗ ej−1 ∗
∑r

i=j ki ∗ ei+1 ∗ · · · ∗ er, 0 ≤ ki, k̂i < ei.

(56)

Theorem 58 applied to the preceding situation now implies the following theorem.
Theorem 66 (FFT for cyclic groups [8, pp. 188–191]). Consider a number d > 0

with a factorization d = e1 ∗ · · · ∗ er, the cyclic group G := Z/Zd, and the associated
DFT

FourZ/Zd : KZ/Zd = K{0, ··· , d−1} = Kd → Kd, a �→ â,

â(l) :=
∑d−1

k=0 a(k)ζ
kl, 0 ≤ l < d.

1. The following “decimation in time” algorithm computes â from a with complexity
d(e1 + · · ·+ er − r). Inductively define functions

a� :
∏r

i=1{0, · · · , ei − 1} → K for � = 0, . . . , r by
a0(k1, · · · , kr) := a (

∑r
i=1 ki ∗ ei+1 ∗ · · · ∗ er) ,

a�(k̂1, · · · , k̂�, k�+1, · · · , kr) :=
∑e�−1

k�=0 a�−1(k̂1, · · · , k̂�−1, k�, · · · , kr)ζε�(k�;k̂1, ··· , k̂�)

with ε� from (55). Then

â(l) = ar(k̂1, · · · , k̂r) for l =
∑r

j=1 k̂j ∗ e1 ∗ · · · ∗ ej−1, 0 ≤ l < d, 0 ≤ k̂j < ej .

2. The following “decimation in frequency” algorithm also computes â with complexity
d(e1 + · · ·+ er − r). Recursively define functions

b� :
∏r

�=1{0, · · · , e� − 1} → K for � = r, . . . , 0 by

br(k̂1, · · · , k̂r) := a
(∑r

j=1 k̂j ∗ e1 ∗ · · · ∗ ej−1

)
,

b�−1(k̂1, · · · , k̂�−1, k�, · · · , kr) =
∑e�−1

k̂�=0
b�(k̂1, · · · , k̂�, k�+1, · · · , kr)ζ ε̂�(k�, ··· , kr;k̂�)

with ε̂� from (56). Then

â(k) = b0(k1, · · · , kr) for k =
∑r

i=1 ki ∗ ei+1 ∗ · · · ∗ er, 0 ≤ k < d, 0 ≤ ki < ei.
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Example 67. In the situation of the preceding theorem we choose

K := C, d = 6 = 2 ∗ 3, G := Z/Z6 = {0, · · · , 5},
ζ := exp(2πi/6) = 1/2 + i

√
3/2, ζ6 = 1,

â(l) =
∑5

k=0 a(k)ζ
kl, 0 ≤ k, l ≤ 5.

The FFT-algorithm of the preceding theorem computes â from a = (a(0), · · · , a(5))
with 6 ∗ (2 + 3 − 2) = 18 elementary computation steps. The root ζ satisfies the
cyclotomic equation φ6(ζ) = ζ2 − ζ + 1 = 0 or ζ2 = ζ − 1, hence the group table

k 0 1 2 3 4 5

ζk 1 ζ ζ − 1 −1 −ζ −ζ + 1

The index functions are

ind(k1, k2) = k1 ∗ e2 + k2 = 3k1 + k2 and

înd(k̂1, k̂2) = k̂1 + k̂2 ∗ e1 = k̂1 + 2k̂2, 0 ≤ k1, k̂1 ≤ 1, 0 ≤ k2, k̂2 ≤ 2.

The values of ind and înd are given in the following table:

(k1, k2) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
ind(k1, k2) 0 1 2 3 4 5

înd(k1, k2) 0 2 4 1 3 5

The value table of a0 := a ◦ ind is

(k1, k2) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
a0(k1, k2) a(0) a(1) a(2) a(3) a(4) a(5)

For the computation of a1 we need the exponent ε1, where

ε1(k1; k̂1) = k1 ∗ k̂1 ∗ e2 = 3k1k̂1, ε1(0; k̂1) = 0, ε1(1; k̂1) = 3k̂1,

a1(k̂1, k2) = a0(0, k2) + a0(1, k2)ζ
3k̂1 .

In detail we get

a1(0, 0) = a0(0, 0) + a0(1, 0) = a(0) + a(3),
a1(0, 1) = a0(0, 1) + a0(1, 1) = a(1) + a(4),
a1(0, 2) = a0(0, 2) + a0(1, 2) = a(2) + a(5),
a1(1, 0) = a0(0, 0) + a0(1, 0)ζ3 = a(0) − a(3),
a1(1, 1) = a0(0, 1) − a0(1, 1)ζ3 = a(1) − a(4),
a1(1, 2) = a(0, 2) − a0(1, 2)ζ3 = a(2) − a(5).

For the computation of a2 we need ε2, where

ε2(k2; k̂1; k̂2) = k2(k̂1 + 2k̂2),

a2(k̂1, k̂2) = a1(k̂1, 0) + a1(k̂1, 1)ζ k̂1+2k̂2 + a1(k̂1, 2)ζ2(k̂1+2k̂2).
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In detail, we obtain

â(0) = a2(0, 0) = a1(0, 0) + a1(0, 1) + a1(0, 2)

= a(0) + a(3) + a(1) + a(4) + a(2) + a(5) =
∑5

i=0 a(i)ζ
i∗0,

â(2) = a2(0, 1) = a1(0, 0) + a1(0, 1)ζ2 + a1(0, 2)ζ4

= a(0) + a(3) + (a(1) + a(4))ζ2 + (a(2) + a(5))(−ζ)
= a(0) + a(1)ζ2 + a(2)(−ζ) + a(3) + a(4)ζ2 + a(5)(−ζ)
=

∑5
i=0 a(i)ζ

i∗2,
â(4) = a2(0, 2) = a1(0, 0) + a1(0, 1)ζ4 + a1(0, 2)ζ8

= (a(0) + a(3)) + (a(1) + a(4))(−ζ) + (a(2) + a(5))ζ2

= a(0) + a(1)(−ζ) + a(2)ζ2 + a(3) + a(4)(−ζ) + a(5)ζ2

=
∑5

i=0 a(i)ζ
i∗4,

â(1) = a2(1, 0) = a1(1, 0) + a1(1, 1)ζ1 + a1(1, 2)ζ2

= (a(0)− a(3)) + (a(1)− a(4))ζ + (a(2)− a(5))ζ2

= a(0) + a(1)ζ + a(2)ζ2 + a(3)(−1) + a(4)(−ζ) + a(5)(−ζ2)

=
∑5

i=0 a(i)ζ
i∗1,

â(3) = a2(1, 1) = a1(1, 0) + a1(1, 1)ζ3 + a1(1, 2)ζ6

= (a(0)− a(3)) + (a(1)− a(4))(−1) + (a(2)− a(5))

= a(0) + a(1)(−1) + a(2) + a(3)(−1) + a(4) + a(5)(−1)

=
∑5

i=0 a(i)ζ
i∗3,

â(5) = a2(1, 2) = a1(1, 0) + a1(1, 1)ζ5 + a1(1, 2)ζ10

= (a(0)− a(3)) + (a(1)− a(4))(−ζ2) + (a(2)− a(5))(−ζ)
= a(0) + a(1)(−ζ2) + a(2)(−ζ) + a(3)(−1) + a(4)ζ2 + a(5)ζ

=
∑5

i=0 a(i)ζ
i∗5.

In the following corollary we assume that d in Theorem 66 is a power of a number
q; i.e.,

d = qr, q > 1, r > 1, e1 = · · · = er = q, d1(i) = qi, d2(i) = qr−i.(57)

The associated index functions according to (53) and (54) are

ind(k1, · · · , kr) =
∑r

i=1 kiq
r−i =

∑r
j=1 kr+1−jq

j−1, 0 ≤ ki < q,

înd(k̂1, · · · , k̂r) =
∑r

j=1 k̂jq
j−1, 0 ≤ k̂j < q,

(58)

and they give the q-adic representation of a natural number. The map

înd
−1 ◦ ind = ind−1 ◦ înd : {0, · · · , q − 1}r → {0, · · · , q − 1}r,

(k1, · · · , kr) �→ (kr, · · · , k1),
(59)

is usually called the bit reversal map for an obvious reason. The functions εi and ε̂j
from (55) and (56) are

εi(ki; k̂1, · · · , k̂i) =
∑i

j=1 kik̂jq
j−1+r−i, ε̂j(kj , · · · , kr; k̂j) =

∑r
i=j kik̂jq

j−1+r−i.

(60)
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Corollary 68. Consider natural numbers q > 1, r > 1, and d := qr, the cyclic
group G := Z/Zqr, and the DFT

FourZ/Zqr K
G = Kqr → Kqr , a �→ â, â(l) :=

∑qr−1
k=0 a(k)ζkl, 0 ≤ l < qr.

1. The following “decimation in time” algorithm computes â from a with com-
plexity qr(q − 1)r. Inductively define functions

a� : {0, · · · , q − 1}r → K for � = 0, . . . , r by

a0(k1, · · · , kr) := a
(∑r

i=1 kiq
r−i

)
,

a�(k̂1, · · · , k̂�, k�+1, · · · , kr) :=
∑q−1

k�=0 a�−1(k̂1, · · · , k̂�−1, k�, · · · , kr)ζε�(k�;k̂1, ··· , k̂�)

with ε� from (60). Then

â(l) = ar(k̂1, · · · , k̂r) for l =
∑r

j=1 k̂jq
j−1, 0 ≤ l < qr, 0 ≤ k̂j < q.

2. The following “decimation in frequency” algorithm also computes â with com-
plexity qr(q − 1)r. Recursively define functions

b� : {0, · · · , q − 1}r → K for � = r, . . . , 0 by

br(k̂1, · · · , k̂r) := a
(∑r

j=1 k̂jq
j−1

)
,

b�−1(k̂1, · · · , k̂�−1, k�, · · · , kr) =
∑q−1

k̂�=0
b�(k̂1, · · · , k̂�, k�+1, · · · , kr)ζ ε̂�(k�, ··· , kr;k̂�)

with ε̂� from (60). Then

â(k) = b0(k1, · · · , kr) for k =
∑r

i=1 kiq
r−i, 0 ≤ k < qr, 0 ≤ ki < q.

Corollary 69. (see [18]) In the situation of Corollary 68 assume that q = 2 and
G = Z/Z2r. The FFT-algorithms reduce to the following algorithms. The functions
a, â and a�, b� belong to K2r

(resp., K{0,1}r

).
1. The following “decimation in time” algorithm computes â from a with com-

plexity r ∗ 2r. Inductively define functions

a� : {0, 1}r → K for � = 0, . . . , r by

a0(k1, · · · , kr) := a
(∑r

i=1 ki2
r−i

)
,

a�(k̂1, · · · , k̂�, k�+1, · · · , kr)
:= a�−1(k̂1, · · · , k̂�−1, 0, k�+1, · · · , kr) + a�−1(k̂1, · · · , k̂�−1, 1, k�+1, · · · , kr)ζε�(1;k̂1, ··· , k̂�)

with ε�(1; k̂1, · · · , k̂�) :=
∑�

j=1 k̂j2
j−1+r−�. Then

â(l) = ar(k̂1, · · · , k̂r) for l =
∑r

j=1 k̂j2
j−1, 0 ≤ l < 2r, 0 ≤ k̂j ≤ 1.

2. The following “decimation in frequency” algorithm also computes â with com-
plexity r ∗ 2r. Recursively define functions

b� : {0, 1}r → K for � = r, . . . , 0 by

br(k̂1, · · · , k̂r) := a
(∑r

j=1 k̂j2
j−1

)
,

b�−1(k̂1, · · · , k̂�−1, k�, · · · , kr)
= b�(k̂1, · · · , k̂�−1, 0, k�+1, · · · , kr) + b�(k̂1, · · · , k̂�−1, 1, k�+1, · · · , kr)ζ ε̂�(k�, ··· , kr;1)



34 ULRICH OBERST

with ε̂�(k�, · · · , kr; 1) :=
∑r

i=� ki2
�−1+r−i. Then

â(k) = b0(k1, · · · , kr) for k =
∑r

i=1 ki2
r−i, 0 ≤ k < 2r, 0 ≤ ki ≤ 1.

Observe that the computation of a�(k̂1, · · · , k̂�, k�+1, · · · , kr) (resp., of

b�−1(k̂1, · · · , k̂�−1, k�, · · · , kr)) from a�−1 (resp., b�) requires just one elementary
computation step α+ λβ.

For the next application of Theorem 58 we assume that a direct decomposition
of the group G, i.e., an isomorphism

ϕ :
∏r

i=1Ki
∼= G,(61)

is given. For every subset I of {1, · · · , r} we define

G(I) :=
∏

i∈I Ki, especially Gi := G({1, · · · , i}), Hi := G({i+ 1, · · · , r}).(62)

For J ⊆ I there results the exact sequence

0→ G(J)
inj−→ G(I)

proj−−→ G(I \ J)→ 0,

inj((lj)j∈J) := (ki)i∈I , where ki :=

{
li if i ∈ J
0 if i ∈ I \ J,

proj((ki)i∈I) := (ki)i∈I\J ,

(63)

where, moreover, inj : G(I \ J) → G(I) is a homomorphic section of the canonical

projection proj. The groups K̂i and the forms 〈−,−〉Ki being given arbitrarily, we
now choose

Ĝ(I) :=
∏

i∈I K̂i, 〈(ki)i∈I , (k̂i)i∈I〉 :=
∏

i∈I〈ki, k̂i〉Ki
.(64)

It is then easily seen that

(inj : G(J)→ G(I))� = proj : Ĝ(I)→ Ĝ(J),

(proj : G(I)→ G(J))� = inj : Ĝ(J)→ Ĝ(I).
(65)

The isomorphism ϕ from (61) and the exact sequences (63) and (65) now imply the
exact sequences

0→ Gi
ϕ◦inj−−−→ G

proj ◦ϕ−1

−−−−−−→ Hi → 0,

0→ Ĥi
(ϕ�)−1◦inj−−−−−−−→ Ĝ

proj ◦ϕ�

−−−−−→ Ĝi → 0.

(66)
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Finally we use these data to construct the diagrams (32) and (34) in the form

0⏐⏐�
0 Ki⏐⏐� ⏐⏐�γi:=inj

0 −−−−→ Gi−1
αi−1:=ϕ◦inj−−−−−−−−→ G

λi−1:=proj ◦ϕ−1

−−−−−−−−−−→ Hi−1 −−−−→ 0⏐⏐�βi:=inj

∥∥∥ ⏐⏐�νi:=proj

0 −−−−→ Gi
αi:=ϕ◦inj−−−−−−→ G

λi:=proj ◦ϕ−1

−−−−−−−−−→ Hi −−−−→ 0⏐⏐�μi:=proj

⏐⏐�
Ki 0⏐⏐�
0

(67)

0⏐⏐�
0 K̂j⏐⏐� ⏐⏐�μ�

j :=inj

0 −−−−→ Ĥj

λ�
j :=(ϕ�)−1◦inj−−−−−−−−−−→ Ĝ

α�
j :=proj ◦ϕ�

−−−−−−−−→ Ĝj −−−−→ 0⏐⏐�ν�
j :=inj

∥∥∥ ⏐⏐�β�
j :=proj

0 −−−−→ Ĥj−1

λ�
j−1:=(ϕ�)−1◦inj−−−−−−−−−−−→ Ĝ

α�
j−1:=proj ◦ϕ�

−−−−−−−−−−→ Ĝj−1 −−−−→ 0⏐⏐�γ�
j :=proj

⏐⏐�
K̂j 0⏐⏐�
0

(68)

with the canonical homomorphic sections

σi := inj : Ki → Gi =
∏i

k=1Kk and σ̂j := inj : K̂j → Ĥj−1 =
∏r

k=j K̂k.(69)

These diagrams induce the index transformations ind and înd from Corollaries 55
and 56; indeed

ind((ki)i=1, ··· , r) =
∑r

i=1 αiσi(ki) = ϕ (
∑r

i=1 inj ◦ inj(ki))
= ϕ (

∑r
i=1(0, · · · , 0, ki, 0, · · · , 0)) = ϕ((ki)i=1, ··· , r),

and hence

ind = ϕ :
∏r

i=1Ki
∼= G and likewise înd = (ϕ�)−1 :

∏r
j=1 K̂j

∼= Ĝ.(70)



36 ULRICH OBERST

Also, with the notation from (35), we have

factij(k, k̂) = 〈αiσi(ki), λ
�
j−1σ̂j(k̂j)〉

= 〈ϕ inj(ki), (ϕ
�)−1 inj(k̂j)〉 = 〈ϕ−1ϕ inj(ki), inj(k̂j)〉

= 〈(0, · · · , 0, ki, 0, · · · , 0), (0, · · · , 0, k̂j , 0, · · · , 0)〉 =

{
〈ki, k̂i〉 if i = j,

1 if i �= j,
and hence

ϕ�(k�; k̂1, · · · , k̂�) = 〈k�, k̂�〉, � = 1, · · · , r.
Theorem 58 now implies the following theorem.

Theorem 70. Assume that a group isomorphism ϕ :
∏r

i=1Ki
∼= G is given.

Then the following recursive algorithm computes the Fourier transform â ∈ KĜ of
a function a ∈ KG with complexity N(e1 + · · · + er − r) where N := ord(G) and
ei := ord(Ki). Inductively define functions

a� : K̂1 × · · · × K̂� ×K�+1 × · · · ×Kr → K for � = 0, . . . , r by a0 := a ◦ ϕ and

a�(k̂1, · · · , k̂�, k�+1, · · · , kr) :=
∑

k�∈K�
a�−1(k̂1, · · · , k̂�−1, k�, · · · , kr)〈k�, k̂�〉 or

a�(k̂1, · · · , k̂�−1,−, k�+1, · · · , kr) := FourK�

(
a�−1(k̂1, · · · , k̂�−1,−, k�+1, · · · , kr)

)
.

Then â = ar ◦ ϕ�.

If, in particular, G :=
∏r

i=1Ki and ϕ = id, then a0 = a and â = ar.
Example 71 (Walsh–Fourier FFT). We apply the preceding theorem to d := 2,

the group

G := Ĝ := (Z/Z2)r = {0, 1}r 	 k = (k1, · · · , kr), 0 ≤ ki ≤ 1,

of exponent 2 with the form k • l :=
∑r

i=1 kili ∈ Z/Z2, and a ring K in which 2 is
invertible so that Assumption 29 is satisfied for ζ := −1. The Walsh–Fourier DFT is
given by

FourG : KG ∼= KG, FourG(a)(k̂) := â(k̂1, · · · , k̂r) =
∑

k∈G a(k)(−1)k•k̂

and inductively computed with complexity r ∗ 2r by means of the algorithm

a0 := a and for 1 ≤ � ≤ r
a�(k̂1, · · · , k̂�, k�+1, · · · , kr)

:= a�−1(k̂1, · · · , k̂�−1, 0, k�+1, · · · , kr) + a�−1(k̂1, · · · , k̂�−1, 1, k�+1, · · · , kr)(−1)k̂� ,
â = ar.

The next example contains the prime factor algorithm according to Good.
Example 72 (the Good FFT or the prime factor algorithm [21]). In the situa-

tion of Theorem 66 assume that the numbers ei are relatively prime. The euclidean
algorithm and the Chinese remainder theorem yield representations

1 = ri ∗ ei + si ∗ d/ei = ai + bi, bi := si ∗ d/ei,
and the group isomorphism

Δ : G := Z/Zd ∼= ∏r
i=1Ki :=

∏r
i=1 Z/Zei, l �→ (l, · · · , l).

The inverse map of Δ is

ϕ := Δ−1 :
∏r

i=1 Z/Zei ∼= Z/Zd, ϕ(k1, · · · , kr) =
∑r

i=1 kibi.
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For the application of Theorem 70 we compute ϕ�. The equations

〈ϕ(k1, · · · , kr), l〉 = ζ
∑r

i=1 kibil

= ζ
∑r

i=1 ki(sil)d/ei =
∏r

i=1〈ki, sil〉Ki
= 〈k, (s1l, · · · , srl)〉

imply

ϕ�(l) = (s1l, · · · , srl) = (s1, · · · , sr)Δ(l) ∈∏r
i=1 Z/Zei.

Application of Theorem 70 to the preceding data now shows that the following algo-
rithm computes â ∈ KG from a ∈ KG with complexity d(e1+ · · ·+er−r). Inductively
define functions

a� :
∏r

i=1{0, · · · , ei − 1} → K for � = 0, . . . , r by

a0(k1, · · · , kr) := a
(∑r

i=1 kibi

)
,

a�(k̂1, · · · , k̂�, k�+1, · · · , kr) :=
∑e�−1

k�=0 a�−1(k̂1, · · · , k̂�−1, k�, · · · , kr)ζk�k̂�d/e� . Then

a(l) = ar(s1l, · · · , srl), l ∈ Z/Zd.

Consider, in particular, the case of Example 67, i.e., d = 6 = e1e2 = 2 ∗ 3. Then

1 = (−1) ∗ 2 + 1 ∗ 6/2 = 2 ∗ 6/3 + (−1) ∗ 3; hence s1 = 1, b1 = 3, s2 = 2, b2 = 4.

The maps

ϕ, (ϕ�)−1 : Z/Z2× Z/Z3 = {0, 1} × {0, 1, 2} → Z/Z6 = {0, 1, 2, 3, 4, 5}

have the value table

(k1, k2) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
ϕ(k1, k2) 0 4 2 3 1 5

(ϕ�)−1(k1, k2) 0 2 4 3 5 1

Since the maps ϕ and (ϕ�)−1 differ from the index maps ind and înd from Example 67,
the FFT-algorithms from Theorem 66 and Example 72 applied to the same case
d = e1 ∗ · · · ∗ er with relatively prime ei differ, too.

7. Fast convolution. The assumptions of section 3 are in force; in particular,
the Fourier transform is invertible.

The FFT also induces a fast convolution algorithm for the group algebraK[G] and
the polynomial algebra K[z1, · · · , zr]. Let, more generally, A be a commmutative K-
algebra with a fixed chosen basis of length N , for instance, K[G] with the standard
basis. The multiplication A × A → A is K-bilinear, but not linear, and therefore
requires the notion of a bilinear or multiplicative complexity. Several papers and
books deal with it and construct fast algorithms of small multiplicative complexity
[43], [3], [1], [37], [9, Def. 14.7], [33], [20]. In the present paper we do not treat these
algorithms and use only the complexity of linear maps as introduced in section 4. For
fixed a ∈ A the map A → A, b �→ ab, is K-linear and therefore its linear complexity
(with respect to the chosen basis),

μA(a) := μ(A→ A, b �→ ab) ≤ N2 and then μlin(A) := maxb∈A μA(b) ≤ N2,(71)
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is defined according to Definition 46. It is obvious that KG with the argumentwise
multiplication and the standard basis has the complexity

μlin(KG) ≤ N := ord(G)(72)

since the corresponding matrices are diagonal matrices with at mostN nonzero entries.
Theorem 73 (fast convolution). The data are as in Theorem 63. Let a ∈ K[G]

be an arbitrarily chosen but fixed function and consider the linear map f : K[G] →
K[G], b �→ a ∗ b. Then f is the composition of the maps

f : K[G]
FourG−→ KĜ â·(−)−→ KĜ

N−1 Four
Ĝ−→ KG SG−→ KG,

and hence its complexity satisfies

μK[G](a) := μ(f) ≤ N(1 + 2Λ(N)), thus also μlin(K[G]) ≤ N(1 + 2Λ(N)).

Proof. Let c := a ∗ b; hence ĉ := âb̂ by the convolution theorem. The Fourier
inversion theorem implies

f(b) = c = SG(N−1 FourĜ)(ĉ) = SG(N−1 FourĜ)(âb̂),

and f is indeed the asserted composition. According to Theorem 49 its complexity
is at most the sum of the complexities of its factors. The two Fourier transforms
have complexity at most NΛ(N) according to Theorem 63 and the argumentwise
multiplication with â at most N . The complexity of the antipode is zero since it is
an index transformation; see Definition and Corollary 48. The algorithm for FourĜ
from Theorem 61 can be adapted to the computation of N−1 FourĜ by replacing

ϕ̂r(kr, k̂r) = factrr(kr, k̂r) = 〈kr, k̂r〉

in the recursion step cr �→ cr−1 by N−1〈kr, k̂r〉. This implies that also N−1 FourĜ has
complexity at most NΛ(N), and therefore the complexity of b �→ a ∗ b and of K[G] is
indeed at most N(1 + 2Λ(N)).

Algorithm 74 (fast convolution). The fast algorithm for the convolution a ∗ b
in the group algebra K[G] consists of the following steps:

1. Precompute the Fourier transform â ∈ KĜ. This computation and its com-
plexity are not counted because â is assumed known when f is applied.

2. Compute b̂ with the decimation in time FFT according to Theorems 58 and 63
with complexity NΛ(N).

3. Compute ĉ := âb̂, (âb̂)(ĝ) = â(ĝ)̂b(ĝ) with complexity at most N .

4. Compute N−1̂̂c with the slight modification of the decimation in frequency
FFT from Theorem 61 with complexity NΛ(N) and then apply the antipode
to the result to obtain c = a ∗ b.

It suffices to compute br(k̂) only in the first FFT-algorithm (see Theorem 58) and to

start the second FFT-algorithm with cr(k̂) = ar(k̂)br(k̂); i.e., the computation of the

elements ĝ = înd(k̂) =
∑r

j=1 λ
�
j−1σ̂j(k̂j) is superfluous.

Remark 75. If in the preceding algorithm for a ∗ b the complexity of computing â
is also counted, then the total complexity of the algorithm is N(1 + 3Λ(N)). Recall,
however, that in this article we gave only a formal definition for the complexity of a
linear, but not of a bilinear, map like a ∗ b with variable a and b. Our complexity
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counts all necessary elementary computation steps for the computation of c = a∗b and
not only the essential multiplications which enter into the multiplicative complexity.

The fast convolution also induces a fast algorithm for the multiplication of mul-
tivariate polynomials in K[z] = K[z1, · · · , zr]. For this purpose we consider the case

G = Ĝ = Z/Zd1 × · · · × Z/Zdr

=
identification

I(d) := {0, · · · , d1 − 1} × · · · × {0, · · · , dr − 1} 	 μ = (μ1, · · · , μr),

μ • ν :=
∑r

i=1 μiνi
d
di
∈ Z/Zd, 〈μ, ν〉 = ζμ•ν .

(73)

The group algebra K[G] has the K-basis δμ, μ ∈ G. With

x := (x1, · · · , xr), xi := δ(0, ··· ,0,1,0, ··· ,0), 1 at the ith place, i = 1, . . . , r, we get

δμ = xμ and xdi
i − 1 = 0.

Lemma and Definition 76. The substitution homomorphism K[z] → K[G],
zi �→ xi, induces an isomorphism

K[z]/〈zd1
1 − 1, · · · , zdr

r − 1〉 ∼= K[G], zμ �→ δμ = xμ, f �→ f(x).(74)

In what follows we therefore identify these two algebras, i.e., for

f =
∑

μ∈Nr fμz
μ ∈ K[z] : f = f(x) =

∑
μ∈Nr fμx

μ =
∑

μ∈Nr fμδμ.

In particular, we get the K-linear isomorphism

K[z]I(d) := {f ∈ K[z]; for all i = 1, . . . , r : degzi(f) ≤ di − 1}
= ⊕μ∈I(d)Kz

μ ∼= K[G], zμ �→ δμ = xμ.

In other words, one can reproduce f from f(x) if the degree bounds degzi(f) ≤ di − 1
are observed.

Proof. Induction by means of the canonical isomorphism

K[z]/〈zd1
1 − 1, · · · , zdr

r − 1〉
∼= (K[z1, · · · , zr−1]/〈zd1

1 − 1, · · · , zdr−1

r−1 − 1〉)[zr]/〈zdr
r − 1〉

shows that this algebra has the K-basis zμ, μ ∈ I(d). The induced map (74) maps
this K-basis onto the basis xμ, μ ∈ I(d) =

ident.
G of K[G], and is thus an isomor-

phism.
Now let m,n, d be vectors in Nr with the property

mi + ni ≤ di + 1, i = 1, . . . , r, such that K[z]I(m) ×K[z]I(n)
mult−→ K[z]I(d)(75)

is well defined.
Corollary 77 (fast multiplication of polynomials). The multiplication

K[z]I(m) ×K[z]I(n)
mult−→ K[z]I(d), (P,Q) �→ PQ,

P =
∑

μ∈I(m) aμz
μ, Q =

∑
ν∈I(n) bνz

ν ,

PQ =
∑

λ∈I(d)

∑
μ,ν, μ+ν=λ{aμbν , μj ≤ mj − 1, νj ≤ nj − 1}zλ

(76)
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equals the composition of the maps

K[z]I(m) ×K[z]I(n)
inj× inj−→ K[z]I(d) ×K[z]I(d) ∼= K[G]×K[G]

∗→ K[G] ∼= K[z]I(d).

(77)

If the product PQ is computed according to the algorithm in (76), the complexity is∏r
i=1mini.

If, on the other hand, (77) is used with the fast convolution algorithm, Algorithm 74,
then the algorithm has the complexity

N(1 + 3Λ(N)), where N = ord(G) := d1 ∗ · · · ∗ dr.

Note that this algorithm depends on the choice of d1, · · · , dr.
Proof. The proof is obvious since in (77) all maps except the convolution have

complexity zero. See Remark 75 for the applied complexity notion.
In applications of the preceding algorithm (77) the degrees mj and nj are given in

general, whereas the numbers dj > mj +nj −2 may be suitably chosen. We illustrate
the case

r = 1, m1 = n1 = m, 2 ∗ (m− 1) < d = N.

Examples 78.

(1) The standard choice is

N = 2e, e ≥ 2, Λ(2e) = e, m ≤ 2e−1; hence
N(1 + 3Λ(N)) = 2e(1 + 3e). But

2e−2 ≤ 1 + 3e for 2 ≤ e ≤ 6; hence

m2 ≤ 22(e−1) ≤ 2e(1 + 3e) = N(1 + 3Λ(N)) for N = 2e, 2 ≤ e ≤ 6.

This signifies that for the convolution of polynomials of degree at most 31 the
direct computation of complexity m2 = 1024 is faster than the algorithm of
(77) with N = 26 and complexity 26 ∗ (1 + 3 ∗ 6) = 1216.

(2)

m := 36, N1 := 72 = 23 ∗ 32 < N2 = 128 = 27,
Λ(N1) = 3 ∗ 1 + 2 ∗ 2 = 7 = Λ(N2). Again

m2 = 1296 < N1(1 + 3Λ(N1)) = 1584 < N2(1 + 3Λ(N2) = 2816.

Also in this case the direct computation of the product is better than the two
algorithms (77) for N1 (resp., N2).

(3)

m := 70, N1 = 144 = 24 ∗ 32, N2 := 28,
Λ(N1) = 4 + 2 ∗ 2 = 8 = Λ(N2). Then

N1(1 + 3Λ(N1)) = 3600 < m2 = 4900 < N2(1 + 3Λ(N2)) = 6400.

The algorithm for N1 is faster than the direct computation, while that for the
smallest power-of-two, 28, which exceeds 2∗69 is slower. This example shows
that the standard choice of the power-of-two Cooley–Tukey FFT may not
work at all or may give bad results for the fast multiplication of polynomials.
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(4) This example is a multivariate one with

r > 1, but m1 = · · · = mr = n1 = · · · = nr = 2.

The polynomials P and Q are of degree at most one in each indeterminate
zi or contain only square-free monomials. The direct computation of PQ has
the total complexity

∏r
j=1mjnj = 4r. The optimal choice for the dj is

d1 = · · · = dr = 3; hence N = 3r, Λ(N) = 2r.

The algorithm (77) for these data has the complexity

N(1 + 3Λ(N)) = 3r(1 + 6r) < 4r for r ≥ 16.

The best applicable power-of-two FFT is that with d1 = · · · = dr = 4 and
the ensuing multiplication complexity 4r(1 + 6r) which is much slower than
the direct multiplication.

8. Number theoretic transforms (NTT). The following considerations give
interesting examples of the DFT with coefficient rings instead of fields. They are
simple variants or special cases of those in [29, Chap. 8], [16], [20, Chap. 7], where
also the technical significance of these transforms is discussed. We adapt our notation
to that of [29] and consider N > 0, a commutative ring K, and a primitive Nth root
of one ζ ∈ K. Consider the groups

G := Ĝ := Z/ZN =
ident.

{0, · · · , N − 1} with k • l := kl ∈ Z/ZN, 〈k, l〉 := ζkl,

μ := 〈ζ〉 = {η0, · · · , ηi := ζi, · · · , ηN−1 := ζN−1}.
The Fourier transform Four := FourG on G is given as (see Example 20)

a, â := FourZ/ZN (a) ∈ KN , â(l) =
∑N−1

k=0 ζlka(k), or⎛⎜⎜⎝
â(0)
â(1)
· · ·

â(N − 1)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 1 · · · 1
η0 η1 · · · ηN−1

· · · · · · · · · · · ·
ηN−1
0 ηN−1

1 · · · ηN−1
N−1

⎞⎟⎟⎠
⎛⎜⎜⎝

a(0)
a(1)
· · ·

a(N − 1)

⎞⎟⎟⎠ .

The determinant of this Vandermonde matrix is

det :=
∏

0≤i<j≤N−1(ηj − ηi) =
∏

0≤i<j≤N−1 ζ
i(ζj−i − 1),(78)

whose factors are the units ζi and the η − 1, 1 �= η ∈ μ.
Reminder 79 (see [25, pp. 203–207]). Let z := exp(2πi

N ) denote a complex prim-
itive Nth root of one and ν := 〈z〉 the cyclic group of all complex Nth roots of one.

If d ≥ 1 is a divisor of N , the set νd := {z N
d k; 1 ≤ k ≤ d − 1, gcd(k, d) = 1} consists

exactly of the ϕ(d) := ord(U(Z/Zd)) primitive dth roots of one, and the dth cyclo-
tomic polynomial Φd :=

∏
x∈νd

(X − x) is the (irreducible) minimal polynomial of all
its roots in Q[X] and has coefficients in Z, the latter property being derived from the
obvious product representation

XN − 1 =
∏

x∈ν(X − x) =
∏

d|N
∏

x∈νd
(X − x) =

∏
d|N Φd.(79)

Since Φd ∈ Z[X] the value Φd(x) is defined for every element x of any ring.
Theorem 80 (see [29, Thms. 8.3, 8.4], [16, Satz 2.8]). The following assertions

are equivalent.
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(1) Assumption 29 is satisfied, and hence the Fourier inversion theorem, Theo-
rem 34, holds for all finite abelian groups of exponent N , i.e., (i) N ∈ U(K)
and (ii)

for all d > 1, d | N, η := ζ
N
d : 1 + η + · · ·+ ηd−1 = 0.

(2) The Fourier transform FourZ/ZN is an isomorphism.
(3) For all η �= 1 in μ = 〈ζ〉 the element η − 1 is a unit in K.
(4) (i) N ∈ U(K). (ii) ΦN (ζ) = 0.
Proof. (1)⇒ (2): This is a special case.
(2) ⇔ (3): The Fourier transform is an isomorphism if and only if its (Van-

dermonde) determinant (78) is a unit, and this is the case if and only if all factors
η − 1, 1 �= η ∈ μ, of this determinant are units, the ζi being units by assumption.

(3)⇒ (1): As just shown, FourZ/ZN is an isomorphism. Let d > 1 be a divisor of

N and η := ζ
N
d the root of order ord(η) = d; hence

0 = ηd − 1 = (η − 1)(ηd−1 + · · ·+ 1).

But

N
d < N, ord(ζ) = N ⇒ η �= 1 ⇒

(3)
η − 1 ∈ U(K) ⇒ ηd−1 + · · ·+ 1 = 0,

and this is the second condition of Assumption 29. The proof of Theorem 34 then
implies that Four2Z/ZN = NSZ/ZN . Since FourZ/ZN and SZ/ZN are isomorphisms, N
is invertible in K.

(1), (2), (3)⇒ (4): Equation (79) implies

0 = ζN − 1 = ΦN (ζ)
∏

d|N, 1≤d<N Φd(ζ).

But Φd | Xd − 1 and condition (3) imply that

for all d with d | N, 1 ≤ d < N : Φd(ζ) ∈ U(K);

hence ΦN (ζ) = 0.
(4)⇒ (1): Let 1 < d be a divisor of N and let

Y := X
N
d ; hence XN − 1 = Y d − 1 = (Y − 1)(Y d−1 + · · ·+ 1).

The polynomial ΦN is irreducible in Z[X] and divides XN − 1, but not X
N
d − 1 since

d > 1; hence ΦN divides Y d−1 + · · ·+ 1. But then

ΦN (ζ) = 0, η := Y (ζ) = ζ
N
d , and thus ηd−1 + · · ·+ 1 = 0.

This is exactly the second condition of Assumption 29.
Reminder 81 (see [25, Exercise 7, p. 73]). Let

p = odd prime, m ≥ 1, K := Z/Zpm, can : K → Z/Zp, k �→ k. The group

U(K) = {η = k ∈ K; gcd(p, k) = 1 or can(η) �= 0 or can(η) ∈ U(Z/Zp)}

is cyclic of order ϕ(pm) = pm−1(p−1). More precisely, one obtains an exact sequence

1→ 〈1 + p〉 ⊂→ U(K)
can

�
σ

U(Z/Zp)→ 1,
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where 〈1 + p〉 is cyclic of order pm−1 and where σ is the unique section of can which
satisfies the condition σ(λp) = σ(λ)p; indeed, σ is the well-defined map

σ : U(Z/Zp)→ U(K), k �→ kpm−1 ,

is a monomorphism and induces the isomorphism

U(Z/Zp)× 〈1 + p〉 ∼= U(K), (λ, η) �→ σ(λ)η.

Since U(Z/Zp) is cyclic of order p−1 and gcd(pm−1, p−1) = 1, the Chinese remainder
theorem implies that U(K) is cyclic, too, and is generated by σ(λ)(1 + p), where λ is
a primitive (p− 1)st root of one in Z/Zp. If p = 2 and m ≥ 3, the group U(Z/Z2m)
is not cyclic and is uninteresting for the DFT as will be shown instantly.

Lemma 82. Let p be prime,m ≥ 1, K := Z/Zpm, and ζ ∈ K a primitive N th
root of one which satisfies the equivalent conditions of Theorem 80. Then N divides
p− 1. In particular, if p = 2, then N = 1 and ζ = 1, and therefore the case p = 2 is
uninteresting in context with the DFT.

Proof. Assume p− 1 < N . By Theorem 80, ζp−1 − 1 is a unit in K and hence so
is can(ζp−1− 1) = can(ζ)p−1− 1 = 0 in Z/Zp, which is a contradiction. On the other
hand, N divides the order ϕ(pm) = pm−1(p− 1) of U(K), and thus N is a divisor of
p− 1.

Theorem 83 (see [29, Thm. 8.6], [16, Satz 2.2]). Let M > 2 be an odd number,
M = pm1

1 ∗ · · · ∗ pms
s its prime factor decomposition, K = Z/ZM , and N > 0. Then

K contains an N th root of one satisfying the equivalent conditions of Theorem 80 if
and only if N divides gcd(p1 − 1, · · · , ps − 1).

Proof. The Chinese remainder theorem furnishes the isomorphism

Δ : K = Z/ZM ∼= K1 × · · · ×Ks := Z/Zpm1
1 × · · · × Z/Zpms

s , k �→ Δ(k) = (k, · · · , k).

Assume ζ ∈ K satisfies the assumptions of Theorem 80 and let

Δ(ζ) = (ζ1, · · · , ζs); hence N = ord(ζ) = lcm(N1, · · · , Ns), Ni := ord(ζi), and
Δ(ζm − 1) = (ζm1 − 1, · · · , ζms − 1).

The latter element is a unit if m := Ni < N , but ζNi
i − 1 = 0; hence N = N1 = · · · =

Ns and N | pi − 1, i = 1, . . . , s, by Lemma 82.
If, conversely, this is the case, if λi is a generator of U(Z/Zpi) and if

σi : U(Z/Zpi)→ U(Ki) is the section according to Reminder 81, then

ζ := Δ−1

(
σ1

(
λ

p1−1
N

1

)
, · · · , σs

(
λ

ps−1
N

1

))
is the asserted root of one.

We refer the reader to [29] and [20] for the discussion of special cases of the
preceding theorem, in particular, those of Mersenne and Fermat number transforms
with M = 2n − 1 (resp., M = 2n + 1).
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